Lecture 13a: Probabilistic Method
Lale Özkahya

Resources:
Kenneth Rosen, “Discrete Mathematics and App.”
http://www.math.caltech.edu/ 2015-16/2term/ma006b
Independent Events

- Two events $A, B \subset \Omega$ are independent if
 \[\Pr[A \cap B] = \Pr[a] \cdot \Pr[b]. \]

- Example. We flip two fair coins.
 - Let $\omega_{i,j}$ be the elementary event that coin A landed on i and coin B on j, where $i, j \in \{h, t\}$. Each of the four events has a probability of 0.25.
 - The event where coin A lands on heads is $a = \{\omega_{h,t}, \omega_{h,h}\}$. For B it is $b = \{\omega_{t,h}, \omega_{h,h}\}$.
 - The events are independent since \(\Pr[a \text{ and } b] = \Pr[\omega_{h,h}] = 0.25 = \Pr[a] \cdot \Pr[b]. \)

(Discrete) Uniform Distribution

- In a uniform distribution we have a set Ω of elementary events, each occurring with probability \(\frac{1}{|\Omega|} \).
 - For example, when flipping a fair die, we have a uniform distribution over the six possible results.
Union Bound

- For any two events A, B, we have
 \[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B].\]
- This immediately implies that
 \[\Pr[A \cup B] \leq \Pr[A] + \Pr[B],\]
 where equality holds iff A, B are **disjoint**.
- **Union bound.** For any finite set of events $A_1, ..., A_k$, we have
 \[\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i].\]

Recall: Ramsey Numbers

- $R(p, p)$ is the smallest number n such that each blue-red edge coloring of K_n contains a **monochromatic** K_p.
- **Theorem.** $R(p, p) > 2^{p/2}$.
 - We proved this in a previous class.
 - Now we provide another proof, using probability.
Probabilistic Proof

• For some n, we color the edges of K_n.
 ◦ Each edge is independently and uniformly colored either red or blue.
 ◦ For any fixed set S of p vertices, the probability that it forms a monochromatic K_p is $2^{1-(\binom{p}{2})}$.
 ◦ There are $\binom{n}{p}$ possible sets of p vertices. By the union bound, the probability that there is a monochromatic K_p is at most
 \[
 \sum_{S} 2^{1-(\binom{p}{2})} = \binom{n}{p} 2^{1-(\binom{p}{2})}.
 \]

Proof (cont.)

• For some n, we color the edges of K_n.
 ◦ Each edge is colored blue with probability of 0.5, and otherwise red.
 ◦ The probability for a monochromatic K_p is
 \[
 \leq \binom{n}{p} 2^{1-(\binom{p}{2})}.
 \]
 ◦ If $n \leq 2^{p/2}$, this probability is smaller than 1.
 ◦ In this case, the probability that we do not have any monochromatic K_p is positive, so there exists a coloring of K_n with no such K_p.
Non-Constructive Proofs

- We proved that there exists a coloring of K_n with no monochromatic K_p, but we have no idea how to find this coloring.
- Such a proof is called non-constructive.
- The probabilistic method often proves the existence of objects with surprising properties, but we still have no idea how they look like.

A Tournament

- We have n people competing in thumb wrestling.
 - Every pair of contestants compete once.
 - How can we decide who the overall winner is?
- We build a directed graph:
 - A vertex for every participant.
 - An edge between every two vertices, directed from the winner to the loser.
 - An orientation of K_n is called a tournament.
The King of the Tournament

- The winner can be the vertex with the maximum outdegree (the contestant winning the largest number of matches), but it might not be unique.
- A king is a contestant \(x \) such that for every other contestant \(y \) either \(x \rightarrow y \) or there exists \(z \) such that \(x \rightarrow z \rightarrow y \).
- **Theorem.** Every tournament has a king.

