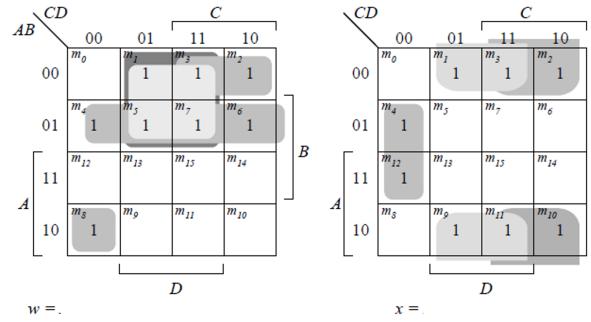
Midterm Review

Logic Design – BBM231

1's complement: flip 2's complement: flip + 1

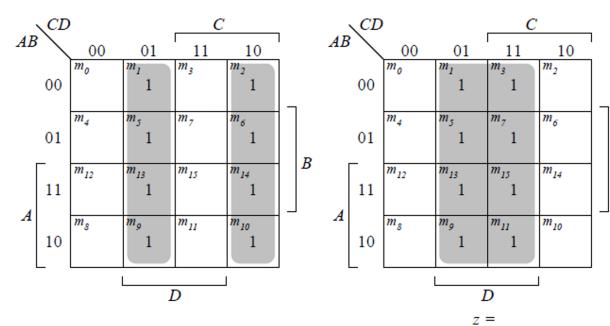
a) truth table


- a) truth table
- b) K-map
- c) solve K-map

	1
L	┻

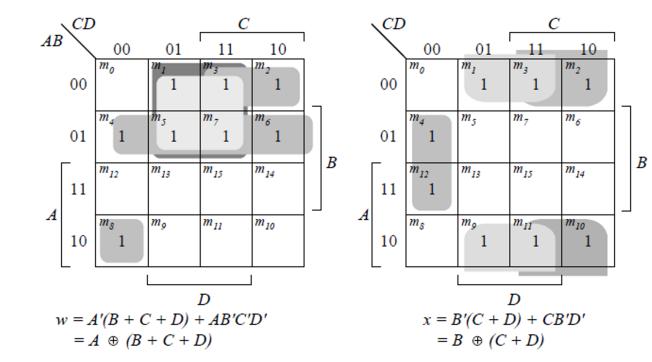
ABCD	wxyz
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

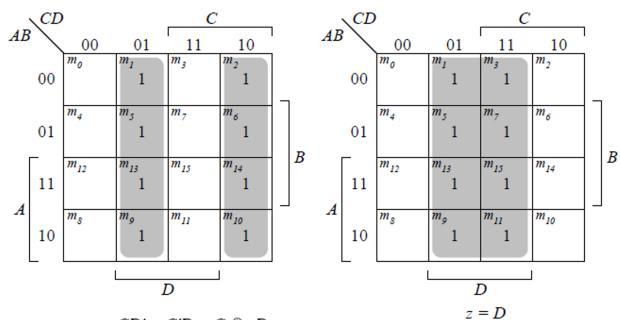
	1
L	┻


ABCD	wxyz	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	10 10	
0111	100 1	
1000	1000	
1001	0111	
1010	0110	
1011	0101	
1100	0100	
1101	0011	
1110	0010	
1111	0001	
	-	

