Lecture 3: Method of Induction
Lecturer: Lale Özkahya

Resources:
http://www.eecs70.org
cs.colostate.edu/~cs122/Spring15/home_resources.php
Introduction

• What is the formula of the sum of the first \(n \) positive odd integers?

\[
egin{align*}
1 &= 1 \\
1 + 3 &= 4 \\
1 + 3 + 5 &= 9 \\
1 + 3 + 5 + 7 &= 16 \\
1 + 3 + 5 + 7 + 9 &= 25
\end{align*}
\]
Introduction

• It is reasonable to guess that the sum is n^2

• To do so, we may use a method, called mathematical induction, to prove that the guess is correct

• How to do that?
Mathematical Induction

• Firstly, to simplify the discussion, we define a propositional function $P(n)$, where

$$P(n) := \text{“The sum of first } n \text{ positive odd integers is } n^2\text{”}$$

so that our target is to show $\forall n \ P(n)$ is true
Mathematical Induction

• Next, we are going to show the following two statements to be true:

1. $P(1)$, called basic step
2. $\forall n (P(n) \implies P(n+1))$, called inductive step, where domain of n is all positive integers

• If both can be shown true, then we can conclude that $\forall n P(n)$ is true [why?]
Back to the Example

• We let

\[P(n) := \text{“The sum of first } n \text{ positive odd integers is } n^2 \text{”} \]

and we hope to use mathematical induction to show \(\forall n \ P(n) \) is true

• Can we show the basic step to be true?
• Can we show the inductive step to be true?
Back to the Example

• Can we show the basic step to be true?

• The basic step is $P(1)$, which is:

$$P(1) := \text{“The sum of first 1 positive odd integers is } 1^2$$

This is obviously true.
Back to the Example

• Can we show the **inductive step** to be true?

• The inductive step is $\forall n \ (P(n) \rightarrow P(n+1))$

• To show it is true, we focus on an arbitrary chosen k, and see if $P(k) \rightarrow P(k+1)$ is true
 – If so, by universal generalization,
 $\forall n \ (P(n) \rightarrow P(n+1))$ is true
Back to the Example

• Suppose that $P(k)$ is true. That is,

$$P(k) := \text{“The sum of first } k \text{ positive odd integers is } k^2\text{”}$$

This implies

$$1 + 3 + \ldots + (2k - 1) = k^2.$$

Then, we have

$$1 + 3 + \ldots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$$

$$= (k + 1)^2,$$

so that $P(k+1)$ is true if $P(k)$ is true.
Remark

• Note: When we show that the inductive step is true, we do not show $P(k+1)$ is true. Instead, we show the conditional statement $P(k) \rightarrow P(k+1)$ is true.

This allows us to use $P(k)$ as the premise, and gives us an easier way to show $P(k+1)$

• Once basic step and inductive step are proven, by mathematical induction, $\forall n \ P(n)$ is true
Remark

• Mathematical induction is a very powerful technique, because we show just two statements, but this can imply infinite number of cases to be correct.

• However, the technique does not help us find new theorems. In fact, we have to obtain the theorem (by guessing) in the first place, and induction is then used to formally confirm the theorem is correct.
More Examples

• Ex 1: Show that for all positive integer n,
 \[n < 2^n \]

• Ex 2: Show that for all positive integer n,
 \[n^3 - n \text{ is divisible by 3} \]

• Ex 3: Show that for all positive integer n,
 \[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \]
Using a Different Basic Step

• When we apply the induction technique, it is not necessary to have P(1) as the basic step.

• We may replace the basic step by P(k) for some fixed k. If both basic step and inductive step are true, this will imply that

\(\forall n \geq k \, (P(n)) \)
More Examples

• Ex 4: Show that for all positive integer $n \geq 4$,
 \[2^n < n! \]

• Ex 5: Show that for all non-negative integer n,
 \[1 + 2 + \ldots + 2^n = 2^{n+1} - 1 \]

• Ex 6: Show that for non-negative integer n,
 \[7^{n+2} + 8^{2n+1} \text{ is divisible by } 57 \]
Interesting Examples

Snowball Fight

• There are $2n + 1$ people
• Each must throw to the nearest
• All with distinct distance apart
• Show that at least one is not hit by any snowball
Interesting Examples

Tiling (Again!)