Proof

- \(D^+(v) \) – the number of vertices reachable from \(v \) by a path of length \(\leq 2 \).
- Let \(v \) be a vertex that maximizes \(D^+(v) \).
 - Assume for contradiction \(v \) is not a king.
 - Then there exists \(u \) such that \(u \rightarrow v \) and there is no path of length two from \(v \) to \(u \).
 - That is, for every \(w \) such that \(v \rightarrow w \), we also have \(u \rightarrow w \).
 - But this implies that \(D^+(u) \geq D^+(v) + 1 \), contradicting the maximality of \(v \)!
The S_k Property

- We say that a tournament T has the S_k property if for every subset S of k participants, there exists a participant that won against everyone in S.
 - Formally, this is an orientation of K_n, such that for every subset S of k vertices there exists a vertex $v \in V \setminus S$ with an edge from v to every vertex of S.

- Example. A tournament with the S_1 property.

Tournaments with the S_k Property

- Theorem. If \(\binom{n}{k} (1 - 2^{-k})^{n-k} < 1 \) then there is a tournament on n vertices with the S_k property.

- Proof.
 - For some n satisfying the above, we randomly orient $K_n = (V, E)$, such that the orientation of every $e \in E$ is chosen uniformly.
 - Consider a subset $S \subset V$ of k vertices. The probability that a given vertex $v \in V \setminus S$ does not beat all of S is $1 - 2^{-k}$.
Proof (cont.)

- Consider a subset $S \subset V$ of k vertices. The probability that a specific vertex $v \in V \setminus S$ does not beat all of S is $1 - 2^{-k}$.
- A_S – the event of S not being beat by any vertex of $V \setminus S$.
- We have $\Pr[A_S] = \left(1 - 2^{-k}\right)^{n-k}$, since we ask for $n - k$ independent events to hold.
- By the union bound, we have
 \[
 \Pr\left[\bigvee_{S \subset V, \ |S| = k} A_S\right] \leq \sum_{S \subset V, \ |S| = k} \Pr[A_S] = \binom{n}{k} \left(1 - 2^{-k}\right)^{n-k} < 1.
 \]

Completing the Proof

- A_S – the event of S not being beat by any vertex of $V \setminus S$.
- we have
 \[
 \Pr\left[\bigvee_{S \subset V, \ |S| = k} A_S\right] < 1.
 \]
- That is, there is a positive probability that every subset $S \subset V$ of size k is beat by some vertex of $V \setminus S$. So such a tournament exists.
Which NBA Player is Related to Mathematics?

Michael Jordan Shaquille O'Neal LeBron James

Random Variables

- A random variable is a function from the set of possible events to \(\mathbb{R} \).
- **Example.** Say that we flip five coins.
 - We can define the random variable \(X \) to be the number of coins that landed on heads.
 - We can define the random variable \(Y \) to be the percentage of heads in the tosses.
 - Notice that \(Y = 20X \).
Indicator Random Variables

- An **indicator random variable** is a random variable X that is either 0 or 1, according to whether some event happens or not.

Example. We toss a fair die.
- We can define the six indicator variable $X_1, ..., X_6$ such that $X_i = 1$ iff the result of the roll is i.

Expectation

- The **expectation** of a random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega].$$

 - Intuitively, $E[X]$ is the expected value of X in the long-run average value when repeating the experiment X represents.
Expectation Example

- We roll a fair six-sided die.
 - Let X be a random variable that represents the outcome of the roll.

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega] = \sum_{i \in \{1, \ldots, 6\}} i \cdot \frac{1}{6} = 3.5$$

While a prisoner of war during World War II, J. Kerrich conducted an experiment in which he flipped a coin 10,000 times and kept a record of the outcomes. A portion of the results is given in the table below.

<table>
<thead>
<tr>
<th>Number of Tosses</th>
<th>Number of Heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>500</td>
<td>255</td>
</tr>
<tr>
<td>1,000</td>
<td>502</td>
</tr>
<tr>
<td>5,000</td>
<td>2,533</td>
</tr>
<tr>
<td>10,000</td>
<td>5,067</td>
</tr>
</tbody>
</table>
Linearity of Expectation

- If X is a random variable, then $5X$ is a random variable with a value five times that of X.

