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String processing

String.   Sequence of characters.

 
Important fundamental abstraction.
• Information processing.


• Genomic sequences.


• Communication systems (e.g., email).


• Programming systems (e.g., Java programs).


• …

“ The digital information that underlies biochemistry, cell 

   biology, and development can be represented by a simple 

  string of  G's, A's, T's and C's.   This string is the root data 

  structure of an organism's biology.  ”  — M. V. Olson
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The char data type

C char data type.  Typically an 8-bit integer.

• Supports 7-bit ASCII.


• Need more bits to represent certain characters.


 
 
 
 
 
 
 
 
 
Java char data type.  A 16-bit unsigned integer.

• Supports original 16-bit Unicode.


• Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 n Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table
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The char data type

C char data type.  Typically an 8-bit integer.

・Supports 7-bit ASCII.

・Can represent only 256 characters.

Java char data type.  A 16-bit unsigned integer.

・Supports original 16-bit Unicode.

・Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

U+1D50AU+2202U+00E1U+0041

Unicode characters 
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I (heart) Unicode



String data type.  Sequence of characters (immutable).


Length.  Number of characters.

Indexing.  Get the ith character.

Substring extraction.  Get a contiguous sequence of characters.  
String concatenation.  Append one character to end of another string.
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The String data type

Fundamental constant-time  String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()

s.substring(7, 11)
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The String data type:  Java implementation

public final class String implements Comparable<String>

{

   private char[] val;   // characters

   private int offset;   // index of first char in array

   private int length;   // length of string

   private int hash;     // cache of hashCode()


   public int length()

   {  return length; }


   public char charAt(int i)

   {  return value[i + offset];  }

   

   

   private String(int offset, int length, char[] val)

   {

      this.offset = offset;

      this.length = length;

      this.val    = val;

   }

  

   public String substring(int from, int to)

   {  return new String(offset + from, to - from, val);  }

   …

X X A T T A C K X

0 1 2 3 4 5 6 7 8

val[]

offset

length

copy of reference to

original char array
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The String data type:  performance

String data type.  Sequence of characters (immutable).

Design Choice.  Immutable, cache or share the backing array
Underlying implementation.  Immutable char[] array, offset, and length.

 
 
 
 
 
 
 
 
 
Memory.  40 + 2N bytes for a virgin String of length N.

can use byte[] or char[] instead of String to save space


(but lose convenience of String data type)

String

operation guarantee extra space

length() 1 1

charAt() 1 1

substring() 1 1

concat() N N



8

The StringBuilder data type

StringBuilder data type.  Sequence of characters (mutable).

Design Choice. Easier to update, can’t cache or share array.

Underlying implementation.  Resizing char[] array and length.


Remark.  StringBuffer data type is similar, but thread safe (and slower).

String StringBuilder

operation guarantee extra space guarantee extra space

length() 1 1 1 1

charAt() 1 1 1 1

substring() 1 1 N N

concat() N N 1 * 1 *

*  amortized

Actually as of Java 1.7 
this is O(n) for String as 
well. Before 1.7 the 
initial String and 
substring shared the 
backing array (no need 
to copy!) 
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String vs. StringBuilder

Q.  How to efficiently reverse a string?


A.


B.

  public static String reverse(String s)

  {

     String rev = "";

     for (int i = s.length() - 1; i >= 0; i--)

        rev += s.charAt(i);

     return rev;

  }

  public static String reverse(String s)

  {

     StringBuilder rev = new StringBuilder();

     for (int i = s.length() - 1; i >= 0; i--)

        rev.append(s.charAt(i));

     return rev.toString();

  }

quadratic time

linear time

String concatenation 
creates a new String 
and all chars in backing 
array are copied to new 
one.

The backing array is 
updated. Sometimes 
may need to expand 
the array but 
amortised cost is O(1) 
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String challenge:  array of suffixes

Q.  How to efficiently form array of suffixes?

a a c a a g t t t a c a a g c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 a a c a a g t t t a c a a g c
1 a c a a g t t t a c a a g c
2 c a a g t t t a c a a g c
3 a a g t t t a c a a g c
4 a g t t t a c a a g c
5 g t t t a c a a g c
6 t t t a c a a g c
7 t t a c a a g c
8 t a c a a g c
9 a c a a g c
10 c a a g c
11 a a g c
12 a g c
13 g c
14 c

suffixes
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String vs. StringBuilder

Q.  How to efficiently form array of suffixes?


A.


