Minimum Spanning Trees

Minimum spanning tree

Given. Undirected graph \(G \) with positive edge weights (connected).
Def. A spanning tree of \(G \) is a subgraph \(T \) that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph \(G \) with positive edge weights (connected).
Def. A spanning tree of \(G \) is a subgraph \(T \) that is connected and acyclic.
Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

![Graph with positive edge weights](image)

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

![Spanning tree with cost](image)

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- Context
Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.
- Suppose e is not in the MST.
- Adding e to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e is also a spanning tree.
- Since weight of e is less than the weight of f, that spanning tree is lower weight.
- Contradiction. □

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until \(V - 1 \) edges are colored black.

MST edges

\[
\begin{array}{c}
0-2 \\
5-7
\end{array}
\]
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

![Diagram of Greedy MST algorithm]
Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7 6-2 0-7 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7 6-2 0-7 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7 6-2 0-7 2-3

Greedy MST algorithm

• Start with all edges colored gray.
• Find a cut with no black crossing edges, and color its min-weight edge black.
• Repeat until $V - 1$ edges are colored black.

MST edges
0-2 5-7 6-2 0-7 2-3
Greedy MST algorithm

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Repeat until $V - 1$ edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.
- Any edge colored black is in the MST (via cut property).
- If fewer than $V - 1$ black edges, there exists a cut with no black crossing edges. (consider cut whose vertices are one connected component)

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST:

Efficient implementations. Choose cut? Find min-weight edge?

- **Ex 1.** Kruskal’s algorithm. [stay tuned]
- **Ex 2.** Prim’s algorithm. [stay tuned]
- **Ex 3.** Borůvka’s algorithm.

Removing two simplifying assumptions

Q. What if edge weights are not all distinct?

- **A.** Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)

Q. What if graph is not connected?

- **A.** Compute minimum spanning forest = MST of each component.
MINIMUM SPANNING TREES

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Weighted edge API

Edge abstraction needed for weighted edges.

```java
public class Edge implements Comparable<Edge>
{
    private final int v, w;
    private final double weight;
    public Edge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int either()
    {  return v;  }
    public int other(int vertex)
    {
        if (vertex == v) return w;
        else return v;
    }
    public int compareTo(Edge that)
    {
        if      (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else                                return  0;
    }
}
```

Idiom for processing an edge `e`: `int v = e.either(), w = e.other(v);`

Weighted edge: Java implementation

```java
public class Edge implements Comparable<Edge>
{
    public int either()
    {  return v;  }
    public int other(int v)
    {
        if (vertex == v) return w;
        else return v;
    }
    public int compareTo(Edge that)
    {
        if      (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else                                return  0;
    }
}
```

Edge-weighted graph API

```java
public class EdgeWeightedGraph
{
    public EdgeWeightedGraph(int V)
    {  create an empty graph with V vertices  }
    public EdgeWeightedGraph(In in)
    {  create a graph from input stream  }
    void addEdge(Edge e)
    {  add weighted edge e to this graph  }
    Iterable<Edge> adj(int v)
    {  edges incident to v  }
    Iterable<Edge> edges()
    {  all edges in this graph  }
    int V()
    {  number of vertices  }
    int E()
    {  number of edges  }
    String toString()
    {  string representation  }
}
```

Conventions. Allow self-loops and parallel edges.
Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of edge lists.

Bag objects

<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>55</td>
<td>0</td>
<td>18</td>
<td>10</td>
<td>26</td>
<td>22</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>32</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>28</td>
<td>5</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>1</td>
<td>32</td>
<td>5</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td>32</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>1</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>3</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edge-weighted graph implementation

```java
public class EdgeWeightedGraph {
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedGraph(int V) {
        this.V = V;
        adj = (Bag<Edge>[])(new Bag[V]);
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Edge>();
    }

    public void addEdge(Edge e) {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<Edge> adj(int v) {
        return adj[v];
    }
}
```

Minimum spanning tree API

Q. How to represent the MST?

<table>
<thead>
<tr>
<th>public class MST</th>
<th>constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST(EdgeWeightedGraph G)</td>
<td></td>
</tr>
<tr>
<td>Iterable<Edge> edges()</td>
<td>edges in MST</td>
</tr>
<tr>
<td>double weight()</td>
<td>weight of MST</td>
</tr>
</tbody>
</table>

```java
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

% java MST tinyEWG.txt
```
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```