- **Lemma.** Let X_1, X_2, \ldots, X_k be a collection set of random variables over the same discrete probability. Let c_1, \ldots, c_k be constants. Then

$$E[c_1X_1 + c_2X_2 + \cdots + c_kX_k] = \sum_{i=1}^{k} c_iE[X_i].$$

Fixed Elements in Permutations

- Let σ be a uniformly chosen permutation of $\{1, 2, \ldots, n\}$.
 - For $1 \leq i \leq n$, let X_i be an indicator variable that is 1 if i is fixed by σ.
 - $E[X_i] = \Pr[\sigma(i) = i] = \frac{(n-1)!}{n!} = \frac{1}{n}$.
 - Let X be the number of fixed elements in σ.
 - We have $X = X_1 + \cdots + X_n$.
 - By linearity of expectation

$$E[X] = \sum_i E[X_i] = n \cdot \frac{1}{n} = 1.$$
Hamiltonian Paths

- Given a directed graph $G = (V, E)$, a **Hamiltonian path** is a path that visits every vertex of V exactly once.
 - Major problem in theoretical computer science: Does there exist a polynomial-time algorithm for finding whether a Hamiltonian path exists in a given graph.

Hamiltonian Paths in Tournaments

- **Theorem.** There exists a tournament T with n players that contains at least $n! \cdot 2^{-(n-1)}$ Hamiltonian paths.
Proof

- We uniformly choose an orientation of the edges of K_n to obtain a tournament T.
 - There is a bijection between the possible Hamiltonian paths and the permutations of $\{1, 2, \ldots, n\}$. Every possible path defines a unique permutation, according to the order in which it visits the vertices.
 - For a permutation σ, let X_σ be an indicator variable that is 1 if the path corresponding to σ exists in T.
 - We have $E[X_\sigma] = \Pr[X_\sigma = 1] = 2^{-n+1}$.

- We uniformly choose an orientation of the edges of K_n to obtain a tournament T.
 - For a permutation σ, let X_σ be an indicator variable that is 1 if the path corresponding to σ exists in T.
 - We have $E[X_\sigma] = \Pr[X_\sigma = 1] = 2^{-n+1}$.
 - Let X be a random variable of the number of Hamiltonian paths in T. Then $X = \sum_\sigma X_\sigma$.
 \[
 E[X] = E\left[\sum_\sigma X_\sigma\right] = \sum_\sigma E[X_\sigma] = n! \cdot 2^{-n+1}.
 \]
 - Since this is the expected number of paths in a uniformly chosen tournament, there must be at least as many paths.
Reminder: Indicator Random Variables

• An **indicator random variable** is a random variable X that is either 0 or 1, according to whether some event happens or not.

• **Example.** We toss a die.
 - We can define the six indicator variable X_1, \ldots, X_6 such that $X_i = 1$ iff the result of the roll is i.

Reminder: Expectation

• The **expectation** of a random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega].$$

- Intuitively, $E[X]$ is the expected value of X in the long-run average value of repetitions of the experiment it represents.
Reminder: Expectation Example

• We roll a fair six-sided die.
 ◦ Let X be a random variable that represents the outcome of the roll.

 $E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega] = \sum_{i \in \{1, \ldots, 6\}} i \cdot \frac{1}{6} = 3.5$

Reminder: Linearity of Expectation

• If X is a random variable, then $5X$ is a random variable with a value five times that of X
• Lemma. Let X_1, X_2, \ldots, X_k be a collection set of random variables over the same discrete probability. Let c_1, \ldots, c_k be constants. Then

 $E[c_1X_1 + c_2X_2 + \cdots + c_kX_k] = \sum_{i=1}^{k} c_i E[X_i]$.
Independent Sets

• Consider a graph $G = (V, E)$. An independent set in G is a subset $V' \subseteq V$ such that there is no edge between any two vertices of V'.

• Finding a maximum independent set in a graph is a major problem in theoretical computer science.
 ◦ No polynomial-time algorithm is known.

Warm Up

• What are the sizes of the maximum independent sets in:

 2

 4
Large Independent Sets

- **Theorem.** A graph $G = (V, E)$ has an independent set of size at least
 \[\sum_{v \in V} \frac{1}{1 + \deg v}. \]

- **Proof.** We uniformly choose an ordering for the vertices of $V = \{v_1, \ldots, v_n\}$.
 - The set of vertices that appear before all of their neighbors is an independent set.