B.

  public static String[] suffixes(String s)

  {

     int N = s.length();

     String[] suffixes = new String[N];

     for (int i = 0; i < N; i++)

        suffixes[i] = s.substring(i, N);

     return suffixes;

  }

  public static String[] suffixes(String s) 

  {

     int N = s.length();

     StringBuilder sb = new StringBuilder(s);

     String[] suffixes = new String[N];

     for (int i = 0; i < N; i++)

        suffixes[i] = sb.substring(i, N);

     return suffixes;

 }

linear time and

linear space

quadratic time and

quadratic space

Since Strings are 
immutable, the backing 
array of larger String can 
be shared with substring. 
In Java 1.7 they changed 
it, now cost is the same as 
below! 

The array of 
StringBuilder can 
change, so can’t share 
with substring.
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Longest common prefix

Q.  How long to compute length of longest common prefix?

 
 
 
 
 
 
 
 
 
 
 
 
Running time.  Proportional to length D of longest common prefix. 
Remark.  Also can compute compareTo() in sublinear time.

 public static int lcp(String s, String t)

 {

    int N = Math.min(s.length(), t.length());

    for (int i = 0; i < N; i++)

       if (s.charAt(i) != t.charAt(i))

          return i;

    return N;

 }

p r e f i x

p r e f e t c h

0 1 2 3 4 5 6 7

linear time (worst case)

sublinear time (typical case)



Digital key.  Sequence of digits over fixed alphabet.
Radix.  Number of digits R in alphabet.

Complexity of some algorithms will depend on this

Alphabets
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604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java 
String, we have to use an array of size 256; with Alphabet, we just need an array with 
one entry for each alphabet character. This savings might seem modest, but, as you will 
see, our algorithms can produce huge numbers of such arrays, and the space for arrays 
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over 
a given Alphabet into a base-R number represented as an int[] array with all values 
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For 
example, if we know that the input consists only of characters from the alphabet, we 
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s); 
for (int i = 0; i < N; i++) 
   count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef 
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets



TODAY
‣ Substring search

‣ Brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp
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Substring search

Goal.  Find pattern of length M in a text of length N.

typically N >> M

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text
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Substring search applications

Goal.  Find pattern of length M in a text of length N.


Computer forensics.  Search memory or disk for signatures, 
e.g., all URLs or RSA keys that the user has entered.

typically N >> M

http://citp.princeton.edu/memory

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text
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Substring search applications

Goal.  Find pattern of length M in a text of length N.


Identify patterns indicative of spam. 

•  PROFITS  

•  L0SE WE1GHT  


•  There is no catch.  


•  This is a one-time mailing.  


•  This message is sent in compliance with spam regulations. 

typically N >> M

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text
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Substring search applications

Electronic surveillance.
Need to monitor all 

internet traffic.

(security)

No way!

(privacy)

Well, we’re mainly

interested in


“ATTACK AT DAWN”

OK. Build a

machine that just 

looks for that.

“ATTACK AT DAWN”

substring search  

machine


found
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Substring search applications

Screen scraping.  Extract relevant data from web page.


Ex.  Find string delimited by <b> and </b> after first occurrence of 
pattern Last Trade:.

http://finance.yahoo.com/q?s=goog

...

<tr>

<td class= "yfnc_tablehead1"

width= "48%">

Last Trade:

</td>

<td class= "yfnc_tabledata1">

<big><b>452.92</b></big>

</td></tr>

<td class= "yfnc_tablehead1"

width= "48%">

Trade Time:

</td>

<td class= "yfnc_tabledata1">

...

http://finance.yahoo.com/q?s=goog
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Screen scraping:  Java implementation

Java library.  The indexOf() method in Java's string library returns the 
index of the first occurrence of a given string, starting at a given offset.

public class StockQuote 
{ 

   public static void main(String[] args) 
   {

      String name = "http://finance.yahoo.com/q?s=";

      In in = new In(name + args[0]);

      String text = in.readAll();

      int start    = text.indexOf("Last Trade:", 0);

      int from     = text.indexOf("<b>",  start);

      int to       = text.indexOf("</b>", from);

