BBM 202 - ALGORITHMS

HACETTEPE UNIVERSITY

DEPT. OF COMPUTER ENGINEERING

QUICKSORT

Acknowledgement: The course slides are adapted from the slides prepared by
R. Sedgewick and K. Wayne of Princeton University.

Quicksort

Basic plan.

e Shuffle the array.
® Partition so that, for some j

- entry a[j] is in place
- no larger entry to the left of j
- no smaller entry to the right of j

® Sort each piece recursively. Sir Charles Antony Richard Hoare
1980 Turing Award

nput Q U I C K S O R T E X A M P L

shufle K AT E L E P U I M Q C
partitioning item
partition E C A I E K L P U T M Q R X 0 S
™ not greater not less =~

sortleft A C E E 1

sort right L M
resut A C E E I K L M

Shuffling

Shuffling

e Shuffling is the process of rearranging an array of elements randomly.
® A good shuffling algorithm is unbiased, where every ordering is equally likely.

® c.g.the Fisher—Yates shuffle (aka. the Knuth shuffle)

D\ N\
N INAKKDALIR A IBORRBE K RORERN KA KA /K KX OBt

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop i scan because a[i] >=a[lo]

Quicksort partitioning

Repeat until 1 and 3 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and 3 pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop i scan because a[i] >=a[lo]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop i scan because a[i] >=a[lo]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].

® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

20

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop i scan because a[i] >=a[lo]

21

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]

22

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

When pointers cross.
® Exchange a[lo] with a[j].

pointers cross: exchange a[lo] with a[j]

23

Quicksort partitioning

Repeat until 1 and j pointers cross.

® Scan i from left to right so long as a[i] < a[lo].
® Scan j from right to left so long as a[j] > a[lo].
® Exchange a[i] with a[j].

When pointers cross.
® Exchange a[lo] with a[j].

partitioned!

24

Quicksort partitioning

Basic plan.

Scan i from left for an item that belongs on the right.

Scan j from right for an item that belongs on the left.

Exchange a[i] and a[j].
Repeat until pointers cross.

1'j\012345

initial values 0 16

scan left, scan right 1 12
exchange 1 12

scan left, scan right 3 9
exchange 3 9

scan left, scan right 5 6
exchange 5 6

scan left, scan right 6 5
final exchange 5

result 5

ali]
6 7 8 9 10 11 12 13 14 15

E P U I M QCX 0 S

R c X 0 S
— <¢
C R
A T I M Q
— e——
I T
E L E P U
E L
E L
—
~—
E K

E CA I E K L P UTMAQR X O S

Partitioning trace (array contents before and after each exchange)

25

Quicksort: Java code for partitioning

private static int partition (Comparable[] a, int lo, int hi)

{
int i = 1o, j = hi+l;
while (true)

{
while (less(a[++1], a[lol)) find item on left to swap
if (i == hi) break;
while (less(a[lo], a[--]1)) find item on right to swap
if (jJ == lo) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
exch(a, lo, j); swap with partitioning item

return j;

return index of item now known to be in place

before |v
)

1o

26

Quicksort: Java implementation

public class Quick

{
private static int partition (Comparable[] a, int lo, int hi)
{ /* see previous slide */ }

public static void sort (Comparable[] a)

{
StdRandom.shuffle (a) ;

sort(a, 0, a.length - 1);

private static void sort (Comparable[] a, int lo, int hi)

{

if (hi <= lo) return;

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

shuffle needed for
performance guarantee
(stay tuned)

27

Quicksort trace

lo
initial values

random shuffle

/ :
no partition 7

o O OO

for subarrays v
of sizel T~

10

10

10

14

result

O N W U

N O O

13
12
11

14

= N B U

15
15

15
12
11

15

>>mmRXLO|IO
NnNO OO RRXCIE
m > > > H(N
mH — O (w
Hmm x>
AT nu

— mo|o

U U I

c c |

— H m|©o

== X|O

= =<
o O OC

OO0 A Wn

A.CE E I K L M O P Q

Quicksort trace (array contents after each partition)

oo » |

0o L0

AN =< |

A A

n

X X U |w

OCOoOr |+

c O

wn N MU

28

Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

“‘>

algorithm position
in order
current subarray

not in order

29

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier

than it might seem.

Staying in bounds. The (3 == 10) test is redundant (why?),
but the (i == ni) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better
to stop on keys equal to the partitioning item's key.

30

Quicksort: empirical analysis

Running time estimates:

® Home PC executes 108 compares/second.

® Supercomputer executes |0!2 compares/second.

insertion sort (N2) mergesort (N log N) quicksort (N log N)
home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min
super instant 1 second 1 week instant instant instant instant instant instant

Lesson |. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is ~ N Ig V.

