BBM 202-ALGORITHMS

Dept. of Computer Engineering

Substring Search

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

String processing

String. Sequence of characters.

Important fundamental abstraction.

- Information processing.
- Genomic sequences.
- Communication systems (e.g., email).
- Programming systems (e.g., Java programs).
- ...

> " The digital information that underlies biochemistry, cell biology, and development can be represented by a simple string of G's, A's, T's and C's. This string is the root data structure of an organism's biology." $-M$. V. Olson

The char data type

C char data type. Typically an 8-bit integer.

- Supports 7-bit ASCII.
- Need more bits to represent certain characters.

Hexadecimal to ASCII conversion table

Java char data type. A 16-bit unsigned integer.

- Supports original I6-bit Unicode.
$\underbrace{\text { U+00E1 }}_{\text {U+0041 }}$
- Supports 2I-bit Unicode 3.0 (awkwardly).

I (heart) Unicode

$1 \geqslant$ Unicode

The String data type

String data type. Sequence of characters (immutable).

Length. Number of characters.
Indexing. Get the $i^{\text {th }}$ character.
Substring extraction. Get a contiguous sequence of characters.
String concatenation. Append one character to end of another string.

The String data type: Java implementation

```
public final class String implements Comparable<String>
{
```

```
    private char[] val; // characters
```

 private char[] val; // characters
 private int offset; // index of first char in array
 private int offset; // index of first char in array
 private int length; // length of string
 private int length; // length of string
 private int hash; // cache of hashCode()
    ```
    private int hash; // cache of hashCode()
```

```
public int length()
{ return length; }
    public char charAt(int i)
    { return value[i + offset]; }
    private String(int offset, int length, char[] val)
    {
        this.offset = offset;
        this.length = length;
        this.val = val;
    }
    public String substring(int from, int to)
        copy of reference to
        original char array
    { return new String(offset + from, to - from, val); }
```


The String data type: performance

String data type. Sequence of characters (immutable).
Design Choice. Immutable, cache or share the backing array
Underlying implementation. Immutable char [] array, offset, and length.

| | String | |
| :---: | :---: | :---: |
| | guarantee | extra space |
| length () | 1 | 1 |
| charAt() | 1 | 1 |
| substring() | 1 | 1 |
| concat() | N | N |

Memory. $40+2 N$ bytes for a virgin string of length N.
can use byte [] or char [] instead of String to save space
(but lose convenience of String data type)

The StringBuilder data type

StringBuilder data type. Sequence of characters (mutable). Design Choice. Easier to update, can't cache or share array. Underlying implementation. Resizing char[] array and length.

| | String | | StringBuilder | | | |
|---|---|---|---|---|---|---|
| operation | guarantee | extra space | guarantee | extra space | |
| length () | I | I | I | I | |
| charAt() | I | I | I | I | Actually as of Java 1.7 this is $\mathrm{O}(\mathrm{n})$ for String as |
| substring() | I | I | N | N | well. Before 1.7 the initial String and |
| concat() | N | N | \\| * | I* | substring shared the backing array (no need |
| | | | | * amortized | to copy!) |

Remark. stringbuffer data type is similar, but thread safe (and slower).

String vs. StringBuilder

Q. How to efficiently reverse a string?
A.

```
    public static String reverse(String s)
```

 \{
 String rev = "";
 for (int i = s.length() - 1; i >= 0; i--)
 rev += s.charAt(i);
 return rev;
 \}

```
public static String reverse(String s)
```

B.

```
{
            StringBuilder rev = new StringBuilder();
            for (int i = s.length() - 1; i >= 0; i--)
            rev.append(s.charAt(i));
        return rev.toString();
    }
```


String challenge: array of suffixes

Q. How to efficiently form array of suffixes?
input string

| \mathbf{a} | \mathbf{a} | \mathbf{c} | \mathbf{a} | \mathbf{a} | \mathbf{g} | \mathbf{t} | \mathbf{t} | \mathbf{t} | \mathbf{a} | \mathbf{c} | \mathbf{a} | \mathbf{a} | \mathbf{g} | \mathbf{c} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

suffixes

String vs. StringBuilder

Q. How to efficiently form array of suffixes?
A.