      String price = text.substring(from + 3, to);

      StdOut.println(price);

   } 

}

% java StockQuote goog

582.93


% java StockQuote msft

24.84



SUBSTRING SEARCH

‣ Brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



Check for pattern starting at each text position.
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Brute-force substring search

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match



Check for pattern starting at each text position.

public static int search(String pat, String txt) 
{ 
   int M = pat.length(); 
   int N = txt.length(); 
   for (int i = 0; i <= N - M; i++) 
   {    
      int j; 
      for (j = 0; j < M; j++) 
         if (txt.charAt(i+j) != pat.charAt(j)) 
            break; 
      if (j == M) return i; 
   } 
   return N;

}

23

Brute-force substring search:  Java implementation

index in text where  
pattern starts

not found

i   j  i + j   0  1  2  3  4  5  6  7  8  9  1 0


          A  B  A  C  A  D  A  B  R  A  C


4   3   7             A  D  A  C  R


5   0   5                A  D  A  C  R



Brute-force algorithm can be slow if text and pattern are repetitive.


Worst case.  ~ M N char compares.
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Brute-force substring search:  worst case

Brute-force substring search (worst case)

 i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 
 1   4   5       A  A  A  A  B 
 2   4   6          A  A  A  A  B 
 3   4   7             A  A  A  A  B 
 4   4   8                A  A  A  A  B 
 5   5  10                   A  A  A  A  B

   

txt

pat

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match



In many applications, we want to avoid backup in text stream.

• Treat input as stream of data.


• Abstract model: standard input.

 
 
 

Brute-force algorithm needs backup for every mismatch.

 
 
 
 
 
 
 
 
Approach 1.  Maintain buffer of last M characters.

Approach 2.  Stay tuned.

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B


                           A  A  A  A  A  B

Backup
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“ATTACK AT DAWN”


substring search


machine  
 

found

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B


                  A  A  A  A  A  B

matched chars
mismatch

shift pattern right one position

backup 



Same sequence of char compares as previous implementation.

•  i points to end of sequence of already-matched chars in text.


•  j stores number of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)

{

   int i, N = txt.length();

   int j, M = pat.length();

   for (i = 0, j = 0; i < N && j < M; i++)

   {

      if (txt.charAt(i) == pat.charAt(j)) j++;

      else { i -= j; j = 0;  }

   }

   if (j == M) return i - M;

   else            return N;

}
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Brute-force substring search:  alternate 
implementation

backup

i   j   0  1  2  3  4  5  6  7  8  9  1 0


      A  B  A  C  A  D  A  B  R  A  C


7   3           A  D  A  C  R


5   0             A  D  A  C  R
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Algorithmic challenges in substring search

Brute-force is not always good enough.

 
Theoretical challenge.  Linear-time guarantee.

 
Practical challenge.  Avoid backup in text stream. often no room or time to save text

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good 
people to come to the aid of their party. Now is the time for many good people to come to the aid 
of their party. Now is the time for all good people to come to the aid of their party. Now is the 
time for a lot of good people to come to the aid of their party. Now is the time for all of the 
good people to come to the aid of their party. Now is the time for all good people to come to the 
aid of their party. Now is the time for each good person to come to the aid of their party. Now is 
the time for all good people to come to the aid of their party. Now is the time for all good 
Republicans to come to the aid of their party. Now is the time for all good people to come to the 
aid of their party. Now is the time for many or all good people to come to the aid of their party. 
Now is the time for all good people to come to the aid of their party. Now is the time for all good 
Democrats to come to the aid of their party. Now is the time for all people to come to the aid of 
their party. Now is the time for all good people to come to the aid of their party. Now is the time 
for many good people to come to the aid of their party. Now is the time for all good people to come 
to the aid of their party. Now is the time for a lot of good people to come to the aid of their 
party. Now is the time for all of the good people to come to the aid of their party. Now is the 
time for all good people to come to the aid of their attack at dawn party. Now is the time for each 
person to come to the aid of their party. Now is the time for all good people to come to the aid of 
their party. Now is the time for all good Republicans to come to the aid of their party. Now is the 
time for all good people to come to the aid of their party. Now is the time for many or all good 
people to come to the aid of their party. Now is the time for all good people to come to the aid of 
their party. Now is the time for all good Democrats to come to the aid of their party.



