BBM 202 - ALGORITHMS

DEPT. OF COMPUTER ENGINEERING

MINIMUM SPANNING TREES

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Given. Undirected graph G with positive edge weights (connected). Def. A spanning tree of G is a subgraph T that is connected and acyclic. Goal. Find a min weight spanning tree.

a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

not connected

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Given. Undirected graph G with positive edge weights (connected). Def. A spanning tree of G is a subgraph T that is connected and acyclic. Goal. Find a min weight spanning tree.

spanning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Brute force. Try all spanning trees?

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

http://www.ics.uci.edu/~eppstein/gina/mst.html

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let *e* be the min-weight crossing edge in cut.

- Suppose *e* is not in the MST.
- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of *e* is less than the weight of *f*, that spanning tree is lower weight.
- Contradiction.

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V 1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.

- Any edge colored black is in the MST (via cut property).
- If fewer than V- 1 black edges, there exists a cut with no black crossing edges. (consider cut whose vertices are one connected component)

a cut with no black crossing edges

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST:

Efficient implementations. Choose cut? Find min-weight edge?

- Ex I. Kruskal's algorithm. [stay tuned]
- Ex 2. Prim's algorithm. [stay tuned]
- Ex 3. Borüvka's algorithm.

Removing two simplifying assumptions

- Q. What if edge weights are not all distinct?
- A. Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)


```
1 2 1.00
1 3 0.50
2 4 1.00
3 4 0.50
```


1 2 1.00 1 3 0.50 2 4 1.00 3 4 0.50

- Q. What if graph is not connected?
- A. Compute minimum spanning forest = MST of each component.

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Weighted edge API

Edge abstraction needed for weighted edges.

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
                                                                   constructor
      this.v = v;
      this.w = w;
      this.weight = weight;
   }
   public int either()
                                                                   either endpoint
   { return v; }
   public int other(int vertex)
                                                                   other endpoint
      if (vertex == v) return w;
      else return v;
   public int compareTo(Edge that)
                                                                   compare edges by weight
      if
               (this.weight < that.weight) return -1;</pre>
      else if (this.weight > that.weight) return +1;
      else
                                             return 0;
```

Edge-weighted graph API

public class	EdgeWeightedGraph	
	EdgeWeightedGraph(int V)	create an empty graph with V vertices
	EdgeWeightedGraph(In in)	create a graph from input stream
void	addEdge (Edge e)	add weighted edge e to this graph
Iterable <edge></edge>	adj(int v)	edges incident to v
Iterable <edge></edge>	edges()	all edges in this graph
int	V()	number of vertices
int	E()	number of edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
   private final int V;
                                                         same as Graph, but adjacency lists
   private final Bag<Edge>[] adj;
                                                         of Edges instead of integers
   public EdgeWeightedGraph(int V)
      this.V = V;
                                                         constructor
      adj = (Bag<Edge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Edge>();
   public void addEdge(Edge e)
      int v = e.either(), w = e.other(v);
                                                         add edge to both
      adj[v].add(e);
      adj[w].add(e);
                                                         adjacency lists
   public Iterable<Edge> adj(int v)
      return adj[v]; }
```

Q. How to represent the MST?


```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```

Q. How to represent the MST?

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