```
    public static String[] suffixes(String s
    { int N = s.length();
        String[] suffixes = new String[N];
        for (int i = 0; i < N; i++)
            suffixes[i] = s.substring(i,
        return suffixes;
```

 linear time and
 \}
 B.

```
public static String[] suffixes(String s)
{
    int N = s.length();
    StringBuilder sb = new StringBuilder(s);
    String[] suffixes = new String[N];
    for (int i = 0; i < N; i++)
        suffixes[i] = sb.substring(i, N);
    return suffixes;
}
```


Longest common prefix

Q. How long to compute length of longest common prefix?

| \mathbf{P} | \mathbf{r} | \mathbf{e} | \mathbf{f} | e | t | c | \mathbf{h} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| \mathbf{p} | \mathbf{r} | \mathbf{e} | \mathbf{f} | \mathbf{i} | \mathbf{x} | | |

```
public static int lcp(String s, String t)
{
    int N = Math.min(s.length(), t.length());
    for (int i = 0; i < N; i++)
        if (s.charAt(i) != t.charAt(i))
            return i;
    return N;
}
```

Running time. Proportional to length D of longest common prefix. Remark. Also can compute compareto() in sublinear time.

Alphabets

Digital key. Sequence of digits over fixed alphabet.

Radix. Number of digits R in alphabet.
Complexity of some algorithms will depend on this

| name | R() | $\operatorname{lgR}()$ | characters |
| :---: | :---: | :---: | :---: |
| BINARY | 2 | 1 | 01 |
| OCTAL | 8 | 3 | 01234567 |
| DECIMAL | 10 | 4 | 0123456789 |
| HEXADECIMAL | 16 | 4 | ACTG |
| DNA | 4 | 2 | abcdefghijk7mnopqrstuvwxyz |
| LOWERCASE | 26 | 5 | ABCDEFGHIJKLMNOPQRSTUVWXYZ |
| UPPERCASE | 26 | 5 | ACDEFGHIKLMNPQRSTVWY |
| PROTEIN | 20 | 5 | ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef |
| BASE64 | 64 | 6 | Ahijk7mnopqrstuvwxyz0123456789+/ characters |
| ASCII | 128 | 7 | 8 |

TODAY

- Substring search
- Brute force
- Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Substring search

Goal. Find pattern of length M in a text of length N.
typically $N \gg M$

Substring search applications

Goal. Find pattern of length M in a text of length N.

Computer forensics. Search memory or disk for signatures, e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Substring search applications

Goal. Find pattern of length M in a text of length N.
typically $\mathrm{N} \gg \mathrm{M}$

Identify patterns indicative of spam.

- PROFITS
- LOSE WE1GHT

- There is no catch.
- This is a one-time mailing.
- This message is sent in compliance with spam regulations.

Substring search applications

Electronic surveillance.

OK. Build a machine that just looks for that.

Substring search applications

Screen scraping. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

```
<tr>
<td class= "yfnc_tablehead1"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledata1">
<big><b>452.92</b></big>
</td></tr>
<td class= "yfnc_tableheadl"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledata1">
```


Screen scraping: Java implementation

Java library. The indexof() method in Java's string library returns the index of the first occurrence of a given string, starting at a given offset.

```
public class StockQuote
{
    public static void main(String[] args)
    {
        String name = "http://finance.yahoo.com/q?s=";
        In in = new In(name + args[0]);
        String text = in.readAll();
        int start = text.indexOf("Last Trade:", 0);
        int from = text.indexOf("<b>", start);
        int to = text.indexOf("</b>", from);
        String price = text.substring(from + 3, to);
        StdOut.println(price);
    }
}
% java StockQuote goog
582.93
    % java StockQuote msft
    24.84
```


SUBSTRING SEARCH

- Brute force
- Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Brute-force substring search

Check for pattern starting at each text position.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

