BBM 202-ALCORITHMS

Dept. of Computer Engineering

Minimum Spanning Trees

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

graph G
a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

not connected

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

not acyclic

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

spanning tree $T:$ cost $=50=4+6+8+5+11+9+7$

Brute force. Try all spanning trees?

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g.,TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.
crossing edges separating
gray from white vertices
are drawn in red

minimum-weight crossing edge
must be in the MST

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.

- Suppose e is not in the MST.
- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of e is less than the weight of f, that spanning tree is lower weight.
- Contradiction. -

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

an edge-weighted graph

$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{gathered}
\text { MST edges } \\
0-2
\end{gathered}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.
crossing edges

(sorted by weight)

in MST \longrightarrow 5-7 0.28
1-5 0.32
4-5 0.35

$$
\begin{gathered}
\text { MST edges } \\
0-2
\end{gathered}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.
crossing edges

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7 \quad 6-2
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.
crossing edges

(sorted by weight)

in MST \longrightarrow| $0-7$ | 0.16 |
| :---: | :---: |
| $2-3$ | 0.17 |
| $2-7$ | 0.34 |
| $4-5$ | 0.35 |
| $1-2$ | 0.36 |
| $4-7$ | 0.37 |
| | $3-6$ |

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7 \quad 6-2
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7 \quad 6-2 \quad 0-7
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

crossing edges
(sorted by weight)
in MST
2-3 0.17
1-7 0.19
1-5 0.32
1-2 0.36

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7 \quad 6-2 \quad 0-7
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7
\end{aligned} \quad 6-2 \quad 0-7 \quad 2-3 .
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.
crossing edges

(sorted by weight)

\downarrow	
$1-7$	0.19
$1-3$	0.29
$1-5$	0.32
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-4$	0.93

$$
\begin{aligned}
& \text { MST edges } \\
& 0-2 \quad 5-7 \quad 6-2 \quad 0-7 \quad 2-3
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-2 & 5-7 & 6-2 & 0-7 & 2-3 & 1-7
\end{array}
\end{aligned}
$$

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until V - 1 edges are colored black.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-0-2
\end{aligned} \quad 5-7 \quad 6-2 \quad 0-7 \quad 2-3 \quad 1-7 \quad 4-5 .
$$

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.

- Any edge colored black is in the MST (via cut property).
- If fewer than $V-1$ black edges, there exists a cut with no black crossing edges. (consider cut whose vertices are one connected component)

a cut with no black crossing edges

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST:

Efficient implementations. Choose cut? Find min-weight edge?
Ex I. Kruskal's algorithm. [stay tuned]
Ex 2. Prim's algorithm. [stay tuned]
Ex 3. Borüvka's algorithm.

Removing two simplifying assumptions

Q. What if edge weights are not all distinct?
A. Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)

1	2	1.00
1	3	0.50
2	4	1.00
3	4	0.50

1	2	1.00
1	3	0.50
2	4	1.00
3	4	0.50

Q. What if graph is not connected?
A. Compute minimum spanning forest $=$ MST of each component.

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Weighted edge API

Edge abstraction needed for weighted edges.

```
public class Edge implements Comparable<Edge>
```

Edge(int v, int w, double weight)	create a weighted edge $v-w$
int either ()	either endpoint
int other(int v)	the endpoint that's not v
int compareTo(Edge that)	compare this edge to that edge
double weight()	string representation

Idiom for processing an edge e: int $v=e . e i t h e r(), w=e . o t h e r(v)$;