SUBSTRING SEARCH

‣ Brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



Knuth-Morris-Pratt substring search

Intuition.    Suppose we are searching in text for pattern  BAAAAAAAAA.
• Suppose we match 5 chars in pattern, with mismatch on 6th char.


• We know previous 6 chars in text are BAAAAB.


• Don't need to back up text pointer!


 
 
 
 
 
 
 
 
 
 
Knuth-Morris-Pratt algorithm.   Clever method to always avoid backup. (!)
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Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

assuming { A, B } alphabet



DFA is abstract string-searching machine.

• Finite number of states (including start and halt).


• Exactly one transition for each char in alphabet.


• Accept if sequence of transitions leads to halt state.


Deterministic finite state automaton (DFA)

30Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

internal representation

graphical representation

If in state j reading char c: 

      if j is 6 halt and accept


•else move to state dfa[c][j]



DFA simulation
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1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]



10 32 4 65

DFA simulation
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10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

pat.charAt(j)

dfa[][j]



10 32 4 65

DFA simulation
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1 32 4 65BA BA CA

B

A

A

C
B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

pat.charAt(j)

dfa[][j]
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DFA simulation
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DFA simulation
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DFA simulation
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DFA simulation
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DFA simulation
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DFA simulation
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DFA simulation
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DFA simulation
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Q.  What is interpretation of DFA state after reading in txt[i]?

A.  State = number of characters in pattern that have been matched.

 
 
Ex.  DFA is in state 3 after reading in txt[0..6].

0  1  2  3  4  5  6  7  8
B  C  B  A  A  B  A  C  A

Interpretation of Knuth-Morris-Pratt DFA
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txt
0  1  2  3  4  5

A  B  A  B  A  Cpat

suffix of text[0..6] prefix of pat[]
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i

length of longest prefix of pat[]

that is a suffix of txt[0..i]



Knuth-Morris-Pratt substring search:  Java 
implementation

Key differences from brute-force implementation.

• Need to precompute dfa[][] from pattern.


• Text pointer i never decrements.


 
 
 
 
 
 
 
 
 
Running time.
• Simulate DFA on text:  at most N character accesses.


• Build DFA:  how to do efficiently?  [warning: tricky algorithm ahead]

46

public int search(String txt)

{

   int i, j, N = txt.length(); 

   for (i = 0, j = 0; i < N && j < M; i++) 

      j = dfa[txt.charAt(i)][j]; 

   if (j == M) return i - M; 

   else        return N; 

}

no backup



Knuth-Morris-Pratt substring search:  Java 
implementation

Key differences from brute-force implementation.

• Need to precompute dfa[][] from pattern.


• Text pointer i never decrements.


• Could use input stream.

47

public int search(In in)

{

   int i, j; 

   for (i = 0, j = 0; !in.isEmpty() && j < M; i++) 

      j = dfa[in.readChar()][j]; 

   if (j == M) return i - M; 

   else        return NOT_FOUND; 

}

Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

no backup



Include one state for each character in pattern (plus accept state).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

pat.charAt(j)

dfa[][j]



Match transition.  If in state j and next char c == pat.charAt(j), go to  
j+1.

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

first j characters of pattern

have already been matched

now first j+1 characters of 
pattern have been matched

next char matches

pat.charAt(j)

dfa[][j]



Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

j

pat.charAt(j)

dfa[][j]



Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

j

pat.charAt(j)

dfa[][j]



Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C
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Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C
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Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

j

pat.charAt(j)
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Mismatch transition:  back up if c != pat.charAt(j).

Knuth-Morris-Pratt construction
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Constructing the DFA for KMP substring search for  A B A B A C

j
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Knuth-Morris-Pratt construction
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1 1 3 1 5 1
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0 1 2 3 4 5
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Constructing the DFA for KMP substring search for  A B A B A C
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Include one state for each character in pattern (plus accept state).

How to build DFA from pattern?
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Match transition.  If in state j and next char c == pat.charAt(j), go to  j+1.