Minimum spanning tree API

Q. How to represent the MST?

<table>
<thead>
<tr>
<th>public class MST</th>
<th>constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST(EdgeWeightedGraph G)</td>
<td></td>
</tr>
<tr>
<td>Iterable<Edge> edges()</td>
<td>edges in MST</td>
</tr>
<tr>
<td>double weight()</td>
<td>weight of MST</td>
</tr>
</tbody>
</table>

```java
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

% java MST tinyEWG.txt
```
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```
Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
- Context

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

Graph edges sorted by weight:

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

An edge-weighted graph:

Kruskal's algorithm

Consider edges in ascending order of weight. Add next edge to tree T unless doing so would create a cycle.

Graph edges sorted by weight:

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.16</td>
</tr>
<tr>
<td>2-3</td>
<td>0.17</td>
</tr>
<tr>
<td>1-7</td>
<td>0.19</td>
</tr>
<tr>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>5-7</td>
<td>0.28</td>
</tr>
<tr>
<td>1-3</td>
<td>0.29</td>
</tr>
<tr>
<td>1-5</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

An edge-weighted graph:

Kruskal's algorithm

Consider edges in ascending order of weight. Add next edge to tree T unless doing so would create a cycle.
Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.
Kruskal's algorithm

• Consider edges in ascending order of weight.
• Add next edge to tree T unless doing so would create a cycle.

- 0-7 0.16
- 2-3 0.17
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 1-3 0.29
- 1-5 0.32

creates a cycle

- 4-5 0.35

does not create a cycle

in MST

not in MST
Kruskal’s algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37

creates a cycle in MST

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
6-2 0.40

creates a cycle not in MST

0-4 0.38

creates a cycle not in MST

does not create a cycle in MST

0-4 0.38

0-4 0.38

not in MST 3-6 0.52
Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

```
0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93
```

Kruskal's algorithm: visualization

```
0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93
```

Kruskal's algorithm

- Consider edges in ascending order of weight.
- Add next edge to tree T unless doing so would create a cycle.

```
0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93
```

Kruskal's algorithm: visualization

```
0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93
```
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm is a special case of the greedy MST algorithm.
- Suppose Kruskal’s algorithm colors the edge \(e = v \rightarrow w \) black.
- Cut = set of vertices connected to \(v \) in tree \(T \).
- No crossing edge is black.
- No crossing edge has lower weight. Why?

Challenge. Would adding edge \(v \rightarrow w \) to tree \(T \) create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
- Maintain a set for each connected component in \(T \).
- If \(v \) and \(w \) are in same set, then adding \(v \rightarrow w \) would create a cycle.
- To add \(v \rightarrow w \) to \(T \), merge sets containing \(v \) and \(w \).

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge \(v \rightarrow w \) to tree \(T \) create a cycle? If not, add it.

How difficult?
- \(E + V \)
- \(V \)
- \(\log V \)
- \(\log^* V \) (log* function: number of times needed to take the log of a number until reaching 1)

Kruskal’s algorithm: Java implementation

```java
public class KruskalMST {
    private Queue<Edge> mst = new Queue<Edge>();
    public KruskalMST(EdgeWeightedGraph G) {
        MinPQ<Edge> pq = new MinPQ<Edge>();
        for (Edge e : G.edges())
            pq.insert(e);
        UF uf = new UF(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w)) {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }
    public Iterable<Edge> edges() {
        return mst;
    }
}
```

Case 1: adding \(v \rightarrow w \) creates a cycle

Case 2: add \(v \rightarrow w \) to \(T \) and merge sets containing \(v \) and \(w \).
Kruskal’s algorithm: running time

Proposition. Kruskal’s algorithm computes MST in time proportional to \(E \log E \) (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
<th>Time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>build pq</td>
<td>1</td>
<td>(E)</td>
</tr>
<tr>
<td>delete-min</td>
<td>(E)</td>
<td>(\log E)</td>
</tr>
<tr>
<td>union</td>
<td>(V)</td>
<td>(\log^* V)</td>
</tr>
<tr>
<td>connected</td>
<td>(E)</td>
<td>(\log^* V)</td>
</tr>
</tbody>
</table>

\(\log^* \) function: number of times needed to take the lg of a number until reaching 1

† amortized bound using weighted quick union with path compression

Remark. If edges are already sorted, order of growth is \(E \log^* V \).