We uniformly choose an ordering for the vertices of $V = \{v_1, \ldots, v_n\}$.
- The set S of vertices that appear before all of their neighbors is an independent set.
- X_i - indicator that is 1 if $v_i \in S$.
 \[E[X_i] = \Pr[X_i = 1] = \frac{1}{1 + \deg v_i}. \]
- X – the random variable of the size of S.
 \[E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{1 + \deg v_i}. \]
- There must exist an ordering for which $|S|$ has at least this value.
Sum-free Sets

- Consider a set A of positive integers. We say that A is sum-free if for every $x, y \in A$, we have that $x + y \not\in A$ (including the case where $x = y$).

- What are large sum-free subsets of $S = \{1, 2, \ldots, N\}$?
 - We can take all of the odd numbers in S.
 - We can take all of the numbers in S of size larger than $N/2$.

Large Sum-Free Sets Always Exist

- **Theorem.** For any set of positive integers A, there is a sum-free subset $B \subseteq A$ of size $|B| \geq \frac{1}{3} |A|$.

- **Proof.** Consider a prime p such that $p > a$ for every $a \in A$.
 - From now on, calculations are mod p.
 - Notice that if B is sum-free mod p, it is also sum-free under standard addition.
 - Thus, it suffices to find a large set that is sum-free mod p.
Proof (cont.)

- The calculations are \(\text{mod } p \).
- The set \(S = \{[p/3], ..., [2p/3]\} \) is sum-free and \(|S| \geq (p - 1)/3 \).
- We uniformly choose \(x \in \{1, 2, ..., p - 1\} \) and set \(A_x = \{a \in A \mid ax \in S\} \).
- Consider \(b, c \in A_x \). Since \(bx, cx \in S \), we have that \((b + c)x = bx + cx \notin S \). Thus, \((b + c) \notin A_x \), and \(A_x \) is sum-free.
- \(X_a \) – indicator that is 1 if \(a \in A_x \).

\[
E[|A_x|] = E \left[\sum_{a \in A} X_a \right] = \sum_{a \in A} E[X_a] = \sum_{a \in A} \Pr[X_a = 1].
\]

- The set \(S = \{[p/3], ..., [2p/3]\} \) is sum-free and \(|S| \geq (p - 1)/3 \).
- We uniformly choose \(x \in \{1, 2, ..., p - 1\} \) and set \(A_x = \{a \in A \mid ax \in S\} \). \(A_x \) is sum-free.
- \(X_a \) – indicator that is 1 if \(a \in A_x \).
- \(E[|A_x|] = \sum_{a \in A} \Pr[X_a = 1] \).
- Recall: If \(x \equiv x' \text{ mod } p \) then \(ax \equiv ax' \text{ mod } p \).
- We thus have \(\Pr[X_a = 1] = |S|/(p - 1) \).

\[
E[|A_x|] = \sum_{a \in A} \Pr[X_a = 1] = \frac{|A||S|}{p - 1} \geq |A| \frac{1}{3}.
\]
- Thus, there exists an \(x \) for which \(|A_x| \geq |A| \frac{1}{3} \).
Which Super Villain is a Mathematician?

Austin Powers’
Dr. Evil

Spiderman’s
Dr. Octopus

Sherlock Holmes’
Professor Moriarty

More Ramsey Numbers

• In the previous class, we used a basic probabilistic argument to prove
 \(R(p, p) > 2^{p/2} \).

• Theorem. For any integer \(n > 0 \), we have
 \[R(p, p) > n - \binom{n}{p} 2^{1 - \frac{p}{2}}. \]
Proof

• Consider a random red-blue coloring of $K_n = (V, E)$. The color of each edge is chosen uniformly and independently.

• For every subset $S \subset V$ of size p, we denote by X_S the indicator that S induces a monochromatic K_p. We set $X = \sum_{|S|=p} X_S$.

• $E[X_S] = \Pr[X_S = 1] = 2^{1-\binom{p}{2}}$

• By linearity of expectation, we have

$$E[X] = \sum_{|S|=p} E[X_S] = \binom{n}{p} 2^{1-\binom{p}{2}}.$$

Completing the Proof

• We proved that the in a random red-blue coloring of K_n the expected number of monochromatic copies of K_p is

$$m = \binom{n}{p} 2^{1-\binom{p}{2}}.$$

• There exist a coloring with at most m monochromatic K_p’s.