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
{
    private final int v, w;
    private final double weight;
    public Edge(int v, int w, double weight)
    {
            this.v = v;
            this.w = w;
            this.weight = weight;
    }
    public int either()
    { return v; }
    public int other(int vertex)
    {
        if (vertex == v) return w;
        else return v;
    }
    public int compareTo(Edge that)
    {
        if (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else
        return 0;
    }
}
```


Edge-weighted graph API

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

tinyEWG.txt		
$V \rightarrow 8$		
4	5	0.35
4	7	0.37
5	7	0.28
0	07	0.16
1	5	0.32
0	4	0.38
2	3	0.17
1	7	0.19
0	2	0.26
1	2	0.36
1	3	0.29
2	7	0.34
6	2	0.40
3	6	0.52
6	0	0.58
	4	0.93

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
{
    private final int V;
    private final Bag<Edge>[] adj;
    public EdgeWeightedGraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Bag<Edge>();
    }
```

 public void addEdge (Edge e)
 \{
 int \(v=e . e i t h e r(), w=e . o t h e r(v) ;\)
 adj[v].add(e);
 adj[w].add(e);
 \}
 public Iterable<Edge> adj(int v)
 \{ return adj[v]; \}
 \}

Minimum spanning tree API

Q. How to represent the MST?
public class MST
constructor

```
Iterable<Edge> edges()
```

edges in MST

```
double weight()
```

weight of MST

\% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81

Minimum spanning tree API

Q. How to represent the MST?
public class MST

MST (EdgeWeightedGraph G)

constructor

```
Iterable<Edge> edges()
```

edges in MST
double weight()
weight of MST

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST (G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

\% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

$$
\text { in MST } \longrightarrow 0-7 \quad 0.16
$$

does not create a cycle

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

	$0-7$	0.16
$2-3$	0.17	
$1-7$	0.19	
	$0-2$	0.26
	$5-7$	0.28
	$1-3$	0.29
	$1-5$	0.32
	$2-7$	0.34
not in	$4-5$	0.35
MST	$1-2$	0.36

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

creates a cycle

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal's algorithm colors the edge $e=v-w$ black.
- Cut $=$ set of vertices connected to v in tree T.
- No crossing edge is black.
- No crossing edge has lower weight.Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to tree T create a cycle? If not, add it. How difficult?

- $E+V$
- V run DFS from v, check if w is reachable
- $\log V$
- $\log ^{*} V$ \qquad use the union-find data structure! (log* function: number of times needed to take the \lg of a number until reaching 1)
- 1

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v-w$ would create a cycle.
- To add $v-w$ to T, merge sets containing v and w.

Kruskal's algorithm: Java implementation

```
public class KruskalMST
{
    private Queue<Edge> mst = new Queue<Edge>();
    public KruskalMST(EdgeWeightedGraph G)
    {
        MinPQ<Edge> pq = new MinPQ<Edge>();
        for (Edge e : G.edges())
            pq.insert(e);
        UF uf = new UF(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1)
        {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w))
            {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }
    public Iterable<Edge> edges()
    { return mst; }
}
```


Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log \mathrm{E}$
union	V	$\log ^{\star} \mathrm{V} \dagger$
connected	E	$\log ^{\star} \mathrm{V} \dagger$

log* function:
\longleftarrow number of times needed to take
the \lg of a number until reaching 1
recall: $\log ^{*} \mathrm{~V} \leq 5$ in this universe

Remark. If edges are already sorted, order of growth is $E \log * V$.

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

an edge-weighted graph

$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

edges with exactly
one endpoint in T
(sorted by weight)

in MST $\longrightarrow 0-7 \quad 0.16$
0-2 0.26
0-4 0.38
6-0 0.58

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

> MST edges
> $0-7$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges with exactly
one endpoint in T
(sorted by weight)

in MST \longrightarrow 1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

in MST \longrightarrow\begin{tabular}{cc}

\multicolumn{2}{c}{| edges with exactly |
| :---: |
| one endpoint in T |
| (sorted by weight) |}

$0-2$ \& 0.26

$5-7$ \& 0.28

$1-3$ \& 0.29

$1-5$ \& 0.32

$2-7$ \& 0.34

$1-2$ \& 0.36

$4-7$ \& 0.37

$0-4$ \& 0.38

$6-0$ \& 0.58
\end{tabular}

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges with exactly
one endpoint in T
(sorted by weight)

in MST \longrightarrow 2-3 0.17
5-7 0.28
1-3 0.29
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
6-0 0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
min weight edge with
exactly one endpoint in T

edges with exactly
one endpoint in T
(sorted by weight)

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \begin{aligned}
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 .
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

edges with exactly
one endpoint in T
(sorted by weight)

4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-0-7 \\
& 1-7
\end{aligned} \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5 .
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges with exactly
one endpoint in T
(sorted by weight)
in MST \longrightarrow 6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.