Each partitioning process splits the array exactly in half.

al]

lo j hi O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values H A CB F E G D L I K J N MO
randomshufle H A C B F E G D L I K J N M O
O 7 14 D A C B F EGH L I K J N MO
O 3 6 B A C D F E G
O 1 2 A B C

A

32

Quicksort: worst-case analysis

Worst case. Number of compares is ~ 2 N2.

One of the subarrays is empty for every partition.

2,

lo j hi O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values AB CDEF GH I J K L MNO
randomshuffie A B C D E F G H I J K L M N O
O 0 14 A B C D E F GH I J K L MN O
1 1 14 B C DEF GH I J KL MNDO
2 2 14 c b eE F GH I J KL MNDO
3 3 14 b E F GH I J KL MNDO
4 4 14 E F GH I J KL M NDO
5 5 14 F GH I J K L M N O
6 6 14 G H I J K L MNDO
7 7 14 H I J K L M N O
8§ 8 14 Il J K L M N O
9 9 14 J K L M N O
10 10 14 K L M N O
11 11 14 L M N O
12 12 14 M N O
13 13 14 N O
0]

A B CDEF GH I J KL MNDO

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~ 2N In N (and the number of exchanges is ~ /3 N In N).

Pf. Cy satisfies the recurrence Cy=C;=0and for N > 2:

e left right
partitioning l f
' C
+ Cn—1 C1+ Cn_2 Cn-1+ Cy
— N 1 0 e o o
e et (35 (B5) o (B0,
e Multiply both sides by N and collect terms: partitioning probability

NCpyN = N(N—I—l) -+ 2(00 + C; + ... ‘|‘CN—1)

® Subtract this from the same equation for N - 1:

NCpyN — (N—l)CN_l = 2N + 2CnN_1
® Rearrange terms and divide by N (N + 1):

Cn Cn-1 2

34

Quicksort: average-case analysis

® Repeatedly apply above equation:

Cy Oy N 2
N+1_ N N+1
o G 2 2 S
| | = N _] N N 1 substitute previous equation
previous equation C 4 9 9 9
- N2 N-1 N N+1
T
3 4 5 7 N+1
® Approximate sum by an integral:
1 1 1 1
C = 2N+ 1) |=4+=-+=-+...———
N (V-)<3+4+5+ N+1>
N+1 ¢
~ 2(N+1)/ — dx
3 X

® Finally, the desired result:

Cny ~2(N+1)InN ~ 1.39Nl1gN

35

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
® N+(N-1)+(N-2) +...+1 ~ aN2
® More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~ N Ig V.

® more compares than mergesort.
® But faster than mergesort in practice because of less data movement.

Random shuffle.

® Probabilistic guarantee against worst case.
® Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
® |s sorted or reverse sorted.
® Has many duplicates (even if randomized!)

36

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.

® Partitioning: constant extra space.
® Depth of recursion: logarithmic extra space (with high probability).

AN

can guarantee logarithmic depth by
recurring on smaller subarray

before larger subarray

Proposition. Quicksort is not stable.
Pf.

37

Quicksort: practical improvements

Insertion sort small subarrays.

® Even quicksort has too much overhead for tiny subarrays.
e Cutoff to insertion sort for = 10 items.

e Note: could delay insertion sort until one pass at end.

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;

}

int j = partition(a, lo, hi);

sort(a, lo, j-1);
sort(a, j+1, hi);

38

Quicksort: practical improvements

Median of sample.

® Best choice of pivot item = median.
® Estimate true median by taking median of sample.
® Median-of-3 (random) items.

N

~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)

private static void sort(Comparable[] a, int lo, int hi)

{

if (hi <= lo) return;

int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
swap(a, lo, m);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

39

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input |||"|II|I|I|I.|I||||||I||"I||I||||||||III Ill.l_ " I|| |||_|||.|I|| | I.Il.“l.ll..l.ll.ll"l

partitioning element

result of ST 1|19 P 1P P 1 Y T P T T 1
FSSaue N e e o TR T TIOm ET TTTTninnnini
e st (111 TR AN
I
R
T
uhilln il
Ietsbarsy T
A
o
NI
|
i1 1 |
result e |IIIIII||||||""""""""""""""""I"""I" |

Selection

Goal. Given an array of N items, find the £ largest.
Ex. Min (k=0),max (k=N -1), median (k= N/2).

Applications.

® Order statistics.
¢ Find the "top £."

Use theory as a guide.
® Easy Nlog N upper bound. How!?

® Easy NV upper bound for k=1, 2, 3. How!?
® Easy N lower bound. Why!?

Which is true?

° N 10g N lower bound? <“<— s selection as hard as sorting?

°* N upper bound? <€«— s there a linear-time algorithm for each k?

41

Quick-=-select

Partition array so that:

® Entry a[j] is in place.

® No larger entry to the left of j.