В

В


=



=

Q1

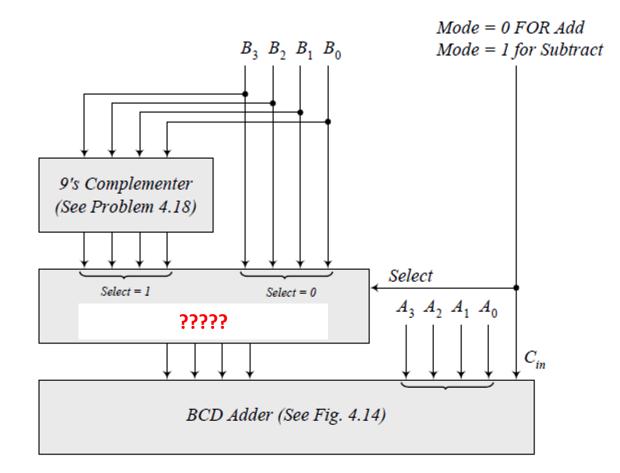
y =

 $y = CD' + C'D = C \oplus D$

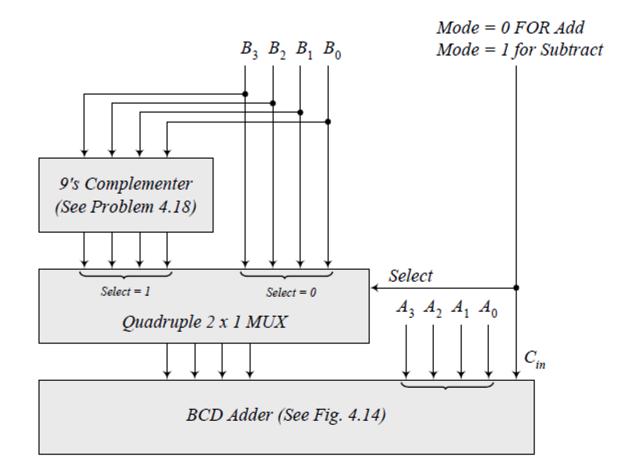
Q1

9

For a 5-bit 2's complementer with input E and output v:

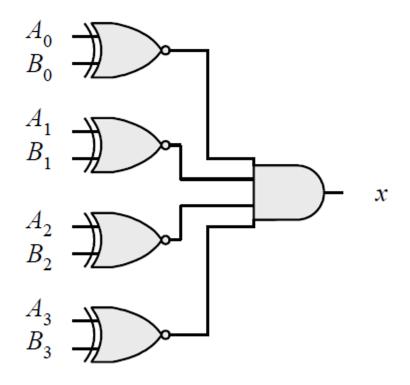

$$\mathbf{v} = \mathbf{E} \oplus (\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D})$$

Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.


9's complement subtraction

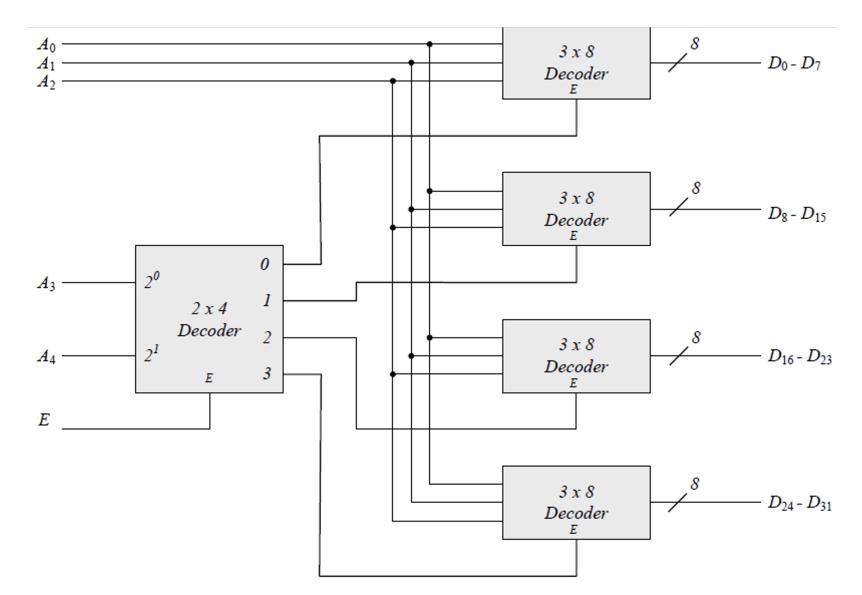
	Regular Subtraction	9's Complement	Subtraction
(a)	8	8	
	- 2	+ 7	9's complement of 2
	6	1 5	11 B
		· L►+ 1	Add carry to result
		6	
		8282	85
(b)	28	28	
	- 13	+ 86	9' complement of 13
	15	1 14	
		L+ 1	Add carry to the result
		15	
(c)	18	18	
	- 24	+ 7 5	9' complement of 24
	- 6	93	9's complement of result
		1	(No carry indicates that the
35		*	answer is negative and in
	2	- 0 6	complement form)

Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.


Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.

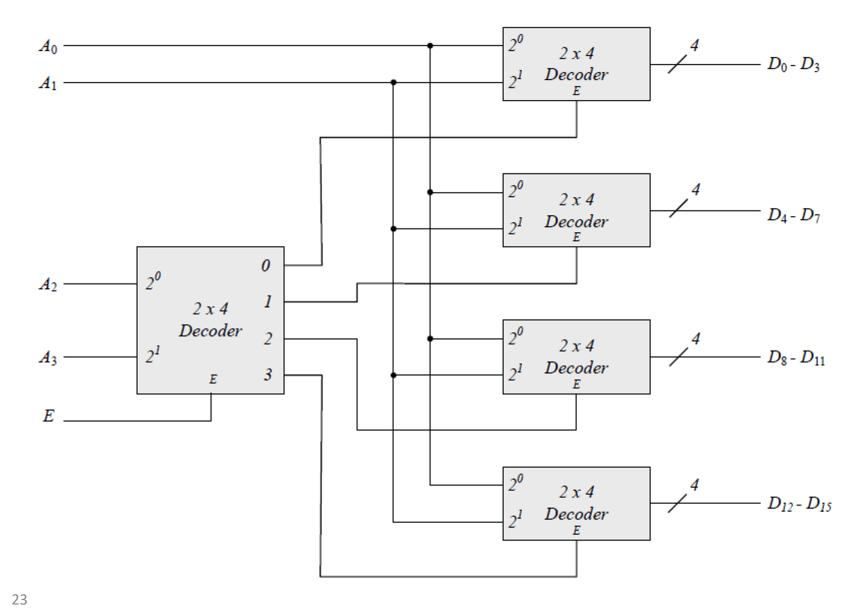
Do we know a logic gate that outputs 1 only if its both inputs are the same?

Remember XOR is the Odd Function? What is an Odd Function?


Then how about **XNOR**?

 $x = (A_0 \oplus B_0)'(A_1 \oplus B_1)'(A_2 \oplus B_2)'(A_3 \oplus B_3)'$

Construct a 5-to-32-line decoder with enable using four 3-to-8-line decoders with enable and a 2-to-4-line decoder with enable. Use block diagrams for the components.

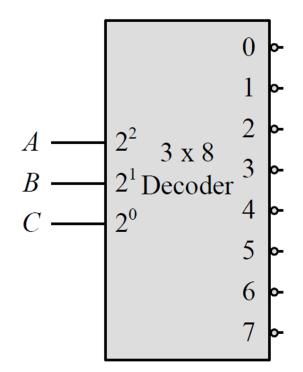

Construct a 5-to-32-line decoder with enable using four 3-to-8line decoders with enable and a 2-to-4-line decoder with enable. Use block diagrams for the components.