```
    i j j i+j 0
            A B A C A D A B R A C
        4 3 7
                        A D A C
                        A D A C R
public static int search(String pat, String txt)
{
    int M = pat.length();
    int N = txt.length();
    for (int i = 0; i <= N - M; i++)
    {
        int j;
        for (j = 0; j < M; j++)
            if (txt.charAt(i+j) != pat.charAt(j))
                break;
        if (j == M) return i; « index in text where
    }
                        pattern starts
        return N; \longleftarrow not found
}
```


Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

i	J	i+j	0	1	2	3	4	5	6	7	8	9
		txt	A	A	A	A	A	A	A	A	A	B
0	4	4	A	A	A	A	B	-	pat			
1	4	5		A	A	A	A	B				
2	4	6			A	A	A	A	B			
3	4	7				A	A	A	A	B		
4	4	8					A	A	A	A	B	
5	5	10						A	A	A	A	B

Worst case. $\sim M N$ char compares.

Backup

In many applications, we want to avoid backup in text stream.

- Treat input as stream of data.
- Abstract model: standard input.

found
Brute-force algorithm needs backup for every mismatch.

Approach I. Maintain buffer of last M characters.
Approach 2. Stay tuned.

Brute-force substring search: alternate implementation

Same sequence of char compares as previous implementation.

- i points to end of sequence of already-matched chars in text.
- j stores number of already-matched chars (end of sequence in pattern).

```
    i ( 
            A B A C A D A B R A C
    7 3
    A D A C
    50
public static int search(String pat, String txt)
{
    int i, N = txt.length();
    int j, M = pat.length();
    for (i = 0, j = 0; i < N && j < M; i++)
    {
        if (txt.charAt(i) == pat.charAt(j)) j++;
        else { i -= j; j = 0; }
    }
    if (j == M) return i - M;
    else return N;
}
```


Algorithmic challenges in substring search

Brute-force is not always good enough.

Theoretical challenge. Linear-time guarantee. \longleftarrow fundamental algorithmic problem

Practical challenge. Avoid backup in text stream.

Abstract

Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for each good person to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Democrats to come to the aid of their party. Now is the time for all people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good people to come to the aid of their party. Now is the time for all of the good people to come to the aid of their party. Now is the time for all good people to come to the aid of their attack at dawn party. Now is the time for each person to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for many or all good people to come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is the time for all good Democrats to come to the aid of their party.

SUBSTRING SEARCH

- Brute force
- Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern baAAAAAAAA.

- Suppose we match 5 chars in pattern, with mismatch on $6^{t h}$ char.
- We know previous 6 chars in text are BAAAAB.
- Don't need to back up text pointer!
assuming $\{A, B$ \} alphabet

Knuth-Morris-Pratt algorithm. Clever method to always avoid backup. (!)

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

- Finite number of states (including start and halt).
- Exactly one transition for each char in alphabet.
- Accept if sequence of transitions leads to halt state.
internal representation

j	0	1	2	3	4	5	If in state j reading char c :
pat.charAt(j)	A	B	A	B	A	C	
A	1	1	3	1	5	1	if j is 6 halt and accept
dfa[][j] B	0	2	0	4	0	4	
C	0	0	0	0	0	6	\bullet-else move to state dfa [c] [j]

graphical representation

DFA simulation

$$
A A B A C A A B A B A C A A
$$

pat.charAt(j)		0	1	2	3	4	5
		A	B	A	B	A	C
dfa[][j]	A	1	1	3	1	5	1
	B	0	2	0	4	0	4
	C	0	0	0	0	0	6

DFA simulation

A A B A C A A B A B A C A A

DFA simulation

DFA simulation

$$
A \underset{\uparrow}{A} B A C A A B A B A C A A
$$

DFA simulation

DFA simulation

$$
A A B A \underset{\uparrow}{A} A B A B A C A A
$$

DFA simulation

$$
A A B A C A B A B A C A A
$$

		0	1	2	3	4
5						
pat.charAt(j)	A	B	A	B	A	C
dfa[][j]	A	$\mathbf{1}$	1	3	1	5
1						
B	0	2	0	4	0	4
C	0	0	0	0	0	6

DFA simulation

DFA simulation

$$
\text { A A B A C A A } \underset{\uparrow}{B} A B A C A A
$$

DFA simulation

$$
\text { A A B A C A A B } \underset{\uparrow}{A} B \text { A C A A }
$$

DFA simulation

$$
\text { A A B A C A A B A } \underset{\uparrow}{B} A \subset A A
$$

DFA simulation

$$
A A B A C A B A B A C A
$$

	0	1	2	3	4	5	
pat.charAt(j)	A	B	A	B	A	C	
dfa[][j]	A	1	1	3	1	5	1
B	0	2	0	4	0	4	
C	0	0	0	0	$\mathbf{0}$	6	

DFA simulation

DFA simulation

Interpretation of Knuth-Morris-Pratt DFA

Q. What is interpretation of DFA state after reading in txt [i]?
A. State $=$ number of characters in pattern that have been matched.
length of longest prefix of pat[]
that is a suffix of txt[0..i]
Ex. DFA is in state 3 after reading in $\mathrm{txt}[0 . .6]$.

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.

- Need to precompute dfa[][] from pattern.
- Text pointer i never decrements.

