Today

- BSTs
- Ordered operations
- Deletion

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Binary Search Tree (BST)

- Last lecture, we talked about binary search & linear search
 - One had high cost for reorganisation,
 - The other had high cost for searching
- In this lecture we will use Binary Trees, for searching
- Plan in a nutshell:
 - Assert a more strict property compared to the Heap-Property (in priority-queues), Remember what that was?
 - Know exactly which subtree to look for at each node

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
- A Key and a Value.
- A reference to the left and right subtree.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

BST implementation (skeleton)

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;
    private class Node {
        /* see previous slides */
    }
    public void put(Key key, Value val) {
        /* see next slides */
    }
    public Value get(Key key) {
        /* see next slides */
    }
    public void delete(Key key) {
        /* see next slides */
    }
    public Iterable<Key> iterator() {
        /* see next slides */
    }
}
```

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

unsuccessful search for G

compare G and S (go left)

compare H and H (search hit)
Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

![Diagram of a search tree with unsuccessful search for G](image1)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

compare G and H (go left)

unsuccessful search for G

![Diagram of a search tree with unsuccessful search for G and comparison](image2)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

![Diagram of a search tree with unsuccessful search for G](image3)

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

no more tree (search miss)

unsuccessful search for G

![Diagram of a search tree with unsuccessful search for G and a note about the search miss](image4)
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

compare G and S
(go left)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

compare G and E
(go right)

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

```
   E
   /   \
  A     X
  /     / \
 G     R   G
  \
   M
```

- Compare G and R (go left)
- Insert G

```
   E
   /   \
  A     X
  /     / \
 G     R   G
  \
   M
```

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- Insert G

```
   E
   /   \
  A     X
  /     / \
 G     R   G
  \
   M
```

- Compare G and H (go left)
- Insert G

```
   E
   /   \
  A     X
  /     / \
 G     R   G
  \
   M
```
Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.
BST search

Get. Return value corresponding to given key, or null if no such key.

Cost. Number of compares is equal to 1 + depth of node.

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if      (cmp  < 0) x = x.left;
        else if (cmp  > 0) x = x.right;
        else
            if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.

BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);  
}
```

```java
private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0) x.left  = put(x.left,  key, val);
    else if (cmp  > 0) x.right = put(x.right, key, val);
    else
        if (cmp == 0) x.val = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST trace: standard indexing client

- Many BSTs correspond to the same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Tree shape

- Remark. Tree shape depends on order of insertion.

BST insertion: random order visualization

Correspondence between BSTs and quicksort partitioning

- Remark. Correspondence is 1-1 if array has no duplicate keys.
BSTs: mathematical analysis

Proposition. If \(N \) distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is \(O(\log N) \).

Pf. 1-1 correspondence with quicksort partitioning.

But… Worst-case height is \(N \).
(exponentially small chance when keys are inserted in random order)

ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
<td>insert</td>
</tr>
<tr>
<td>sequential search</td>
<td>(N)</td>
<td>(N/2)</td>
<td>(N)</td>
<td>no</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td>equals()</td>
</tr>
<tr>
<td>binary search</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(N/2)</td>
<td>yes</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td>compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>stay tuned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>compareTo()</td>
</tr>
</tbody>
</table>

Binary Search Trees

- BSTs
- Ordered operations
- Deletion
Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key ≤ to a given key.
Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor / ceiling?

Computing the floor

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree (if there is any key ≤ k in right subtree); otherwise it is the key in the root.

Computing the floor

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}

private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x;
 if (cmp < 0) return floor(x.left, key);
 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;
}
In each node, we store the number of nodes in the subtree rooted at that node; to implement \texttt{size()}, return the count at the root.

Remark. This facilitates efficient implementation of \texttt{rank()} and \texttt{select()}.

Rank. How many keys < \(k \) ?

Easy recursive algorithm (4 cases!)

```java
public Key select(int k) {
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}
private Node select(Node x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if (t > k) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) return select(x.left, k);
        else if (cmp > 0) return select(x.right, k-t-1);
    } else if (t == k) return x;
    return select(x.right, k-t-1);
}
```

Selection. Key of given rank.

```java
public int rank(Key key) {
    if (key == null) return 0;
    int cmp = key.compareTo(root.key);
    if (cmp < 0) return rank(key, root.left);
    else if (cmp > 0) return 1 + size(root.left) + rank(key, root.right);
    return size(root.left);
}
```
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

```java
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>operation</th>
<th>sequential search</th>
<th>binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>I</td>
<td>N</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>N</td>
<td>I</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>N</td>
<td>lg N</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>N log N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Order of growth of running time of ordered symbol table operations

h = height of BST (proportional to \(\log N \) if keys inserted in random order)

Binary Search Trees

- BSTs
- Ordered operations
- Deletion
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Iteration?</th>
<th>Operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
</tr>
<tr>
<td>Binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.

Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{  root = deleteMin(root);  }

private Node deleteMin(Node x)
{  if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}
```

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

Hibbard deletion: Java implementation

```java
public void delete(Key key) {
    root = delete(root, key);
}

private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = delete(x.left, key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
        if (x.right == null) return x.left;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.N = size(x.left) + size(x.right) + 1;
    return x;
}
```

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

If we always delete from the same side, the shape of tree will be not random, the right subtrees are trimmed!

Surprising consequence. Trees not random (\mathcal{A}) \Rightarrow \sqrt{N} per op.

Longstanding open problem. Simple and efficient delete for BSTs.
Red-black BST

Guarantee logarithmic performance for all operations.

ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Iteration?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>equals()</td>
</tr>
<tr>
<td>insert</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>search hit</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>N/2</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

- **Search**: \(O(N)\) on average, \(O(\log N)\) in the best case.
- **Insert**: \(O(\log N)\) on average.
- **Delete**: \(O(\log N)\) on average.
- **Other operations**: \(O(\sqrt{N})\) if deletions allowed.

Other operations also become \(\log N\) if deletions allowed.