Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

Mergesort overview

First Draft of a Report on the EDVAC

John von Neumann
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>mid+1</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
</tr>
</tbody>
</table>

copy to auxiliary array

<table>
<thead>
<tr>
<th>aux[]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>a[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>aux[]</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>
Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

Abstract in-place merge

compare minimum in each subarray

<table>
<thead>
<tr>
<th>(a[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

code

```plaintext

<table>
<thead>
<tr>
<th>a[]</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparing minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td></td>
</tr>
</tbody>
</table>
```


Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`

```
| a[] | A | E | G | M | R | A | C | E | R | T |
---|---|---|---|---|---|---|---|---|---|---|
```

```
| aux[] | E | E | G | M | R | A | C | E | R | T |
---|---|---|---|---|---|---|---|---|---|---|
```

compare minimum in each subarray

```
aux[]   | E | E | G | M | R | A | C | E | R | T |
---|---|---|---|---|---|---|---|---|---|---|
```

i

j
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

![Diagram of arrays](image)

- **compare minimum in each subarray**

 - \(a[]\):
 - \(A\)
 - \(C\)
 - \(G\)
 - \(M\)
 - \(R\)
 - \(A\)
 - \(C\)
 - \(E\)
 - \(R\)
 - \(T\)

 - \(aux[]\):
 - \(E\)
 - \(E\)
 - \(G\)
 - \(M\)
 - \(R\)
 - \(A\)
 - \(C\)
 - \(E\)
 - \(R\)
 - \(T\)

 - \(k\):
 - \(i\)
 - \(j\)
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

```
<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
</table>

\[ k \]
```

compare minimum in each subarray

```
<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
</table>

\[ i \] \[ j \]
**Goal.** Given two sorted subarrays \( a[lo] \) to \( a[mid] \) and \( a[mid+1] \) to \( a[hi] \), replace with sorted subarray \( a[lo] \) to \( a[hi] \).

**Abstract in-place merge**

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>
```

**compare minimum in each subarray**

```plaintext
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
```
**Abstract in-place merge**

**Goal.** Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`
**Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

**Abstract in-place merge**

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

**Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
 a[]
 A C E E R A C E R T
 k

compare minimum in each subarray
```

```
 aux[]
 E E G M R A C E R T
 i j
```
**Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

**Abstract in-place merge**

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

**compare minimum in each subarray**

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

The algorithm compares the minimum of each subarray and writes the result back to the same array, effectively merging them in-place.
Abstract in-place merge

**Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
**Abstract in-place merge**

**Goal.** Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`
Abstract in-place merge

**Goal.** Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`

<table>
<thead>
<tr>
<th>a[]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>C</td>
<td>E</td>
<td>R</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

```
 k
```

**compare minimum in each subarray**

<table>
<thead>
<tr>
<th>aux[]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

```
i
```

```
j
```
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

**Abstract in-place merge**

- **Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

- **Compare minimum in each subarray**

  - **Aux[]**
    - $E$  $E$  $G$  $M$  $R$  $A$  $C$  $E$  $R$  $T$

  - **a[]**
    - $A$  $C$  $E$  $E$  $E$  $G$  $M$  $E$  $R$  $T$

  - $k$

  - $i$

  - $j$
**Goal.** Given two sorted subarrays \( a[lo] \) to \( a[mid] \) and \( a[mid+1] \) to \( a[hi] \), replace with sorted subarray \( a[lo] \) to \( a[hi] \).

**Abstract in-place merge**

<table>
<thead>
<tr>
<th>( a[] )</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>( k )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i</td>
<td>j</td>
</tr>
</tbody>
</table>

**compare minimum in each subarray**

<table>
<thead>
<tr>
<th>( aux[] )</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
</table>

i

j
**Goal.** Given two sorted subarrays \(a[lo] \) to \(a[mid]\) and \(a[mid+1] \) to \(a[hi]\), replace with sorted subarray \(a[lo] \) to \(a[hi]\).

<table>
<thead>
<tr>
<th>a[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

\(k\)

**compare minimum in each subarray**

<table>
<thead>
<tr>
<th>aux[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

\(i\)

\(j\)
**Goal.** Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

one subarray exhausted, take from other
### Abstract in-place merge

**Goal.** Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi].`

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
</tr>
</tbody>
</table>

**one subarray exhausted, take from other**

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>j</td>
</tr>
</tbody>
</table>
**Abstract in-place merge**

**Goal.** Given two sorted subarrays \( a[lo] \) to \( a[mid] \) and \( a[mid+1] \) to \( a[hi] \), replace with sorted subarray \( a[lo] \) to \( a[hi] \).

---

**a[]**

| A | C | E | E | E | G | M | R | R | T |

---

k

---

**one subarray exhausted, take from other**

**aux[]**

| E | E | G | M | R | A | C | E | R | T |

---

i

j
**Goal.** Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

---

**one subarray exhausted, take from other**

```
<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
**Goal.** Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).