```
public int search(String txt)
{
    int i, j, N = txt.length();
    for (i = 0, j = 0; i < N && j < M; i++)
        j = dfa[txt.charAt(i)][j];
    if (j == M) return i - M;
    else return N;
}
```

Running time.

- Simulate DFA on text: at most N character accesses.
- Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.

- Need to precompute dfa[][] from pattern.
- Text pointer i never decrements.
- Could use input stream.

```
public int search(In in)
{
    int i, j;
    for (i = 0, j = 0; !in.isEmpty() && j < M; i++)
        j = dfa[in.readChar()][j];
    if (j == M) return i - M;
    else return NOT_FOUND;
}
```


Knuth-Morris-Pratt construction

Include one state for each character in pattern (plus accept state).

		0	1	2	3	4
pat. charAt (j)	A	B	A	B	A	C
dfa []$[j]$	A					
B						
C						

Constructing the DFA for KMP substring search for A B A A C
(0)
(1)
(2)
(3)
(4)
(5)
(6)

Knuth-Morris-Pratt construction

Match transition. If in state j and next char $\mathrm{c}==\mathrm{pat} . \operatorname{charAt}(\mathrm{j})$, go to

now first j+1 characters of pattern have been matched

	0	1	2	3	4	5	
dfa []$[j]$	A	1		3		5	
B		2		4			
C						6	

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt (j).

	0	1	2	3	4	5	
pat. charAt (j)	A	B	A	B	A	C	
	A	1		3		5	
B	0	2		4			
	C	0					6

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt(j).

| | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pat. charAt (j) | 0 | 1 | 2 | 3 | 4 | 5 |
| Afa[][j] | B | A | B | A | C | |
| B | 1 | 1 | 3 | | 5 | |
| C | 0 | 2 | | 4 | | |
| | | 0 | | | | 6 |

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt(j).

| | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pat. charAt (j) | 0 | 1 | 2 | 3 | 4 | 5 |
| Afa[][j] | B | A | B | A | C | |
| B | 1 | 1 | 3 | | 5 | |
| | 0 | 2 | 0 | 4 | | |
| C | 0 | 0 | 0 | | | 6 |

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt(j).

		0	1	2	3	4	5
pat.charAt(j)		A	B	A	B	A	C
dfa[][j]	A	1	1	3	1	5	
	B	0	2	0	4		
	C	0	0	0	0		6

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt(j).

		0	1	2	3	4

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction

Mismatch transition: back up if c != pat.charAt(j).

		0	1	2	3	4

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction

		0	1	2	3	4	5
pat.charAt		A	B	A	B	A	C
	A	1	1	3	1	5	1
dfa[][j]	B	0	2	0	4	0	4
	C	0	0	0	0	0	6

Constructing the DFA for KMP substring search for ABABAC

How to build DFA from pattern?

Include one state for each character in pattern (plus accept state).

	0	1	$?$	3	4	5
pat.charAt(j)	A	R	A	R	A	\bigcirc
A						
dfa[][j] \quad B						
C						

(0)
(1)
(2)
(3)
(4)
(6)

How to build DFA from pattern?

Match transition. If in state j and next char $c==\operatorname{pat}^{\operatorname{charAt}(j), ~ g o ~ t o ~} j+1$.

first j characters of pattern
 have already been matched
 next char matches
 have already been matched

	0	1	$?$	3	4	5
pat.charAt(j)	A	R	A	R	A	\bigcirc
A	1		3		5	
dfa[][j] B		2		4		
C						6

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt (j), then the last ${ }_{j-1}$ characters of input are pat $[1 . . j-1]$, followed by .

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c. Running time. Seems to require j steps.

EX. dfa['A'][5] = $1 ; \quad \operatorname{dfa}[$ 'B'][5] $=4$

simulate BABA;	simulate $\mathrm{BABA} ;$	j	0	1	2	3	4	5
take transition 'A'	take transition 'B'	pat. charAt (j)	A	B	A	B	A	C
$=$ dfa['A'][3]	$=$ dfa['B'][3]							

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt (j), then the last ${ }_{j-1}$ characters of input are pat [1..j-1], followed by .
\swarrow state X
To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c. Running time. Takes only constant time if we maintain state X.