How to build DFA from pattern?
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first j characters of pattern
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pattern have been matched

next char matches



Mismatch transition.  If in state j and next char c != pat.charAt(j), 
then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]:  Simulate pat[1..j-1] on DFA and take transition c.

Running time.  Seems to require j steps.


Ex.  dfa['A'][5] = 1;   dfa['B'][5] = 4

How to build DFA from pattern?

59

simulate BABA;

take transition 'A'


= dfa['A'][3]

simulate BABA;

take transition 'B'


= dfa['B'][3]

still under construction (!)
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Mismatch transition.  If in state j and next char c != pat.charAt(j), 
then the last j-1 characters of input are pat[1..j-1], followed by c.


To compute dfa[c][j]:  Simulate pat[1..j-1] on DFA and take transition c.

Running time.  Takes only constant time if we maintain state X.


Ex.  dfa['A'][5] = 1;   dfa['B'][5] = 4;        

How to build DFA from pattern?

60

from state X,

take transition 'A' 

= dfa['A'][X]

from state X,

take transition 'B' 

= dfa['B'][X]

state X

10 32 4 65BA BA CA
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take transition 'C'
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•X'= 0

B
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Include one state for each character in pattern (plus accept state).

Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C

pat.charAt(j)
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Match transition.  For each state j,  dfa[pat.charAt(j)][j] = j+1.

Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C

first j characters of pattern

have already been matched

now first j+1 characters of 
pattern have been matched

pat.charAt(j)

dfa[][j]



Mismatch transition.  For state 0 and char c != pat.charAt(j), 
set dfa[c][0] = 0.


Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C

j

pat.charAt(j)

dfa[][j]



Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].

Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C

X  =  simulation of empty string

j

X
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pat.charAt(j)

dfa[][j]



Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].


Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C

X  =  simulation of B
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Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].


2
0

1

Knuth-Morris-Pratt construction (in linear time)
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Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].


Knuth-Morris-Pratt construction (in linear time)
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Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].


Knuth-Morris-Pratt construction (in linear time)
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Mismatch transition.  For each state j and char c != pat.charAt(j), set

dfa[c][j] = dfa[c][X]; then update X = dfa[pat.charAt(j)][X].


Knuth-Morris-Pratt construction (in linear time)
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Constructing the DFA for KMP substring search for  A B A B A C
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Knuth-Morris-Pratt construction (in linear time)
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dfa[][j]

Constructing the DFA for KMP substring search for  A B A B A C
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Constructing the DFA for KMP substring search:  Java 
implementation

For each state j:

• Copy dfa[][X] to dfa[][j] for mismatch case.


• Set dfa[pat.charAt(j)][j] to j+1 for match case.


• Update X.


Running time.  M character accesses (but space proportional to R M).

71

public KMP(String pat) 

{   

   this.pat = pat; 

   M = pat.length(); 

   dfa = new int[R][M]; 

   dfa[pat.charAt(0)][0] = 1; 

   for (int X = 0, j = 1; j < M; j++) 

   { 

      for (int c = 0; c < R; c++) 

         dfa[c][j] = dfa[c][X];

      dfa[pat.charAt(j)][j] = j+1; 

      X = dfa[pat.charAt(j)][X]; 

   } 

}

copy mismatch cases
set match case
update restart state



Proposition.  KMP substring search accesses no more than M + N chars 
to search for a pattern of length M in a text of length N.

 
Pf.  Each pattern char accessed once when constructing the DFA; 
each text char accessed once (in the worst case) when simulating the DFA.

 
 
Proposition.  KMP constructs dfa[][] in time and space proportional to R M. 
 
Larger alphabets.  Improved version of KMP constructs nfa[] in time and 
space proportional to M.
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KMP substring search analysis

NFA corresponding to the string A  B  A  B  A  C 

0 1 2 3 4 5 6A B A A C

     0   1   2   3   4   5
     A   B   A   B   A   C
     0   0   0   0   0   3
       

next[j]
pat.charAt(j)

j

graphical representation

internal representation

mismatch transition
(back up at least one state)

B

KMP NFA for ABABAC
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Knuth-Morris-Pratt:  brief history

• Independently discovered by two theoreticians and a hacker.

- Knuth:  inspired by esoteric theorem, discovered linear-time algorithm

- Pratt:  made running time independent of alphabet size

- Morris:  built a text editor for the CDC 6400 computer


• Theory meets practice.