® No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when 5 equals k.

public static Comparable select (Comparable[] a, int k)

{
StdRandom.shuffle (a) ;

int 1o = 0, hi = a.length - 1;
while (hi > 1lo)
{

int j = partition(a, lo, hi);

if (J <k) lo=3 + 1;
else if (jJ > k) hi = jJ - 1;
else return alk];

}

return alk];

To

if a[k] is here

set hi to j-1

\

=V

M
T
y

if a[k] is here

set loto j+1

/

42

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

® Intuitively, each partitioning step splits array approximately in half:
N+N/2+N/4+...+1 ~ 2N compares.

® Formal analysis similar to quicksort analysis yields:

Cv = 2N +kIn(N/ k) +(N—k) In(N/(N—K)

\

(2+2In2) N to find the median

Remark. Quick-select uses ~ 2 N2 compares in the worst case, but

(as with quicksort) the random shuffle provides a probabilistic guarantee.

43

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

® Sort population by age.

® Find collinear points.

® Remove duplicates from mailing list.

® Sort job applicants by college attended.

Typical characteristics of such applications.
® Huge array.
® Small number of key values.

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
35:
00:
01:
00:
37:
00:
14:
10:
36:
143
10:
22

22

52
13
05
46
32
00
21
59
10
13
44
03
25
25
14

11
54

44

Duplicate keys

Mergesort with duplicate keys.
Always between 2 N1g N and N Ig N compares.

Quicksort with duplicate keys.
® Algorithm goes quadratic unless partitioning stops on equal keys!
® [990s C user found this defect in gsort ().

N

implementation also have this defect

several textbook and system

STOPONEOQUALIKETYS

T T

swap if we don't stop e o o

al keys
on equ y equal keys

45

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.
Consequence. ~ 2 N2 compares when all keys equal.

BAABABBBCCLC AAAAAAAAAAA

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~ N Ig N compares when all keys equal.

BAABABCCBCRB AAAAAAAAAAA

Desirable. Put all items equal to the partitioning item in place.
AAABBBBBCCOC AAAAAAAAARARA

46

3-way partitioning

Goal. Partition array into 3 parts so that:

® Entries between 1t and gt equal to partition item v.
® No larger entries to left of 1t.

® No smaller entries to right of gt.

before [V

Dutch national flag problem. [Edsger Dijkstra]

® Conventional wisdom until mid 1990s: not worth doing.
® New approach discovered when fixing mistake in C library gsort().
® Now incorporated into gsort() and Java system sort.

47

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

It |

invariant

48

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

49

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

50

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

51

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

52

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

53

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

54

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i gt
v v v

invariant

55

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It | gt
v v v

invariant

56

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It | gt
v v v

invariant

57

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It | gt
v v v

invariant

58

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It | gt
v v v

invariant

59

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It | gt
v v v

invariant

60

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It i gt
v vy

invariant

6l

Dijkstra 3-way partitioning

® Let v be partitioning item a[lo].

® Scan i from left to right.
- (a[i] < wv): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > wv): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
It gt
v v

invariant

62

Dijkstra 3-way partitioning algorithm

3-way partitioning.
® Let v be partitioning item a[lo].
® Scan i from left to right.
- a[i] less than v: exchange a[1t] with a[i] and increment both 1t and i

- a[i] greater than v:exchange a[gt] with a[i] and decrement gt

- a[i] equal to v:increment i

Most of the right properties.

® In-place.

e Not much code.

® Linear time if keys are all equal.

63

Dijkstra’'s 3-way partitioning: trace

v all

Tt i gt \0 1 2 3 4 5 6 7 8 91011
0 0 11 R B W W R W B R R W B R
0 1 11 R. B R
1 2 11 R W R
1 2 10 R R B

1 3 10 R W B

1 3 9 R B]

2 2 9 R R W

2 5 9 R W W

2 5 8 R W R

2 5 / R R R

2 6 / R B R

3 / / R R

3 8 / R R W

3 8 / B B B R R R R R W W W W
3-way partitioning trace (array contents after each loop iteration)

3-way quicksort: Java implementation

private static void sort (Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int 1t = lo, gt = hi;

Comparable v = a[lo];

int i = lo;

while (i <= gt)

{

int cmp = a[i].compareTo (V) ;

if (cmp < 0) exch(a, 1lt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else i++;
}
before |V

——

sort(a, lo, 1t - 1);
sort(a, gt + 1, hi);

To h1

during <V =V >V

after <V =V >V

65

3-way quicksort: visual trace

T 1
equal to partitioning element

Sttt

Sorting summary

selection

insertion

shell

merge

quick

3-way quick

v

v v
v

v
v
v
v v

W V
N2/2 N2/2 2/2
N2/2 N2/4 N
? ? N
NIgN NIigN NigN
N2/2 NIgN NIgN
N2/2 NigN N
NIgN NIigN NIgN

N

N exchanges

use for small N or partially ordered

tight code, subquadratic

Nlog N guarantee, stable

Nlog N probabilistic guarantee
fastest in practice
improves quicksort in presence

of duplicate keys

holy sorting grail