```
EX. dfa['A'][5] = 1; dfa['B'][5] = 4; \(\quad \begin{aligned} & \text { X' }=0 \\ & \text { from state } X\end{aligned}\)
    from state \(X\),
    take transition ' A '
        \(=\operatorname{dfa}[\) ' A\(][\mathrm{X}]\)
\begin{tabular}{cc} 
dfa \(\left.{ }^{\prime} \mathrm{B}^{\prime}\right][5]=4 ;\) & \(\cdot \mathrm{X}^{\prime}=0\) \\
from state X, & from state X, \\
take transition 'B' & \(=\operatorname{dfa}\left[{ }^{\prime} \mathrm{C}^{\prime}\right][\mathrm{X}]\) \\
\(=\) dfa &
\end{tabular}
\begin{tabular}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
\(A\) & \(B\) & \(A\) & \(B\) & \(A\) & \(C\)
\end{tabular}
```


Knuth-Morris-Pratt construction (in linear time)

Include one state for each character in pattern (plus accept state).

	0	1	2	3	4	5
pat.charAt(j)	A	B	A	B	A	C
A						
dfa[][j] B						
C						

Constructing the DFA for KMP substring search for A B A A C
(0)
(1)
(2)
(3)
(4)
(5)
(6)

Knuth-Morris-Pratt construction (in linear time)

Match transition. For each state j, dfa $[$ pat.charAt $(j)][j]=j+1$.

\uparrow	now first j+1 characters of
first j characters of pattern	
have already been matched	pattern have been matched

	0	1	2	3	4	5	
dfa []$[j]$	A	1		3		5	
B		2		4			
C						6	

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For state 0 and char $\mathrm{c}!=\operatorname{pat} . \operatorname{charAt}(\mathrm{j})$, set dfa[c][0] $=0$.

		0	1	2	3	4	5
pat.charAt(j)		A	B	A	B	A	C
dfa[][j]	A	1		3		5	
	B	0	2		4		
	C	0					6

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char c != pat.charAt (j), set $\operatorname{dfa}[\mathrm{c}][\mathrm{j}]=\operatorname{dfa}[\mathrm{c}][\mathrm{x}]$; then update $\mathrm{x}=\operatorname{dfa}[\mathrm{pat} . \operatorname{charAt}(\mathrm{j})][\mathrm{x}]$.

	$\begin{aligned} & x \\ & \downarrow \end{aligned}$	$\mathrm{X}=$ simulation of empty string				
	0	1	2	3	4	5
pat.charAt(j)	A	B	A	B	A	C
A	1		3		5	
dfa[][j] B	0	2		4		
C	0					6

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char c != pat.charAt (j), set $\operatorname{dfa}[\mathrm{c}][\mathrm{j}]=\operatorname{dfa}[\mathrm{c}][\mathrm{x}]$; then update $\mathrm{x}=\operatorname{dfa}[\mathrm{pat} . \operatorname{charAt}(\mathrm{j})][\mathrm{x}]$.

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char c != pat.charAt (j), set $\operatorname{dfa}[\mathrm{c}][\mathrm{j}]=\operatorname{dfa}[\mathrm{c}][\mathrm{x}]$; then update $\mathrm{x}=\operatorname{dfa}[\mathrm{pat} . \operatorname{charAt}(\mathrm{j})][\mathrm{x}]$.

	$X=$ simulation of B					
	0	1	2	3	4	5
pat.charAt(j)	A	B	A	B	A	C
A	1	1	3		5	
dfa[][j] B	0	2	0	4		
C	0	0	0			6

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char $\mathrm{c}!=\operatorname{pat} . \operatorname{charAt}(\mathrm{j})$, set $\operatorname{dfa}[\mathrm{c}][\mathrm{j}]=\operatorname{dfa}[\mathrm{c}][\mathrm{x}]$; then update $\mathrm{x}=\operatorname{dfa}[\mathrm{pat} . \operatorname{charAt}(\mathrm{j})][\mathrm{x}]$.

		0			im	on		
		1	2	3	4	5		
pat.charAt			A	B	A	B	A	C
	A	1	1	3	1	5		
dfa[][j]	B	0	2	0	4			
	C	0	0	0	0		6	

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char $\mathrm{c}!=\operatorname{pat} . \operatorname{charAt}(\mathrm{j})$, set

Constructing the DFA for KMP substring search for $A B A B A C$

Knuth-Morris-Pratt construction (in linear time)

Mismatch transition. For each state j and char c != pat.charAt (j), set $\operatorname{dfa}[\mathrm{c}][\mathrm{j}]=\operatorname{dfa}[\mathrm{c}][\mathrm{x}]$; then update $\mathrm{x}=\operatorname{dfa}[\mathrm{pat} . \operatorname{charAt}(\mathrm{j})][\mathrm{x}]$.

Constructing the DFA for KMP substring search for A B A A C

Knuth-Morris-Pratt construction (in linear time)

		0	1	2	3	4	5
	pat. charAt (j)	A	B	A	B	A	C
dfa[][j]	A	1	1	3	1	5	1
	B	0	2	0	4	0	4
	C	0	0	0	0	0	6

Constructing the DFA for KMP substring search for ABABAC

Constructing the DFA for KMP substring search: Java implementation

For each state j :

- Copy dfa[] [X] to dfa[][j] for mismatch case.
- Set dfa[pat.charat (j)][j] to j+1 for match case.
- Update x.