Don Knuth Vaughan PrattJim Morris

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.:l: AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one. given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {can}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Key words, pattern, string, text-editing, pattern-matching, trie memory, searching, period of a
string, palindrome, optimum algorithm, Fibonacci string, regular expression

Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, c a e n a r y contains the pattern
e n, but we do not regard c a n a r y as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a"b and the text is a2"b, we will find ourselves making (n + 1)
comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length rn within a text of length n in O(rn + n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these "O" formulas are independent
of the alphabet size.

* Received by the editors August 29, 1974, and in revised form April 7, 1976.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of

this author was supported in part by the National Science Foundation under Grant GJ 36473X and by
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SUBSTRING SEARCH

‣ Brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



Boyer Moore Intuition

• Scan the text with a window of M chars (length of pattern)


• Case 1: Scan Window is exactly on top of the searched pattern


- Starting from one end check if all characters are equal. (We must check!)


• Case 2: Scan Window starts after the pattern starts. 
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Text

Scan Window (M)

Pattern in Text (M)



Boyer Moore Intuition (2)

• Case 3: Scan Window starts before the pattern starts


• Case 4: Independent


• In case 4, simply shift window M characters


• Avoid Case 2 


• Convert Case 3 to Case 1, by shifting appropriately
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Intuition.

• Scan characters in pattern from right to left.


• Can skip as many as M text chars when finding one not in the pattern.

- First we check the character in index pattern.length()-1

- It is N which is not E, so we know that first 5 characters is not a match. Shift text 5 

characters 

-  S != E so shift 5, E == E so we can check for the pattern.length()-2, L!=N, skip 4. 

Boyer-Moore:  mismatched character heuristic
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Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text



Boyer-Moore:  mismatched character heuristic

Q.  How much to skip?

 
 
 
Case 1.  Mismatch character not in pattern.
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.  .  .  .  .  .  T  L  E  .  .  .  .  .  . 

      N  E  E  D  L  E

txt

pat

mismatch character 'T' not in pattern:  increment i one character beyond 'T'

i

.  .  .  .  .  .  T  L  E  .  .  .  .  .  . 

              N  E  E  D  L  E

txt

pat

i

before

after



Boyer-Moore:  mismatched character heuristic

Q.  How much to skip?


Case 2a.  Mismatch character in pattern.
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.  .  .  .  .  .  N  L  E  .  .  .  .  .  . 

      N  E  E  D  L  E

txt

pat

mismatch character 'N' in pattern:  align text 'N' with rightmost pattern 'N'

i

.  .  .  .  .  .  N  L  E  .  .  .  .  .  . 

            N  E  E  D  L  E

txt

pat

i

before

after



Boyer-Moore:  mismatched character heuristic

Q.  How much to skip?


Case 2b.  Mismatch character in pattern (but heuristic no help).
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.  .  .  .  .  .  E  L  E  .  .  .  .  .  . 

      N  E  E  D  L  E

txt

pat

before

mismatch character 'E' in pattern:  align text 'E' with rightmost pattern 'E' ?

i

.  .  .  .  .  .  E  L  E  .  .  .  .  .  . 

  N  E  E  D  L  E

txt

pat

aligned with rightmost E?
i



Boyer-Moore:  mismatched character heuristic

Q.  How much to skip?


Case 2b.  Mismatch character in pattern (but heuristic no help).
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.  .  .  .  .  .  E  L  E  .  .  .  .  .  . 

      N  E  E  D  L  E

txt

pat

mismatch character 'E' in pattern:  increment i by 1

i

.  .  .  .  .  .  E  L  E  .  .  .  .  .  . 