Prim’s algorithm

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

Context

- Greedy algorithm
- Edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
- Minimum Spanning Trees

Prim’s algorithm

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.
Prim's algorithm

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
Prim's algorithm

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.
```

```
Prim's algorithm

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.
```

```
Prim's algorithm

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.
```

```
Prim's algorithm

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.
```
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Min weight edge with exactly one endpoint in T (sorted by weight)

in MST

5-7 0.28
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges
0-7 1-7 0-2 2-3

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Min weight edge with exactly one endpoint in T (sorted by weight)

in MST

4-5 0.35
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges
0-7 1-7 0-2 2-3 5-7
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.
- Suppose edge $e = \text{min weight edge connecting a vertex on the tree to a vertex not on the tree}$.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.
Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
- E
- V
- $\log E$
- $\log* E$
- 1

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e = v \rightarrow w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

Prim’s algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Prim’s algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
- E
- V
- $\log E$
- $\log* E$
- 1

Prim’s algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Key = edge; priority = weight of edge.
- Delete-min to determine next edge $e = v \rightarrow w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Add to PQ all edges incident to 0

![Diagram](image1.png)

Edges on PQ (sorted by weight):
- 0-7 0.16
- 0-2 0.26
- 0-4 0.38
- 6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Delete 0-7 and add to MST

![Diagram](image2.png)

Edges on PQ (sorted by weight):
- 0-7 0.16
- 0-2 0.26
- 0-4 0.38
- 6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Add to PQ all edges incident to 7

![Diagram](image3.png)

Edges on PQ (sorted by weight):
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 2-7 0.34
- 4-7 0.37
- 0-4 0.38
- 6-0 0.58

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

Add to PQ all edges incident to 7

![Diagram](image4.png)

Edges on PQ (sorted by weight):
- 1-7 0.19
- 0-2 0.26
- 5-7 0.28
- 2-7 0.34
- 4-7 0.37
- 0-4 0.38
- 6-0 0.58

MST edges
- 0-7
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete 1-7 and add to MST
```

```
 edges on PQ (sorted by weight)
  1-7  0.19
  0-2  0.26 
  5-7  0.28 
  2-7  0.34 
  4-7  0.37 
  0-4  0.38 
  6-0  0.58 
```

```
MST edges
  0-7
```

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree $T$.
- Add to $T$ the min weight edge with exactly one endpoint in $T$.
- Repeat until $V-1$ edges.

```
 add to PQ all edges incident to 1
```

```
 edges on PQ (sorted by weight)
 0-2 0.26
 5-7 0.28
* 1-3 0.29
 1-5 0.32
* 1-2 0.36
 2-7 0.34
 4-7 0.37
 0-4 0.38
 6-0 0.58
```

```
MST edges
 0-7 1-7
```

```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete edge 0-2 and add to MST
```

```
 edges on PQ (sorted by weight)
  0-2  0.26 
  5-7  0.28 
  1-3  0.29 
  1-5  0.32 
  1-2  0.36 
  2-7  0.34 
  4-7  0.37 
  0-4  0.38 
  6-0  0.58 
```

```
MST edges
  0-7  1-7
```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
edges on PQ (sorted by weight)
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
1-2  0.36
4-7  0.37
0-6  0.38
6-0  0.58
```

MST edges
0-7 1-7 0-2

edge becomes obsolete
(lazy implementation leaves on PQ)

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
edges on PQ (sorted by weight)
2-3  0.17
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
6-0  0.58
```

MST edges
0-7 1-7 0-2

no need to add edge 1-2 or 2-7 because it's already obsolete

add to PQ all edges incident to 2

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete 2-3 and add to MST
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
edges on PQ (sorted by weight)
2-3  0.17
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
6-0  0.58
```

MST edges
0-7 1-7 0-2 2-3
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
add to PQ all edges incident to 3
```

```
MST edges
0–7 1–7 0–2 2–3
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
delete 5–7 and add to MST
```

```
edges on PQ (sorted by weight)
5–7 0.28
1–3 0.29
1–5 0.32
2–7 0.34
1–2 0.36
4–7 0.37
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
add to PQ all edges incident to 5
```

```
MST edges
0–7 1–7 0–2 2–3
```