```
public KMP(String pat)
{
    this.pat = pat;
    M = pat.length();
    dfa = new int[R][M];
    dfa[pat.charAt(0)][0] = 1;
    for (int X = 0, j = 1; j < M; j++)
    {
        for (int c = 0; c < R; c++)
            dfa[c][j] = dfa[c][X];
        dfa[pat.charAt(j)][j] = j+1;
        x = dfa[pat.charAt(j)][X];
    }
}
```

Running time. M character accesses (but space proportional to $R M$).

KMP substring search analysis

Proposition. KMP substring search accesses no more than $M+N$ chars to search for a pattern of length M in a text of length N.

Pf. Each pattern char accessed once when constructing the DFA; each text char accessed once (in the worst case) when simulating the DFA.

Proposition. KMP constructs dfa[][] in time and space proportional to $R M$.

Larger alphabets. Improved version of KMP constructs nfa[] in time and space proportional to M.

Knuth-Morris-Pratt: brief history

- Independently discovered by two theoreticians and a hacker.
- Knuth: inspired by esoteric theorem, discovered linear-time algorithm
- Pratt: made running time independent of alphabet size
- Morris: built a text editor for the CDC 6400 computer
- Theory meets practice.

SIAM J. COMPUT

Vol. 6, No. 2, June 1977
FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTH \dagger, JAMES H. MORRIS, JR. \ddagger AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one given string within another, in running time proportional to the sum of the lengths of the strings. The constant of proportionality is low enough to make this algorithm of practical use, and the procedure can also be extended to deal with some more general pattern-matching problems. A theoretical application of the algorithm shows that the set of concatenations of even palindromes, i.e., the language $\left\{\alpha \alpha^{R}\right\}^{*}$, can be recognized in linear time. Other algorithms which run even faster on the average are also considered.

Don Knuth

Jim Morris

Vaughan Pratt

SUBSTRING SEARCH

- Brute force
- Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Boyer Moore Intuition

- Scan the text with a window of M chars (length of pattern)

Pattern in Text (M)

- Case I: Scan Window is exactly on top of the searched pattern

- Starting from one end check if all characters are equal. (We must check!)
- Case 2: Scan Window starts after the pattern starts.

Boyer Moore Intuition (2)

- Case 3: Scan Window starts before the pattern starts

- Case 4: Independent

- In case 4 , simply shift window M characters
- Avoid Case 2
- Convert Case 3 to Case I, by shifting appropriately

Boyer-Moore: mismatched character heuristic

Intuition.

- Scan characters in pattern from right to left.
- Can skip as many as M text chars when finding one not in the pattern.
- First we check the character in index pattern.length()-I
- It is N which is not E, so we know that first 5 characters is not a match. Shift text 5 characters
- $S!=E$ so shift $5, E==E$ so we can check for the pattern.length()-2, L!=N, skip 4.

i	j	0	1	2	3	4	5	6	78	9	10	11	12	13	14	15	16	17	18	19	20		1	2223
	text \longrightarrow	F	I	N	D	I	N	A	H A	Y	S	T	A	C	K	N	E	E	D	L	E		I	N A
0	5	N	E	E	D	L	E	\longleftarrow	pattern															
5	5						N	E	E D	L	E													
11	4											N	E	E	D	L	E							
15	0															N	E	E	D	L				

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case I. Mismatch character not in pattern.

mismatch character ' T ' not in pattern: increment i one character beyond ' T '

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

mismatch character ' N ' in pattern: align text ' N ' with rightmost pattern ' N '

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

aligned with rightmost E ?

txt		\circ							
pat		N	E	E	D	L	\mathbf{E}		

mismatch character ' E ' in pattern: align text ' E ' with rightmost pattern ' E ' ?

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Precompute index of rightmost occurrence of character c in pattern (-I if character not in pattern).