```
% java MST tinyEWG.txt

0-7 0.16

1-7 0.19

0-2 0.26

2-3 0.17

5-7 0.28

4-5 0.35

6-2 0.40

1.81
```

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

an edge-weighted graph

graph edges sorted by weight 0.16 0 - 70.17 2-3 0.19 0.26 0.28 0.29 0.32 0.34 2-7 0.35 0.36 0.37 0.38 0.40 0.52 0.58 0.93

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

does not create a cycle

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- ullet Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
4-5	0.35
4-5 1-2	0.35
1-5 1-2 1-7	0.35 0.36 0.37
4-5 1-2 4-7 0-4	0.35 0.36 0.37 0.38
4-5 1-2 4-7 0-4 6-2	0.35 0.36 0.37 0.38 0.40

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

- Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.
- Suppose Kruskal's algorithm colors the edge e = v w black.
- Cut = set of vertices connected to v in tree T.
- No crossing edge is black.
- No crossing edge has lower weight. Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?

- \bullet E+V
- run DFS from v, check if w is reachable (T has at most V 1 edges)
- $\log V$

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in *T*.
- If v and w are in same set, then adding v—w would create a cycle.
- To add v—w to T, merge sets containing v and w.

Case 1: adding v-w creates a cycle

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
      MinPQ<Edge> pq = new MinPQ<Edge>();
                                                                   build priority queue
      for (Edge e : G.edges())
         pq.insert(e);
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
      {
         Edge e = pq.delMin();
                                                                   greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                                                   edge v-w does not create cycle
             uf.union(v, w);
                                                                   merge sets
             mst.enqueue(e);
                                                                   add edge to MST
   public Iterable<Edge> edges()
      return mst; }
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	Е
delete-min	E	log E
union	V	log* V †
connected	E	log* V †

log* function:

number of times needed to take
the lg of a number until reaching 1

† amortized bound using weighted quick union with path compression

recall: log* V ≤ 5 in this universe

Remark. If edges are already sorted, order of growth is $E \log^* V$.

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58

0.93

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.

- Suppose edge $e = \min$ weight edge connecting a vertex on the tree to a vertex not on the tree.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

- \bullet E try all edges
- V
- $\log E$ use a priority queue!
- log*E
-]

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let *v* be vertex not in *T*:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 0

edges on PQ

(sorted by weight)

- * 0-7 0.16
- ***** 0-2 0.26
- * 0-4 0.38
- ***** 6-0 0.58

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 0-7 and add to MST

edges on PQ
(sorted by weight)

0-7 0.16
0-2 0.26
0-4 0.38
6-0 0.58

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

edges on PQ

(sorted by weight)

0-2 0.26

 $0-4 \quad 0.38$

6-0 0.58

MST edges

0-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 7

edges on PQ

(sorted by weight)

***** 1-7 0.19

0-2 0.26

***** 5-7 0.28

***** 2-7 0.34

***** 4-7 0.37

0.38

6-0 0.58

MST edges

0 - 7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 1-7 and add to MST

edges on PQ (sorted by weight)

1-7 0.19

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 1

edges on PQ

(sorted by weight)

0-2 0.26

5-7 0.28

***** 1-3 0.29

***** 1-5 0.32

2-7 0.34

***** 1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete edge 0-2 and add to MST

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2

edges on PQ

(sorted by weight)

***** 2-3 0.17

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

***** 6-2 0.40

6-0 0.58

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 2-3 and add to MST

MST edges

0-7 1-7 0-2

edges on PQ (sorted by weight)

***** 2-3 0.17

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

***** 6-2 0.40

6-0 0.58

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

edges on PQ (sorted by weight)

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

 $6-2 \quad 0.40$

6-0 0.58

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 3

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

5-7 (O .	28
-------	------------	----

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 5-7 and add to MST

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

5-7 0	•	2	8
-------	---	---	---

$$0-4 \quad 0.38$$

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

edges on PQ (sorted by weight)

1-3 0.29 1-5 0.32 2-7 0.34 1-2 0.36 4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 5

MST edges

0-7 1-7 0-2 2-3 5-7

edges on PQ (sorted by weight) 1-3 0.29 1-5 0.32 2-7 0.34 * 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52

6-0 0.58

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 1-3 and discard obsolete edge

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 1-5 and discard obsolete edge

edges on PQ (sorted by weight)

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

 $6-2 \quad 0.40$

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 2-7 and discard obsolete edge

edges on PQ (sorted by weight)

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 4-5 and add to MST

edges on PQ (sorted by weight)

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

edges on PQ (sorted by weight)

1-2 0.36

 $1-7 \quad 0.37$

 $0-4 \quad 0.38$

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

add to PQ all edges incident to 4

edges on PQ (sorted by weight)

1-2 0.36

4-7 0.37

 $0-4 \quad 0.38$

6-2 0.40

3-6 0.52

6-0 0.58

***** 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)

1-2 0.36

4-7 0.37

 $0-4 \quad 0.38$

6-2 0.40

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)

4-7 0.37

 $0-4 \quad 0.38$

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 0-4 and discard obsolete edge

edges on PQ (sorted by weight)

 $0-4 \quad 0.38$

 $6-2 \quad 0.40$

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

stop since V-1 edges

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private MinPQ<Edge> pq;  // PQ of edges
    public LazyPrimMST(WeightedGraph G)
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
                                                                assume G is connected
        while (!pq.isEmpty())
                                                                repeatedly delete the
           Edge e = pq.delMin();
                                                                min weight edge e = v-w from PQ
           int v = e.either(), w = e.other(v);
                                                                ignore if both endpoints in T
           if (marked[v] && marked[w]) continue;
           mst.enqueue(e);
                                                                add edge e to tree
           if (!marked[v]) visit(G, v);
                                                                add v or w to tree
           if (!marked[w]) visit(G, w);
```

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{    return mst; }
add v to T

for each edge e = v-w, add to
PQ if w not already in T
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap	
delete min	E	log E	
insert	E	log E	

Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes shortest edge connecting x to T

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0 - 7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until *V-1* edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V-1* edges.

v	edgeTo[]	distTo[]
0	-	-
7	0-7	0.16
1	1-7	0.19
2	0-2	0.26
3	2-3	0.17
5	5-7	0.28
4	4-5	0.35
6	6-2	0.40

MST edges

Indexed priority queue

Associate an index between 0 and N - 1 with each key in a priority queue.

- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.

public class	<pre>IndexMinPQ<key (<="" extends="" pre=""></key></pre>	Comparable <key>></key>
	IndexMinPQ(int N)	create indexed priority queue with indices 0, 1,, N-1
void	<pre>insert(int k, Key key)</pre>	associate key with index k
void	decreaseKey(int k, Key l	decrease the key associated with index k
boolean	contains()	is k an index on the priority queue?
int	delMin()	remove a minimal key and return its associated index
boolean	isEmpty()	is the priority queue empty?
int	size()	number of entries in the priority queue

Indexed priority queue implementation

Implementation.

- Start with same code as MinPQ.
- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use swim(qp[k]) implement decreaseKey(k, key).

Prim's algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V 2
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)	1 †	log V †	1 †	E + V log V

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^2/2$ distances and run Prim's algorithm. Ingenuity. Exploit geometry and do it in $\sim c N \log N$.

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups. Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 109 sky objects into stars, quasars, galaxies.

Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups. Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes the distance between two closest clusters.

Single-link clustering algorithm

"Well-known" algorithm for single-link clustering:

- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm (stop when k connected components).

Alternate solution. Run Prim's algorithm and delete k-I max weight edges.

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