• A big square of size $2^n \times 2^n$
• Somewhere inside, a 1×1 small square is removed
• Show that the remaining board can always be tiled by L-shaped dominoes:

 each consists of three 1×1 squares
Strong Induction

• An alternative form of induction, called strong induction, uses a different inductive step:

\[\forall n \; ((P(1) \land P(2) \land \ldots \land P(n)) \rightarrow P(n+1)) \]

• The basic step is still to prove \(P(1) \) to be true

• Again, if both the basic and inductive steps are true, then we can conclude that \(\forall n \, P(n) \) is true [how?]
Examples

• Ex 1:

Define the n^{th} Fibonacci number, F_n, as follows:

$F_0 = 1, \ F_1 = 1,$

$F_n = F_{n-1} + F_{n-2},$ \ when \ $n \geq 2$

By the above recursive definition, we get the first few Fibonacci numbers:

$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots$
Examples

• Ex 1 (continued):

Show that F_n can be computed by the formula

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$
Examples

• Ex 2: Quicksort is a recursive algorithm for sorting a collection of distinct numbers:
 1. If there is at most 1 number to sort, done
 2. Else, pick any number x from the collection, and use x to divide the remaining numbers into two groups:
 those smaller than x, those larger than x. Next, apply Quicksort to sort each group (putting x in-between afterwards)
Examples

• For instance, suppose the input collection of numbers contains 1, 4, 3, 10, 7, 2
• First round, say we pick x = 3
• Then we will form two groups S and L:
 \[S = \{ 1, 2 \} \quad \text{and} \quad L = \{ 4, 10, 7 \} \]
• After that, we apply Quicksort on each group, and in the end, we report
 \[\text{Quicksort}(S), \quad x, \quad \text{Quicksort}(L) \]
Examples

• Ex 2 (continued):

Show that Quicksort can correctly sort any collection of n distinct numbers.
Interesting Example

Peg Solitaire

• There are pegs on a board
• A peg can jump over another one into an adjacent empty square, so that the jumped-over peg is eliminated
• Target: Can we eliminate all but one peg?
Interesting Example

• Show that if we start with $n \times n$ pegs (arranged as a square) on a board with infinite size, and n is not divisible by 3, then we can eliminate all but one peg.

• Hint: Let $P(n)$ denote the above proposition. Show that $P(1)$ and $P(2)$ are true, and for all n, $P(3n+1) \rightarrow P(3n+5)$, $P(3n+2) \rightarrow P(3n+4)$ are true.
Common Mistakes

• Show that
 \(P(n) = \text{“any n cats will have the same color”} \)
 is true for all positive integer \(n \).

• **Proof**: The basic step \(P(1) \) is obviously true.
 Next, assume \(P(k) \) is true. Then, when we have \(k + 1 \) cats, we can remove one of them, say \(y \), so that by \(P(k) \), they will have the same color
Common Mistakes

• **Proof (continued):**

Now, we exchange the removed cat with one of the other k cats:
Common Mistakes

• Proof (continued):
 Then, by P(k) again, y must have the same color as the other $k - 1$ cats.
 This implies all the cats are of the same color!

• What’s wrong with the proof?
∀k ∈ N. \[\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \]
∀k ∈ . \sum_{i=1}^{k} i = \frac{k(k+1)}{2}

(By induction) Let \(P(k) \) be the predicate “\(\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \)”

Base Case: \(\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \), thus \(P(0) \) is true

Inductive Hypothesis: Let \(k \geq 0 \). We assume that \(P(k) \) is true, i.e. \(\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \)

Inductive Step:
\[
\sum_{i=1}^{k+1} i = \left[\sum_{i=1}^{k} i \right] + (k + 1)
\]
\[
= \frac{k(k+1)}{2} + (k + 1) \quad \text{(by I.H.)}
\]
\[
= \frac{k(k+1) + 2(k+1)}{2}
\]
\[
= \frac{(k+1)(k+2)}{2}
\]

Thus \(P(k + 1) \) is true

\[\square\]
∀k ≥ 4. 2^k < k!