```
right = new int[R];
for (int c = 0; c< < R; c++)
    right[c] = -1;
for (int j = 0; j < M; j++)
    right[pat.charAt(j)] = j;
```

		N	E	E	D	L	E	
c		0	1	2	3	4	5	right[c]
A	-1	-1	-1	-1	-1	-1	-1	-1
B	-1	-1	-1	-1	-1	-1	-1	-1
C	-1	-1	-1	-1	-1	-1	-1	-1
D	-1	-1	-1	-1	3	3	3	3
E	-1	-1	(1)	2	2	2	5	5
\cdots								-1
L	-1	-1	-1	-1	-1	4	4	4
M	-1	-1	-1	-1	-1	-1	-1	-1
N	-1	0	0	0	0	0	0	0
\cdots						-1		

Boyer-Moore: Java implementation

```
public int search(String txt)
{
    int N = txt.length();
    int M = pat.length();
    int skip;
    for (int i = 0; i <= N-M; i += skip)
    {
        skip = 0;
        for (int j = M-1; j >= 0; j--)
        {
            if (pat.charAt(j) != txt.charAt(i+j))
            {
                        skip = Math.max(1, j - right[txt.charAt(i+j)]);
                break;
            }
                        in case other term is nonpositive
            }
            if (skip == 0) return i;
        }
        return N;
}
```


Another Example

SEARCH FOR: XXXX

If the window scan points to an unrecognised character, we can skip past that character. For this example, for the initial step we first match X at the end, when check for previous character (A) which is not in the string we skip 3 steps. The X at the end, we matched can still be the first character of the pattern, so we do not skip that.

Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character heuristic takes about $\sim N / M$ character compares to search for a pattern of length M in a text of length N. sublinear!

Worst-case. Can be as bad as $\sim M N$.

i	skip	0	1	2	3	4	5	6	7	8	9
	$t x t \longrightarrow$	B	B	B	B	B	B	B	B	B	B
0	0	A	B	B	B	B		pat			
1	1		A	B	B	B	B				
2	1			A	B	B	B	B			
3	1				A	B	B	B	B		
4	1					A	B	B	B	B	
5	1						A	B	B	B	B

Boyer-Moore variant. Can improve worst case to $\sim 3 N$ by adding a KMP-like rule to guard against repetitive patterns.

Substring Search

- Brute force
- Knuth-Morris-Pratt
- Boyer-Moore
- Rabin-Karp

Rabin-Karp fingerprint search

Basic idea = modular hashing.

- Compute a hash of pattern characters 0 to $M-1$.
- For each i, compute a hash of text characters i to $M+i-1$.
- If pattern hash $=$ text substring hash, check for a match.

Efficiently computing the hash function

Modular hash function. Using the notation t_{i} for txt.charAt(i), we wish to compute

$$
x_{i}=t_{i} R^{M-1}+t_{i+1} R^{M-2}+\ldots+t_{i+M-1} R^{0}(\bmod Q)
$$

Intuition. M-digit, base- R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree- M polynomial.