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
edges on PQ (sorted by weight)
1–5 0.29
1–3 0.32
2–7 0.34
1–2 0.36
4–5 0.35
4–7 0.37
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
```
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

delete 1–3 and discard obsolete edge

![Graph](image1)

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>0.25</td>
</tr>
<tr>
<td>1-7</td>
<td>0.32</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-6</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

delete 1–5 and discard obsolete edge

![Graph](image2)

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>0.25</td>
</tr>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

delete 2–7 and discard obsolete edge

![Graph](image3)

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7</td>
<td>0.34</td>
</tr>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-6</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

delete 4–5 and add to MST

![Graph](image4)

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>0.35</td>
</tr>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree \(T \).
- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

Add to PQ all edges incident to 4

Delete 1-2 and discard obsolete edge

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.36</td>
</tr>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

- Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
- Repeat until \(V-1 \) edges.

Delete 4-7 and discard obsolete edge

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-7</td>
<td>0.37</td>
</tr>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

- 0-7
- 1-7
- 0-2
- 2-3
- 5-7
- 4-5

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

delete 0-4 and discard obsolete edge

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

- 0-7
- 1-7
- 0-2
- 2-3
- 5-7
- 4-5

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.38</td>
</tr>
<tr>
<td>1-7</td>
<td>0.38</td>
</tr>
<tr>
<td>0-2</td>
<td>0.40</td>
</tr>
<tr>
<td>2-3</td>
<td>0.52</td>
</tr>
<tr>
<td>5-7</td>
<td>0.58</td>
</tr>
<tr>
<td>4-5</td>
<td>0.93</td>
</tr>
</tbody>
</table>

delete 6-2 and add to MST

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

- 0-7
- 1-7
- 0-2
- 2-3
- 5-7
- 4-5

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-2</td>
<td>0.40</td>
</tr>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

delete 6-2 and add to MST

Prim's algorithm - Lazy implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

MST edges

- 0-7
- 1-7
- 0-2
- 2-3
- 5-7
- 4-5

edges on PQ (sorted by weight)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6</td>
<td>0.52</td>
</tr>
<tr>
<td>6-0</td>
<td>0.58</td>
</tr>
<tr>
<td>6-4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

stop since V-1 edges
Priming's algorithm - Lazy implementation

• Start with vertex 0 and greedily grow tree \(T \).
• Add to \(T \) the min weight edge with exactly one endpoint in \(T \).
• Repeat until \(V-1 \) edges.

\[
\begin{align*}
\text{MST edges} & \\
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{align*}
\]

Prim's algorithm: lazy implementation

```java
public class LazyPrimMST {
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges

    public LazyPrimMST(WeightedGraph G) {
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
        while (!pq.isEmpty()) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (marked[v] && marked[w]) continue;
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
            if (!marked[w]) visit(G, w);
        }
    }

    public Iterable<Edge> mst() { return mst; }
}
```

Proposition. Lazy Prim’s algorithm computes the MST in time proportional to \(E \log E \) and extra space proportional to \(E \) (in the worst case).

\[
\begin{array}{|c|c|c|}
\hline
\text{operation} & \text{frequency} & \text{binary heap} \\
\hline
\text{delete min} & E & \log E \\
\text{insert} & E & \log E \\
\hline
\end{array}
\]
Prim’s algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.
- Delete min vertex v and add its associated edge $e = v \rightarrow w$ to T.
- Update PQ by considering all edges $e = v \rightarrow x$ incident to v;
 - ignore if x is already in T;
 - add x to PQ if not already on it;
 - decrease priority of x if $v \rightarrow x$ becomes shortest edge connecting x to T.

pq has at most one entry per vertex

Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![Diagram of an edge-weighted graph](image)

vertices on PQ (sorted by weight)

Add vertices 7, 2, 4, and 6 to PQ.
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
2 & 0-2 & 0.26 \\
4 & 0-4 & 0.38 \\
6 & 6-0 & 0.58 \\
\end{array}
\]

vertices on PQ (sorted by weight)

- Add vertex 1 to PQ
- Decrease key of vertex 4 from 0.38 to 0.37
- Add vertex 5 to PQ

already a better connection to 2 (discard)

MST edges
0-7

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
7 & 0-7 & 0.16 \\
2 & 0-2 & 0.26 \\
4 & 0-4 & 0.38 \\
6 & 6-0 & 0.58 \\
\end{array}
\]

vertices on PQ (sorted by weight)
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>4–7</td>
<td>0.37</td>
</tr>
<tr>
<td>6</td>
<td>6–0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MST edges
0–7 1–7

vertices on PQ (sorted by weight)

add vertex 3 to PQ
already a better connection to 5 and 7 (discard)
Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![Diagram showing Prim's algorithm steps]

MST edges: 0-7 1-7 0-2

- Decrease key of vertex 3 from 0.29 to 0.17
- Now better connections to 0 and 1 (discard)
- Decrease key of vertex 6 from 0.58 to 0.40

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![Diagram showing Prim's algorithm steps]

MST edges: 0-7 1-7 0-2 2-3

- Decrease key of vertex 3 from 0.29 to 0.17
- Increase key of vertex 6 to 0.40
- Already a better connection to 6 (discard)
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