- Suppose edge $e=$ min weight edge connecting a vertex on the tree to a vertex not on the tree.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T. How difficult?

- $E \quad$ « try all edges
- V
- $\log E$
use a priority queue!
- $\log ^{*} E$
- 1

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e=v-w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T :
- add to PQ any edge incident to v (assuming other endpoint not in T)
- add v to T

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

an edge-weighted graph

$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to $P Q$ all edges incident to 0

edges on PQ (sorted by weight)
* 0-7 0.16
* 0-2 0.26
* 0-4 0.38
* 6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 0-7 and add to MST

edges on PQ (sorted by weight)

0-7 0.16
0-2 0.26
0-4 0.38
6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges on PQ (sorted by weight)
0-2 0.26

0-4 0.38
6-0 0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to PQ all edges incident to 7

edges on PQ (sorted by weight)	
* $1-7$	0.19
	$0-2$

MST edges
 0-7

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 1-7 and add to MST

edges on PQ (sorted by weight)

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

edges on PQ (sorted by weight)	
$0-2$	0.26
$5-7$	0.28
$2-7$	0.34
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to PQ all edges incident to 1

edges on PQ (sorted by weight)	
$0-2$	0.26
$5-7$	0.28
* $1-3$	0.29
* $1-5$	0.32
$2-7$	0.34
* $1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete edge 0-2 and add to MST

edges on PQ

(sorted by weight)	
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
edge becomes obsolete

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
no need to add edge 1-2 or 2-7
add to $P Q$ all edges incident to 2
because it's already obsolete

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 2-3 and add to MST

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

edges on PQ (sorted by weight)	
* 2-3	0.17
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
* $6-2$	0.40
$6-0$	0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

c
edges on PQ

(sorted by weight) | $5-7$ | 0.28 |
| :---: | :---: |
| $1-3$ | 0.29 |
| $1-5$ | 0.32 |
| $2-7$ | 0.34 |
| $1-2$ | 0.36 |
| $4-7$ | 0.37 |
| $0-4$ | 0.38 |
| $6-2$ | 0.40 |
| $6-0$ | 0.58 |

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to PQ all edges incident to 3

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

edges on PQ (sorted by weight)
5-7 0.28

1-3 0.29
1-5 0.32
2-7 0.34
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40

* 3-6 0.52

6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 5-7 and add to MST

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

edges on PQ (sorted by weight)	
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges on PQ (sorted by weight)

$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to PQ all edges incident to 5

$$
\begin{aligned}
& \text { MST edges } \\
& 0-0-7 \quad 1-7
\end{aligned} \begin{aligned}
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 .
$$

edges on PQ (sorted by weight)

1-5 0.32
2-7 $\quad 0.34$

* 4-5 0.35

1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 1-3 and discard obsolete edge

$$
\begin{aligned}
& \text { MST edges } \\
& 0-0-7 \quad 1-7
\end{aligned} \begin{aligned}
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 .
$$

edges on PQ (sorted by weight)

$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 1-5 and discard obsolete edge

edges on PQ (sorted by weight)

$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 2-7 and discard obsolete edge

edges on PQ (sorted by weight)

$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 4-5 and add to MST

edges on PQ (sorted by weight)

4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

edges on PQ (sorted by weight)

$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
add to PQ all edges incident to 4

edges on PQ (sorted by weight)

$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$* 6-4$	0.93

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)