        N  E  E  D  L  E

txt

pat

i

before

after



Boyer-Moore:  mismatched character heuristic

Q.  How much to skip?


A.  Precompute index of rightmost occurrence of character c in pattern

     (-1 if character not in pattern).
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 right = new int[R]; 

 for (int c = 0; c < R; c++) 

    right[c] = -1; 

 for (int j = 0; j < M; j++) 

    right[pat.charAt(j)] = j; 

Boyer-Moore skip table computation

c right[c]

          N   E   E   D   L   E
          0   1   2   3   4   5
A    -1  -1  -1  -1  -1  -1  -1     -1
B    -1  -1  -1  -1  -1  -1  -1     -1
C    -1  -1  -1  -1  -1  -1  -1     -1
D    -1  -1  -1  -1   3   3   3      3
E    -1  -1   1   2   2   2   5      5
...                                 -1
L    -1  -1  -1  -1  -1   4   4      4
M    -1  -1  -1  -1  -1  -1  -1     -1
N    -1   0   0   0   0   0   0      0
...                                 -1



Boyer-Moore:  Java implementation
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 public int search(String txt) 

 { 

    int N = txt.length();

    int M = pat.length();

    int skip; 

    for (int i = 0; i <= N-M; i += skip) 

    { 

       skip = 0; 

       for (int j = M-1; j >= 0; j--)

       {

          if (pat.charAt(j) != txt.charAt(i+j)) 

          { 

             skip = Math.max(1, j - right[txt.charAt(i+j)]); 

             break; 

          }

       } 

       if (skip == 0) return i;  

    } 

    return N;

} 

compute skip value

match

in case other term is nonpositive



Another Example
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A X A X A X A X X X A X A X X X X A A A 

SEARCH FOR: XXXX

If the window scan points to an unrecognised character, we can skip past that 

character.  For this example, for the initial step we first match X at the end, when 

check for previous character (A) which is not in the string we skip 3 steps. The X 

at the end, we matched can still be the first character of the pattern, so we do not 

skip that.



Property.  Substring search with the Boyer-Moore mismatched character 
heuristic takes about ~ N / M character compares to search for a pattern of 

length M in a text of length N.

 
Worst-case.  Can be as bad as  ~ M N.


 
 
 
 
 
 
 
Boyer-Moore variant.  Can improve worst case to ~ 3 N by adding a 

KMP-like rule to guard against repetitive patterns.

Boyer-Moore:  analysis
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sublinear!

Boyer-Moore-Horspool substring search (worst case)

 i skip     0  1  2  3  4  5  6  7  8  9

            B  B  B  B  B  B  B  B  B  B 

 0   0      A  B  B  B  B   
 1   1         A  B  B  B  B 
 2   1            A  B  B  B  B 
 3   1               A  B  B  B  B 
 4   1                  A  B  B  B  B 
 5   1                     A  B  B  B  B

   

txt

pat



SUBSTRING SEARCH

‣ Brute force

‣ Knuth-Morris-Pratt

‣ Boyer-Moore

‣ Rabin-Karp



Rabin-Karp fingerprint search

Basic idea = modular hashing.

• Compute a hash of pattern characters 0 to M - 1.


• For each i, compute a hash of text characters i to M + i - 1.


• If pattern hash = text substring hash, check for a match.
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Basis for Rabin-Karp substring search 

                    txt.charAt(i)
i    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

0    3  1  4  1  5  % 997 = 508

1       1  4  1  5  9  % 997 = 201

2          4  1  5  9  2  % 997 = 715

3             1  5  9  2  6  % 997 = 971

4                5  9  2  6  5  % 997 = 442

5                   9  2  6  5  3  % 997 = 929 

6                      2  6  5  3  5  % 997 = 613

     pat.charAt(i)
i    0  1  2  3  4

     2  6  5  3  5  % 997 = 613
                                              

 return i = 6

 match



Modular hash function.  Using the notation ti for txt.charAt(i), 
we wish to compute


Intuition.  M-digit, base-R integer, modulo Q.


Horner's method.  Linear-time method to evaluate degree-M polynomial.

Efficiently computing the hash function
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// Compute hash for M-digit key

private long hash(String key, int M)

{

   long h = 0;

   for (int j = 0; j < M; j++)

      h = (R * h + key.charAt(j)) % Q;

   return h;

}

•xi = ti R M-1 + ti+1 R M-2 + … + ti+M-1 R 0  (mod Q)

Computing the hash value for the pattern with Horner’s method

      pat.charAt()
 i   0  1  2  3  4
     2  6  5  3  5

 0   2  % 997 = 2

 1   2  6  % 997 = (2*10 + 6) % 997 = 26

 2   2  6  5  % 997 = (26*10 + 5) % 997 = 265

 3   2  6  5  3  % 997 = (265*10 + 3) % 997 = 659

 4   2  6  5  3  5  % 997 = (659*10 + 5) % 997 = 613

QR



Challenge.  How to efficiently compute xi+1 given that we know xi.