```
\[
\begin{array}{c|c|c}
  v & edgeTo[] & distTo[] \\
  \hline
  0 & - & - \\
  7 & 0–7 & 0.16 \\
  1 & 1–7 & 0.19 \\
  2 & 0–2 & 0.26 \\
  3 & 2–3 & 0.17 \\
  \hline
  5 & 5–7 & 0.28 \\
  4 & 4–7 & 0.37 \\
  6 & 6–2 & 0.40 \\
\end{array}
\]
```

MST edges

0–7 1–7 0–2 2–3

- Decrease key of 4 from 0.37 to 0.35
- Now a better connection to 4 (discard)

```
\[
\begin{array}{c|c|c}
  v & edgeTo[] & distTo[] \\
  \hline
  0 & - & - \\
  7 & 0–7 & 0.16 \\
  1 & 1–7 & 0.19 \\
  2 & 0–2 & 0.26 \\
  3 & 2–3 & 0.17 \\
  \hline
  4 & 4–5 & 0.35 \\
  6 & 6–2 & 0.40 \\
\end{array}
\]
```

MST edges

0–7 1–7 0–2 2–3 5–7
Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>2–3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>4–5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>6–2</td>
<td>0.40</td>
</tr>
</tbody>
</table>

MST edges
0–7 1–7 0–2 2–3 5–7 4–5

already a better connection to 6 (discard)

Prim's algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0–7</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>1–7</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0–2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>2–3</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>5–7</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>4–5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>6–2</td>
<td>0.40</td>
</tr>
</tbody>
</table>

MST edges
0–7 1–7 0–2 2–3 5–7 4–5
Prim’s algorithm - Eager implementation

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $V-1$ edges.

![MST edges diagram](image)

Indexed priority queue

Associate an index between 0 and $N-1$ with each key in a priority queue.
- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.

```java
public class IndexMinPQ<Key extends Comparable<Key>>
{
    create indexed priority queue with indices 0, 1, ..., N-1
    void insert(int k, Key key)
    associate key with index k
    void decreaseKey(int k, Key key)
    decrease the key associated with index k
    boolean contains()
    is k an index on the priority queue?
    int delMin()
    remove a minimal key and return its associated index
    boolean isEmpty()
    is the priority queue empty?
    int size()
    number of entries in the priority queue
}
```

Indexed priority queue implementation

Implementation.
- Start with same code as MinPQ.
- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use `swim(qp[k])` implement `decreaseKey(k, key)`.

![Array representation](image)

Prim’s algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>log V</td>
<td>log V</td>
<td>log V</td>
<td>$E \cdot log V$</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>$d \cdot log_d V$</td>
<td>$d \cdot log_d V$</td>
<td>$d \cdot log_d V$</td>
<td>$E \cdot log_{d+1} V$</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman-Tarjan 1984)</td>
<td>1 \dagger</td>
<td>log $V \dagger$</td>
<td>1 \dagger</td>
<td>$E + V \cdot log V$</td>
</tr>
</tbody>
</table>

\dagger amortized

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Minimum Spanning Trees

- Greedy algorithm
- Edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm

Context

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute $\sim N^2/2$ distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in $\sim cN \log N$.

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.

Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes the distance between two closest clusters.
Single-link clustering algorithm

“Well-known” algorithm for single-link clustering:

- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal’s algorithm (stop when k connected components).

Alternate solution. Run Prim’s algorithm and delete k-1 max weight edges.

Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

[Image of dendrogram and map of Italy]
Dendrogram. Tree diagram that illustrates arrangement of clusters.

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group.