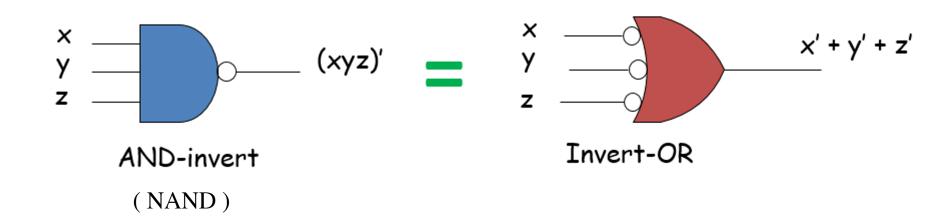
Q4

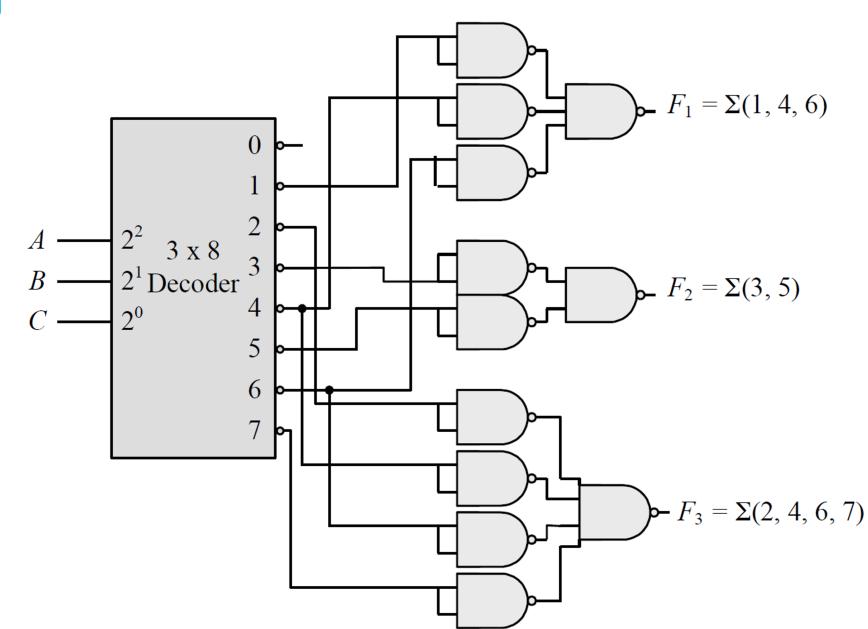
Construct a 4-to-16-line decoder with enable using five 2-to-4-line decoders with enable.

Construct a 4-to-16-line decoder with enable using five 2-to-4-line decoders with enable.

Q5


A combinational circuit is specified by the following three Boolean functions:


$$F_1(A, B, C) = \Sigma(1, 4, 6)$$


$$F_2(A, B, C) = \Sigma(3, 5)$$

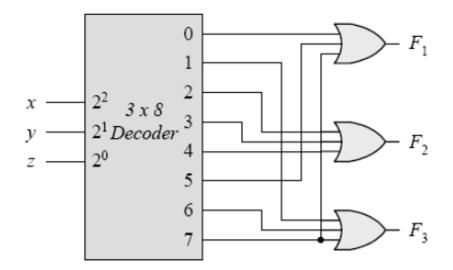
$$F_3(A, B, C) = \Sigma(2, 4, 6, 7)$$

Implement the circuit with a decoder and NAND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs in the external gates.