 
 
 
Key property.   Can update hash function in constant time!

Efficiently computing the hash function
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•xi = ti R M–1 + ti+1 R M–2 + … + ti+M–1 R0

•xi+1 = ti+1 R M–1 + ti+2 R M–2 + … + ti+M R0

•xi+1   =   ( xi    –    t i R M–1 )   R      +   t i +M

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i   ...  2  3  4  5  6  7  ...
       1  4  1  5  9  2  6  5
          4  1  5  9  2  6  5
          
          4  1  5  9  2
       -  4  0  0  0  0
             1  5  9  2
                *  1  0
          1  5  9  2  0
                   +  6
          1  5  9  2  6
 

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

current

value

subtract 
leading digit

add new  
trailing digit

multiply

by radix

(can precompute RM–2) 



Rabin-Karp substring search example
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Rabin-Karp substring search example 

 i   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

 0   3  % 997 = 3

 1   3  1  % 997 = (3*10 + 1) % 997 = 31

 2   3  1  4  % 997 = (31*10 + 4) % 997 = 314

 3   3  1  4  1  % 997 = (314*10 + 1) % 997 = 150

 4   3  1  4  1  5  % 997 = (150*10 + 5) % 997 = 508

 5      1  4  1  5  9  % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6         4  1  5  9  2  % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7            1  5  9  2  6  % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8               5  9  2  6  5  % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9                  9  2  6  5  3  % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10                     2  6  5  3  5  % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match



Rabin-Karp:  Java implementation
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public class RabinKarp

{

   private long patHash;    // pattern hash value 

   private int M;           // pattern length

   private long Q;          // modulus

   private int R;           // radix 

   private long RM;         // R^(M-1) % Q      


   public RabinKarp(String pat) { 

      M = pat.length();

      R = 256;

      Q = longRandomPrime();


      RM = 1; 

      for (int i = 1; i <= M-1; i++)

         RM = (R * RM) % Q;

      patHash = hash(pat, M); 

   } 


   private long hash(String key, int M)

   {  /* as before */  }


   public int search(String txt)

   {  /* see next slide */  }

}

precompute RM – 1 (mod Q)

a large prime

(but avoid overflow)



Rabin-Karp:  Java implementation (continued)

Monte Carlo version.  Return match if hash match.

 
 
 
 
 
 
 
 
 
 
 
 
Las Vegas version.  Check for substring match if hash match; 
continue search if false collision.
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   public int search(String txt)

   {

       int N = txt.length(); 

       int txtHash = hash(txt, M); 

       if (patHash == txtHash) return 0;

       for (int i = M; i < N; i++)

       {

           txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q; 

           txtHash = (txtHash*R + txt.charAt(i)) % Q; 

           if (patHash == txtHash) return i - M + 1;

       } 

       return N; 

   }

check for hash collision  
using rolling hash function



Rabin-Karp analysis

Theory.   If Q is a sufficiently large random prime (about M N 2), 
then the probability of a false collision is about 1 / N.

 
Practice.  Choose Q to be a large prime (but not so large as to cause 
overflow). Under reasonable assumptions, probability of a collision is 
about 1 / Q.

 
Monte Carlo version.

• Always runs in linear time.


• Extremely likely to return correct answer (but not always!).


 
Las Vegas version.

• Always returns correct answer.


• Extremely likely to run in linear time (but worst case is M N).
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Rabin-Karp fingerprint search

Advantages.

• Extends to 2d patterns.


• Extends to finding multiple patterns.


 
Disadvantages.

• Arithmetic ops slower than char compares.


• Las Vegas version requires backup.


• Poor worst-case guarantee.
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Cost of searching for an M-character pattern in an N-character text.
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Substring search cost summary

Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 

Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy 
to implement and works well in typical cases (Java’s indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup 

in input? correct? extra 
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA 
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only 

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†
Monte Carlo 

(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

6795.3 � Substring Search
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Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 

Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy 
to implement and works well in typical cases (Java’s indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup 

in input? correct? extra 
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA 
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only 

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†
Monte Carlo 

(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations
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