• By removing a vertex from each of these copies, we obtain a coloring of K_{n-m} with no monochromatic K_p.
Recap

- How we used the probabilistic method:
 - Our first applications were simply about making random choices and showing that we obtain some **property with non-zero probability**.
 - We moved to more involved proofs, where we use **linearity of expectation** to talk about the “expected” result.
 - In the previous proof, we used a **two step method** – first we randomly choose an object, and then we alter it. This method is called **the alternation method**.

Transmission Towers

- **Problem.** A company wants to establish **transmission towers** in its large compound.
 - Each tower must be on top of a building and each building must be covered by at least one tower.
 - We are given the pairs of buildings such that a tower on one covers the other.
 - We wish to minimize the number of towers.
Building a graph

- We build a graph $G = (V, E)$.
 - A vertex for every building.
 - An edge between every pair of buildings that can cover each other.
 - We need to find the minimum subset of vertices $V' \subseteq V$ such that every vertex of V has at least one vertex of V' as a neighbor.

Dominating Sets

- Consider a graph $G = (V, E)$. A dominating set of G is a subset $V' \subseteq V$ such that every vertex of V has at least one neighbor in V'.
- It is not known whether there exists a polynomial-time algorithm for finding a minimum dominating set in a graph.
Warm Up

- **Problem.** Let \(G = (V, E) \) be a graph with maximum degree \(k \). Give a lower bound for the size of any dominating set of \(G \).

- **Answer.**
 - Every vertex covers itself and at most \(m \) other vertices, so any dominating set is of size at least
 \[
 |V| / (k + 1).
 \]

The Case of a Minimum Degree

- **Theorem.** Let \(G = (V, E) \) be a graph with minimum degree \(k \). Then there exists a dominating set of size at most \(n \cdot \frac{1 + \lg k}{k + 1} \).

- **Proof.** We consider a random subset \(S \subset V \) by independently taking each vertex of \(V \) with probability \(p = \frac{\lg k}{k + 1} \).

 - Let \(T \subset V \setminus S \) be the vertices that have no neighbors in \(S \).
 - \(S \cup T \) is a dominating set.
Proof (cont.)

- $S \subset V$ – a random subset formed by independently taking each vertex of V with probability $p = \frac{\lg (k+1)}{k+1}$.
- $T \subset V \setminus S$ – the vertices with no neighbors in S.

$S \cup T$ is a dominating set.

- $E[|S|] = \sum_{v \in V} \Pr[v \in S] = \sum_v p = p|V|$.
- A vertex is in T if it is not in S and none of its neighbors are in S. The probability for this is at most $(1-p)^{k+1}$.

- $E[|T|] = \sum_{v \in V} \Pr[v \in T] \leq \sum_v (1-p)^{k+1} = (1-p)^{k+1}|V|$.

Completing the Proof

- $p = \frac{\lg (k+1)}{k+1}$.
- Famous inequality. $1 - p \leq e^{-p}$ for any positive p.
- Thus, $(1 - p)^{k+1} \leq e^{-p(k+1)} = \frac{1}{k+1}$.
- We proved
 \[
 E[|S| + |T|] = E[|S|] + E[|T|]
 \leq (p + (1-p)^{k+1})|V| = \frac{\lg (k+1) + 1}{k+1}|V|.
 \]
- There must exist a dominating set of size.
How to Choose the Probability?

- In the previous problem, we knew to choose \(p = \frac{\log(k+1)}{k+1} \). But how?
 - When you solve a question and the choice is not uniform, first mark the probability as \(p \).
 - At the end of the analysis you will obtain some expression with \(p \) in it. Choose the value of \(p \) that optimizes the expression.

The End: Professor Moriarty

- Professor Moriarty is a mathematician.
 - “At the age of twenty-one he wrote a treatise upon the binomial theorem”.
 - So a combinatorist?!
 - Dr. Octopus is a nuclear physicist.
 - Dr. Evil is a medical doctor.