---

**Abstract in-place merge**

Both subarrays exhausted, done
Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$. 

Abstract in-place merge
Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.
Merging: Java implementation

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```

<table>
<thead>
<tr>
<th>aux[]</th>
<th>A</th>
<th>G</th>
<th>L</th>
<th>O</th>
<th>R</th>
<th>H</th>
<th>I</th>
<th>M</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>a[]</td>
<td>A</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

k

Copy

Merge

29
Assertions

**Assertion.** Statement to test assumptions about your program.
- Helps detect logic bugs.
- Documents code.

**Java assert statement.** Throws an exception unless boolean condition is true.

```java
assert isSorted(a, lo, hi);
```

**Can enable or disable at runtime.** ⇒ No cost in production code.

```java
java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)
```

**Best practices.** Use to check internal invariants. Assume assertions will be disabled in production code (so do not use for external argument-checking).
Mergesort: Java implementation

```java
public class Merge {
 private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
 /* as before */
 }

 private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(Comparable[] a) {
 aux = new Comparable[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}
```
Mergesort: trace

Trace of merge results for top-down mergesort

result after recursive call
Mergesort: animation

50 random items

http://www.sorting-algorithms.com/merge-sort
Mergesort: animation

50 reverse-sorted items

http://www.sorting-algorithms.com/merge-sort
Mergesort: empirical analysis

Running time estimates:

- Laptop executes $10^8$ compares/second.
- Supercomputer executes $10^{12}$ compares/second.

<table>
<thead>
<tr>
<th></th>
<th>insertion sort ($N^2$)</th>
<th>mergesort ($N \log N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>computer</td>
<td>thousand</td>
</tr>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
</tr>
</tbody>
</table>
Mergesort: number of compares and array accesses

**Proposition.** Mergesort uses at most $N \lg N$ compares and $6 N \lg N$ array accesses to sort any array of size $N$.

**Pf sketch.** The number of compares $C(N)$ and array accesses $A(N)$ to mergesort an array of size $N$ satisfy the recurrences:

\[
C(N) \leq C([N/2]) + C([N/2]) + N \quad \text{for } N > 1, \text{ with } C(1) = 0.
\]

\[
A(N) \leq A([N/2]) + A([N/2]) + 6N \quad \text{for } N > 1, \text{ with } A(1) = 0.
\]

We solve the recurrence when $N$ is a power of 2.

\[
D(N) = 2D(N/2) + N, \text{ for } N > 1, \text{ with } D(1) = 0.
\]
Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k]; // copy
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if      (i > mid)              a[k] = aux[j++]; // merge
        else if (j > hi)               a[k] = aux[i++]; // merge
        else if (less(aux[j], aux[i])) a[k] = aux[j++]; // merge
        else                           a[k] = aux[i++]; // merge
    }
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

Proof: Each merge uses at most 6N array accesses (2N for the copy, 2N for the move back, and at most 2N for compares). The result follows from the same argument as for PROPOSITION F.
Proposition. If \( D(N) \) satisfies \( D(N) = 2D(N/2) + N \) for \( N > 1 \), with \( D(1) = 0 \), then \( D(N) = N \lg N \).

Pf 1. [assuming \( N \) is a power of 2]
Proposition. If \( D(N) \) satisfies \( D(N) = 2D(N/2) + N \) for \( N > 1 \), with \( D(1) = 0 \), then \( D(N) = N \log N \).

Pf 2. [assuming \( N \) is a power of 2]

\[
D(N) = 2D(N/2) + N \\
D(N)/N = 2D(N/2)/N + 1 \\
= D(N/2)/(N/2) + 1 \\
= D(N/4)/(N/4) + 1 + 1 \\
= D(N/8)/(N/8) + 1 + 1 + 1 \\
\vdots \\
= D(N/N)/(N/N) + 1 + 1 + \ldots + 1 \\
= \log N
\]
Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 3. [assuming $N$ is a power of 2]

- Base case: $N = 1$.
- Inductive hypothesis: $D(N) = N \lg N$.
- Goal: show that $D(2N) = (2N) \lg (2N)$.

\[
D(2N) = 2D(N) + 2N \\
= 2N \lg N + 2N \\
= 2N (\lg (2N) - 1) + 2N \\
= 2N \lg (2N)
\]

given

inductive hypothesis

algebra

QED
**Proposition.** Mergesort uses extra space proportional to $N$.