4-7 0.37
$0-4 \quad 0.38$
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \begin{aligned}
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 \quad 4-5 .
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)

0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
delete 0-4 and discard obsolete edge

edges on PQ (sorted by weight)

0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 6-2 and add to MST

edges on PQ (sorted by weight)

6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5 .
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.
delete 6-2 and add to MST

edges on PQ (sorted by weight)

6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
stop since V-1 edges

edges on PQ (sorted by weight)

6-4 0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm: lazy implementation

```
public class LazyPrimMST
{
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
    {
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
        while (!pq.isEmpty())
        {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (marked[v] && marked[w]) continue;
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
            if (!marked[w]) visit(G, w);
            }
    }
}
```


Prim's algorithm: lazy implementation

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
                pq.insert(e);
}
```

public Iterable<Edge> mst()
\{ return mst; \}

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap
delete min	E	\log E
insert	E	\log E

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex $v=$ weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge $e=v-w$ to T.
- Update PQ by considering all edges $e=v-x$ incident to v
- ignore if x is already in T
- add x to PQ if not already on it
- decrease priority of x if $v-x$ becomes shortest edge connecting x to T

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

an edge-weighted graph

$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

add vertices $7,2,4$, and 6 to $P Q$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \begin{aligned}
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 .
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

already a better connection

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} 0-2 \quad 2-3 \quad 5-7 \quad 4-5
$$

to 6 (discard)

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5 .
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

v	edgeTo[]	distTo[]
0	-	-
7	$0-7$	0.16
1	$1-7$	0.19
2	$0-2$	0.26
3	$2-3$	0.17
5	$5-7$	0.28
4	$4-5$	0.35
6	$6-2$	0.40

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} 0-2 \quad 2-3 \quad 5-7 \quad 4-5 \quad 6-2 .
$$

Indexed priority queue

Associate an index between 0 and $N-1$ with each key in a priority queue.

- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.
public class IndexMinPQ<Key extends Comparable<Key>>

```
            IndexMinPQ(int N)
    void insert(int k, Key key)
    void decreaseKey(int k, Key key)
    int delMin()
    boolean isEmpty()
    int size()
```

boolean contains() is k an index on the priority queue?
create indexed priority queue with indices $0,1, \ldots, N-1$ associate key with index k
decrease the key associated with index k
is k an index on the priority queue? remove a minimal key and return its associated index
is the priority queue empty? number of entries in the priority queue

Indexed priority queue implementation

Implementation.

- Start with same code as Minpg.
- Maintain parallel arrays keys [], pq[], and qp [] so that:
- keys[i] is the priority of i
- pq[i] is the index of the key in heap position i
- qp [i] is the heap position of the key with index i
- Use swim (qp [k]) implement decreaseKey (k, key).

Prim's algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	$\mathrm{~V}^{2}$
binary heap	$\log \mathrm{V}$	$\log \mathrm{V}$	$\log \mathrm{V}$	$\mathrm{E} \log \mathrm{V}$
d-way heap (Johnson 1975)	$\mathrm{d} \log _{\mathrm{d}} \mathrm{V}$	$\mathrm{d} \log _{\mathrm{d}} \mathrm{V}$	$\log _{\mathrm{d}} \mathrm{V}$	$\mathrm{E} \log _{\mathrm{E} N} \mathrm{~V}$
Fibonacci heap (Fredman-Tarjan 1984)	$1 \dagger$	$\log \mathrm{~V} \dagger$	$1 \dagger$	$\mathrm{E}+\mathrm{V} \log \mathrm{V}$

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^{2 / 2}$ distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in $\sim c N \log N$.

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)
Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 10^{9} sky objects into stars, quasars, galaxies.

Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes the distance between two closest clusters.

Single-link clustering algorithm

"Well-known" algorithm for single-link clustering:

- FormV clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm (stop when k connected components).

Alternate solution. Run Prim's algorithm and delete k-I max weight edges.

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