```
// Compute hash for M-digit key
private long hash(String key, int M)
{
    long h = 0;
    for (int j = 0; j < M; j++)
        h = (R * h + key.charAt(j)) % Q;
    return h;
}
```


Efficiently computing the hash function

Challenge. How to efficiently compute x_{i+1} given that we know x_{i}.

$$
\begin{aligned}
& x_{i}=t_{i} R^{M-1}+t_{i+1} R^{M-2}+\ldots+t_{i+M-1} R^{0} \\
& \cdot x_{i+1}=t_{i+1} R^{M-1}+t_{i+2} R^{M-2}+\ldots+t_{i+M} R^{0}
\end{aligned}
$$

Key property. Can update hash function in constant time!

$\mathbf{i} \quad \ldots$	2	3	4	5	6	7	\ldots	
current value 1	4	1	5	9	2	6	5	\leq text
new value	4	1	5	9	2	6	5	

4	1	5	9	2	current value
4	0	0	0	0	
	1	5	9	2	subtract leading digit
		*	1	0	multiply by radix
1	5	9	2	0	
			+	6	add new trailing digit
1	5	9	2	6	new value

Rabin-Karp substring search example

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Rabin-Karp: Java implementation

```
public class RabinKarp
{
    private long patHash; // pattern hash value
    private int M;
    private long Q;
    private int R;
    private long RM;
    public RabinKarp(String pat) {
        M = pat.length();
        R = 256;
        Q = longRandomPrime();
        RM = 1;
        for (int i = 1; i <= M-1; i++)
            RM = (R * RM) % Q;
        patHash = hash(pat, M);
    }
    private long hash(String key, int M)
    { /* as before */ }
    public int search(String txt)
    { /* see next slide */ }
}
```


Rabin-Karp: Java implementation (continued)

Monte Carlo version. Return match if hash match.

Las Vegas version. Check for substring match if hash match; continue search if false collision.

Rabin-Karp analysis

Theory. If Q is a sufficiently large random prime (about $M N^{2}$), then the probability of a false collision is about $1 / N$.

Practice. Choose Q to be a large prime (but not so large as to cause overflow). Under reasonable assumptions, probability of a collision is about $1 / Q$.

Monte Carlo version.

- Always runs in linear time.
- Extremely likely to return correct answer (but not always!).

Las Vegas version.

- Always returns correct answer.
- Extremely likely to run in linear time (but worst case is $M N$).

Rabin-Karp fingerprint search

Advantages.

- Extends to 2d patterns.
- Extends to finding multiple patterns.

Disadvantages.

- Arithmetic ops slower than char compares.
- Las Vegas version requires backup.
- Poor worst-case guarantee.

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

algorithm	version	operation count		backup in input?	correct?	extra space
		guarantee	typical			
brute force	-	$M N$	1.1 N	yes	yes	1
Knuth-Morris-Pratt	full DFA (Algorithm 5.6)	2 N	1.1 N	no	yes	MR
	mismatch transitions only	$3 N$	1.1 N	no	yes	M
Boyer-Moore	full algorithm	$3 N$	N / M	yes	yes	R
	mismatched char heuristic only (Algorithm 5.7)	MN	N/M	yes	yes	R
Rabin-Karp ${ }^{\dagger}$	Monte Carlo (Algorithm 5.8)	7 N	7 N	no	yes ${ }^{\dagger}$	1
	Las Vegas	$7 N^{+}$	$7 N$	yes	yes	1