**Pf.** The array $\text{aux}[\cdot]$ needs to be of size $N$ for the last merge.

**Def.** A sorting algorithm is **in-place** if it uses $\leq c \log N$ extra memory.

**Ex.** Insertion sort, selection sort, shellsort.

**Challenge for the bored.** In-place merge. [Kronrod, 1969]
Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \( \approx 7 \) items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo + CUTOFF - 1) Insertion.sort(a, lo, hi);
    int mid = lo + (hi - lo) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
Mergesort: practical improvements

Stop if already sorted.

- Is biggest item in first half \(\leq\) smallest item in second half?
- Helps for partially-ordered arrays.

```java
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 if (!less(a[mid+1], a[mid])) return;
 merge(a, aux, lo, mid, hi);
}
```
Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid) aux[k] = a[j++];
 else if (j > hi) aux[k] = a[i++];
 else if (less(a[j], a[i])) aux[k] = a[j++];
 else aux[k] = a[i++];
 }
}

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(aux, a, lo, mid);
 sort(aux, a, mid+1, hi);
 merge(aux, a, lo, mid, hi);
}
```

switch roles of aux[] and a[]
Mergesort: visualization

- first subarray
- second subarray
- first merge
- first half sorted
- second half sorted
- result
Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size 2, 4, 8, 16, ....

Bottom line. No recursion needed!
Bottom-up mergesort: Java implementation

public class MergeBU
{
    private static Comparable[] aux;

    private static void merge(Comparable[] a, int lo, int mid, int hi)
    {
        /* as before */
    }

    public static void sort(Comparable[] a)
    {
        int N = a.length;
        aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
                merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}

Bottom line. Concise industrial-strength code, if you have the space.
Bottom-up mergesort: visual trace

Visual trace of bottom-up mergesort
Bottom-up mergesort: visual trace

http://bl.ocks.org/mbostock/39566aca95eb03ddd526
Computational complexity. Framework to study efficiency of algorithms for solving a particular problem $X$.

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for $X$.

Lower bound. Proven limit on cost guarantee of all algorithms for $X$.

Optimal algorithm. Algorithm with best possible cost guarantee for $X$.

Example: sorting.

- Model of computation: decision tree.
- Cost model: $\#$ compares.
- Upper bound: $\sim N \log N$ from mergesort.
- Lower bound: $\notin$.
- Optimal algorithm: $\notin$. 

lower bound $\sim$ upper bound

can access information only through compares (e.g., Java Comparable framework)
Decision tree (for 3 distinct items a, b, and c)

- **a < b**
  - **yes**
  - **no**

  **b < c**
  - **yes**
  - **no**

  - **a < c**
    - **yes**
    - **no**

  - **b a c**
    - **yes**
    - **no**

  - **a c b**
    - **yes**
    - **no**

  - **c a b**
    - **yes**
    - **no**

  - **b c a**
    - **yes**
    - **no**

  - **c b a**
    - **yes**
    - **no**

**code between compares**

(e.g., sequence of exchanges)

**height of tree = worst-case number of compares**

(at least) one leaf for each possible ordering
Proposition. Any compare-based sorting algorithm must use at least 
\( \lg (N!) \sim N \lg N \) compares in the worst-case.

Pf.

- Assume array consists of \( N \) distinct values \( a_1 \) through \( a_N \).
- Worst case dictated by height \( h \) of decision tree.
- Binary tree of height \( h \) has at most \( 2^h \) leaves.
- \( N! \) different orderings \( \Rightarrow \) at least \( N! \) leaves.
Proposition. Any compare-based sorting algorithm must use at least \( \lg (N!) \sim N \lg N \) compares in the worst-case.

Pf.

• Assume array consists of \( N \) distinct values \( a_1 \) through \( a_N \).
• Worst case dictated by height \( h \) of decision tree.
• Binary tree of height \( h \) has at most \( 2^h \) leaves.
• \( N! \) different orderings \( \Rightarrow \) at least \( N! \) leaves.

\[
2^h \geq \text{# leaves} \geq N!
\]

\[
\Rightarrow h \geq \lg (N!) \sim N \lg N
\]

Stirling's formula
Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for $X$.
Lower bound. Proven limit on cost guarantee of all algorithms for $X$.
Optimal algorithm. Algorithm with best possible cost guarantee for $X$.

Example: sorting.
• Model of computation: decision tree.
• Cost model: # compares.
• Upper bound: $\sim N \lg N$ from mergesort.
• Lower bound: $\sim N \lg N$.
• Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.
Complexity results in context

Other operations? Mergesort is optimal with respect to number of compares (e.g., but not with respect to number of array accesses).

Space?
• Mergesort is not optimal with respect to space usage.
• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.
[stay tuned]

Lessons. Use theory as a guide.
Ex. Don't try to design sorting algorithm that guarantees $\frac{1}{2}N \lg N$ compares.
Lower bound may not hold if the algorithm has information about:
• The initial order of the input.
• The distribution of key values.
• The representation of the keys.

**Partially-ordered arrays.** Depending on the initial order of the input, we may not need $N \log N$ compares.

**Duplicate keys.** Depending on the input distribution of duplicates, we may not need $N \log N$ compares.

**Digital properties of keys.** We can use digit/character compares instead of key compares for numbers and strings.

*insertion sort requires only N-1 compares if input array is sorted*

*stay tuned for 3-way quicksort*

*stay tuned for radix sorts*
Comparable interface: sort using a type's natural order.