(By induction) Let \(P(k) \) be the predicate "\(2^k < k! \)"

Base Case: \(2^4 = 16 < 24 = 4! \), thus \(P(4) \) is true

Inductive Hypothesis: Let \(k ≥ 4 \). We assume that \(P(k) \) is true, i.e. \(2^k < k! \)

Inductive Step:
\[
2^{k+1} = 2 \cdot 2^k < 2 \cdot k! \quad (\text{by I.H.}) < (k + 1) \cdot k! \quad (k ≥ 4)
\]

Thus \(P(k + 1) \) is true □
∀k ≥ 4. 2^k < k!

(By induction) Let \(P(k) \) be the predicate “\(2^k < k! \)”

Base Case: \(2^4 = 16 < 24 = 4! \), thus \(P(4) \) is true

Inductive Hypothesis: Let \(k \geq 4 \). We assume that \(P(k) \) is true, i.e. \(2^k < k! \)

Inductive Step:

\[
2^{k+1} = 2 \cdot 2^k \\
< 2 \cdot k! \quad \text{(by I.H.)} \\
< (k + 1) \cdot k! \quad (k \geq 4) \\
= (k + 1)!
\]

Thus \(P(k + 1) \) is true □
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.

Base Case: $P(0)$ is "$(0^3 - 0)$ is divisible by 3." Yes!

Induction Step: $(\forall k \in \mathbb{N}), P(k) = \Rightarrow P(k + 1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) = k^3 - k + 3k^2 + 3k = (k^3 - k) + 3(k^2 + k)$.

Subtract/add $k = 3q + 3(k^2 + k)$

=$(k^3 - k) + 3(k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$\Rightarrow (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in \mathbb{N})P(k) = \Rightarrow P(k + 1)$

Thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 \mid (n^3 - n)$).

Proof:

By induction.

Base Case: $P(0)$ is "$(0^3 - 0)$" is divisible by 3. Yes!

Induction Step: $(\forall k \in \mathbb{N}), P(k) \Rightarrow P(k + 1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) = k^3 - k + 3k^2 + 3k = (k^3 - k) + 3k^2 + 3k = 3q + 3(k^2 + k)$

(Un)Distributive

\[= 3(q + k^2 + k) \]

Thus, $(\forall k \in \mathbb{N}) P(k) \Rightarrow P(k + 1)$

Thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.

Base Case: $P(0)$ is $(0^3 - 0)$ is divisible by 3. Yes!

Induction Step: $(\forall k \in \mathbb{N}), P(k) = \Rightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) = k^3 - k + 3k^2 + 3k = (k^3 - k) + 3(k^2 + k)$

$\text{Subtract/add } k = 3q + 3(k^2 + k)$

Induction Hyp.

Factor.

$\Rightarrow (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in \mathbb{N})P(k) = \Rightarrow P(k + 1)$

Thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (\(3 | (n^3 - n) \)).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0 \)” is divisible by 3.
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (\(3 | (n^3 - n) \)).

Proof: By induction.
Base Case: \(P(0) \) is “\(0^3 - 0 \)” is divisible by 3. Yes!
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$0^3 - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (\(3 \mid (n^3 - n) \)).

Proof: By induction.

Base Case: \(P(0) \) is \((0^3) - 0\) is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}) P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. \((3|(n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 \mid (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1)$
Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 \mid (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is "$(0^3) - 0$" is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k+1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (3\(|(n^3 - n)\)).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k+1)\)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.
 or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) \\
= k^3 + 3k^2 + 2k
\]
Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) \\
= k^3 + 3k^2 + 2k \\
= (k^3 - k) + 3k^2 + 3k
\]
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (3|\((n^3 - n) \)).

Proof: By induction.
Base Case: \(P(0) \) is “\(0^3 - 0 \)” is divisible by 3. Yes!
Induction Step: \((\forall k \in \mathbb{N}) \), \(P(k) \implies P(k + 1) \)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.
 or \(k^3 - k = 3q \) for some integer \(q \).
\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
Thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k$$ Subtract/add k
$$= 3q + 3(k^2 + k)$$
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.

Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp.}
\]
Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
\]
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: ($\forall k \in \mathbb{N}$), $P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$
 $= k^3 + 3k^2 + 2k$
 $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k
 $= 3q + 3(k^2 + k)$ Induction Hyp. Factor.
 $= 3(q + k^2 + k)$
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k$$ Subtract/add k
$$= 3q + 3(k^2 + k)$$ Induction Hyp. Factor.
$$= 3(q + k^2 + k)$$ (Un)Distributive $+$ over \times
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$0^3 - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k \text{ Subtract/add } k$$
$$= 3q + 3(k^2 + k) \text{ Induction Hyp. Factor.}$$
$$= 3(q + k^2 + k) \text{ (Un)Distributive } + \text{ over } \times$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n)) \).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
= k^3 + 3k^2 + 2k
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\]

Or \((k + 1)^3 - (k + 1) = 3(q + k^2 + k)\).

\((q + k^2 + k)\) is integer (closed under addition and multiplication).
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is \((0^3) - 0\) is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k+1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
\]
\[
= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\]

Or \((k + 1)^3 - (k + 1) = 3(q + k^2 + k).\)

\((q + k^2 + k)\) is integer (closed under addition and multiplication).

\(\implies (k + 1)^3 - (k + 1) \) is divisible by 3.
Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.

Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!

Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k + 1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$

$= k^3 + 3k^2 + 2k$

$= (k^3 - k) + 3k^2 + 3k$ Subtract/add k

$= 3q + 3(k^2 + k)$ Induction Hyp. Factor.

$= 3(q + k^2 + k)$ (Un)Distributive $+$ over \times

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$\implies (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in \mathbb{N}) P(k) \implies P(k + 1)$
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k+1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k$$
$$= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}$$
$$= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$\implies (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in \mathbb{N})P(k) \implies P(k + 1)$
Thus, theorem holds by induction.
Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k$$
$$= 3q + 3(k^2 + k) \quad \text{Induction Hyp. \ Factor.}$$
$$= 3(q + k^2 + k) \quad \text{(Un)Distributive + over \times}$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).
 $\implies (k + 1)^3 - (k + 1)$ is divisible by 3.
Thus, $(\forall k \in N)P(k) \implies P(k + 1)$
Thus, theorem holds by induction.
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

(Couldn't find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color.
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)
Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color. (Couldn’t find a map where they did though.)

Quick Test: Which states?
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color. (Couldn’t find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color. (Couldn’t find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Base Case.
Two color theorem: proof illustration.

Base Case.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Algorithm gives $P(k) \Rightarrow P(k+1)$.
1. Add line.
2. Get inherited color for split regions

Base Case.
Algorithm gives $P(k) \implies P(k+1)$.

Two color theorem: proof illustration.

Switch colors

Fixes conflicts along line, and makes no new ones.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

\[P(k) \implies P(k + 1) \]
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k + 1)$.

□
Every natural number $k > 1$ can be written as a product of primes

(By induction) Let $P(k)$ be the predicate “k can be written as a product of primes”

Base Case: Since 2 is a prime number, $P(2)$ is true

Inductive Hypothesis: Let $k \geq 1$. We assume that $P(k)$ is true, i.e. “k can be written as a product of primes”

Inductive Step: We distinguish two cases: (i) Case $k + 1$ is a prime, then $P(k + 1)$ is true; (ii) Case $k + 1$ is not a prime. Then by definition of primality, there must exist $1 < n, m < k + 1$ such that $k + 1 = n \cdot m$. But then we know by I.H. that n and m can be written as a product of primes (since $n, m \leq k$). Therefore, $k + 1$ can also be written as a product of primes. Thus, $P(k + 1)$ is true \square
Every natural number \(k > 1 \) can be written as a product of primes

(By induction) Let \(P(k) \) be the predicate “\(k \) can be written as a product of primes”

Base Case: Since 2 is a prime number, \(P(2) \) is true

Inductive Hypothesis: Let \(k \geq 1 \). We assume that \(P(k) \) is true, i.e. “\(k \) can be written as a product of primes”

Inductive Step: We distinguish two cases: (i) Case \(k + 1 \) is a prime, then \(P(k + 1) \) is true; (ii) Case \(k + 1 \) is not a prime. Then by definition of primality, there must exist \(1 < n, m < k + 1 \) such that \(k + 1 = n \cdot m \). But then we know by I.H. that \(n \) and \(m \) can be written as a product of primes (since \(n, m \leq k \)). Therefore, \(k + 1 \) can also be written as a product of primes. Thus, \(P(k + 1) \) is true

\(\square \)

\(\longrightarrow \) If we had only assumed \(P(k) \) to be true, then we could not apply our I.H. to \(n \) and \(m \)