```java
public class Date implements Comparable<Date> {
 private final int month, day, year;

 public Date(int m, int d, int y) {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that) {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}
```
**Comparator interface**

Comparator interface: sort using an alternate order.

```java
public interface Comparator<Key>
{
 int compare(Key v, Key w);
}
```

**Required property.** Must be a total order.

**Ex.** Sort strings by:

- Natural order.
- Case insensitive.
- Spanish.
- British phone book.
- …

- Now is the time
- is Now the time
- café cafetero cuarto churro nube ñoño
- McKinley Mackintosh

Pre-1994 order for digraphs ch and ll and rr
Comparator interface: system sort

To use with Java system sort:

- Create Comparator object.
- Pass as second argument to Arrays.sort().

Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.
Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

- Use `Object` instead of `Comparable`.
- Pass `comparator` to `sort()` and `less()` and use it in `less()`.

```java
public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }
```

insertion sort using a Comparator
To implement a comparator:

- Define a (nested) class that implements the comparator interface.
- Implement the `compare()` method.

```java
public class Student {
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECTION = new BySection();

 private final String name;
 private final int section;
 ...

 private static class ByName implements Comparator<Student> {
 public int compare(Student v, Student w) {
 return v.name.compareTo(w.name);
 }
 }

 private static class BySection implements Comparator<Student> {
 public int compare(Student v, Student w) {
 return v.section - w.section;
 }
 }
}
```

This technique works here since no danger of overflow.
Comparator interface: implementing

To implement a comparator:

• Define a (nested) class that implements the comparator interface.
• Implement the compare() method.

Arrays.sort(a, Student.BY_NAME);

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Grade</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>A</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
</tbody>
</table>

Arrays.sort(a, Student.BY_SECTION);

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Grade</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furia</td>
<td>1</td>
<td>A</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>A</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>A</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
</tbody>
</table>
Stability

A typical application. First, sort by name; then sort by section.

```java
Selection.sort(a, Student.BY_NAME);
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
<th>Phone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews</td>
<td>3</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Furia</td>
<td>1</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
</tbody>
</table>

```java
Selection.sort(a, Student.BY_SECTION);
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
<th>Phone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furia</td>
<td>1</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>2</td>
<td>232-343-5555</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Chen</td>
<td>3</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Fox</td>
<td>3</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>898-122-9643</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>766-093-9873</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
</tbody>
</table>

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.
Q. Which sorts are stable?
A. Insertion sort and mergesort (but not selection sort or shellsort).

Note. Need to carefully check code ("less than" vs "less than or equal to").
Stability: insertion sort

Proposition. Insertion sort is stable.

```java
public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>B₁</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>B₂</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A₁</td>
<td>B₁</td>
<td>A₂</td>
<td>A₃</td>
<td>B₂</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A₁</td>
<td>A₂</td>
<td>B₁</td>
<td>A₃</td>
<td>B₂</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>B₁</td>
<td>B₂</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>B₁</td>
<td>B₂</td>
</tr>
</tbody>
</table>

A₁ A₂ A₃ B₁ B₂

Pf. Equal items never move past each other.
Proposition. Selection sort is not stable.

Pf by counterexample. Long-distance exchange might move an item past some equal item.
Proposition. Shell sort is not stable.

Pf by counterexample. Long-distance exchanges.
Stability: mergesort

Proposition. Mergesort is stable.

public class Merge
{
    private static Comparable[] aux;
    private static void merge(Comparable[] a, int lo, int mid, int hi)
    {
        /* as before */
    }

    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid+1, hi);
        merge(a, lo, mid, hi);
    }

    public static void sort(Comparable[] a)
    {
        /* as before */
    }
}

Pf. Suffices to verify that merge operation is stable.
**Proposition.** Merge operation is stable.

```java
private static void merge(Comparable[] a, int lo, int mid, int hi) {
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}
```

**Pf.** Takes from left subarray if equal keys.