$$F_1 = x'yz' + xz$$

$$F_2 = xy'z' + x'y$$

$$F_3 = x'y'z' + xy$$

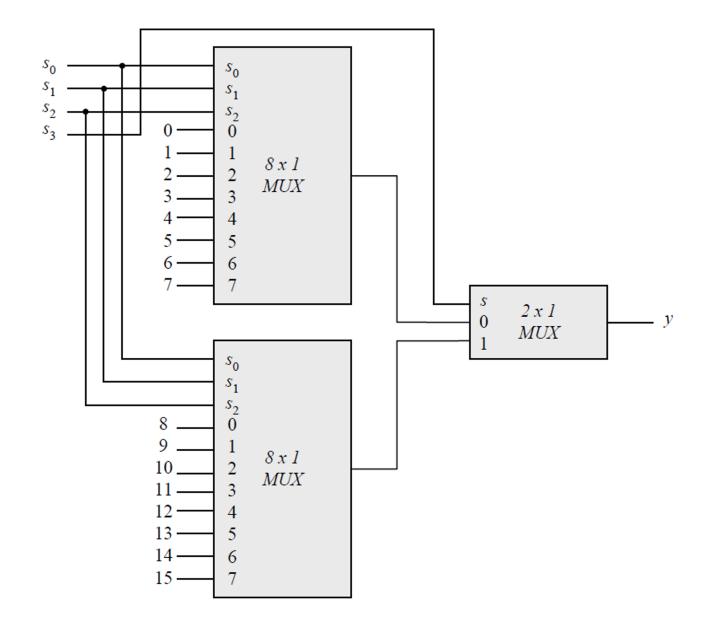

Implement the functions with one decoder and OR gates

$$F_1 = x'yz' + xz$$

$$F_2 = xy'z' + x'y$$

$$F_3 = x'y'z' + xy$$

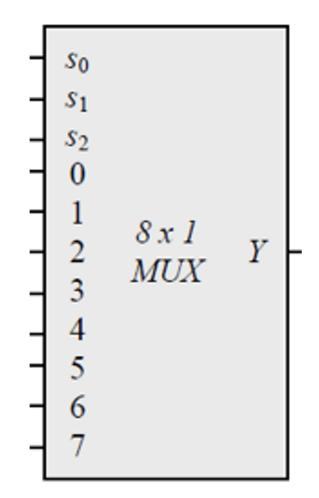
 $F_{1} = x(y + y')z + x'yz' = xyx + xy'z + x'yz' = \Sigma(2, 5, 7)$ $F_{2} = xy'z' + x'y = xy'z' + x'yz + x'yz' = \Sigma(2, 3, 4)$ $F_{3} = x'y'z' + xy(z + z') = x'y'z' + xyz + xyz' = \Sigma(0, 6, 7)$



Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

a) How many inputs?b) How many selection lines?


Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

Implement the following Boolean function with a multiplexer

(a) $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Q10 Implement the following Boolean function with a multiplexer (a) $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Implement the following Boolean function with a multiplexer

(a) $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Q10 $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Inputs <u>ABCD</u>	Mux input line (ABC)	Value
<u>ABCD</u> 000 0	0 0	0
$000\ 1$	0	1
001 0	1 2 2 3 3 4 4 5 5 6 6 6	1 2 3 4 5 6 7 8
$\frac{001\ 1}{010\ 0}$	1	3
010 0	2	4
010 1	2	5
011 0 011 1 100 0	3	6
011 1	3	7
100 0	4	8
$\frac{100\ 1}{101\ 0}$	4	9 10
101 0	5	
101 1	5	<u>11</u> 12
110 0	6	
110 1	6	13 14
111 0	7	14
111 1	7	15

Q10 $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

e (AB	
Inputs mathematical formula for the formula formula formula formula for the formula f	
Inputs in an $F = \Sigma(0, 2, 5, 8, 10, 1)$	14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

ABC)		
ine (
put l		
Value Value	$F = \Sigma(0, 2, 5, 8, 10, 14)$	
000 0 0 0	$\frac{1}{2}F = D'$	
000 1 0 1	0	
001 0 1 2	$\begin{array}{cccc} 1 \\ 0 \\ F = D' \\ B \\ \hline S_{1} \\ S_{1} \\ \end{array}$	
0011 1 3	$B \longrightarrow s_1$	
010 0 2 4		
010 1 2 5	$rac{1}{1}F = D$ C $rac{1}{2}S_2$ 0	
011 0 3 6	$0_{E=0}$ 1	
011 1 3 7	$D + D + Z = \frac{8 \times 1}{2} Y$	
100 0 4 8	1 MUX	
100 1 4 9	$\frac{1}{0}F = D'$	
101 0 5 10		
101 1 5 11	$\frac{1}{0}F = D'$ $0 \qquad \qquad$	
110 0 6 12		
110 1 6 13	0 = 0	
111 0 7 14	1	
111 1 7 15	${}_{0}^{1}F = D'$	

F

Q10 $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Implement the following Boolean function with a 4x1 multiplexer and external gates. $F_1(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

Q11 Implement the following Boolean function with a 4x1 multiplexer and external gates. $F_1(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

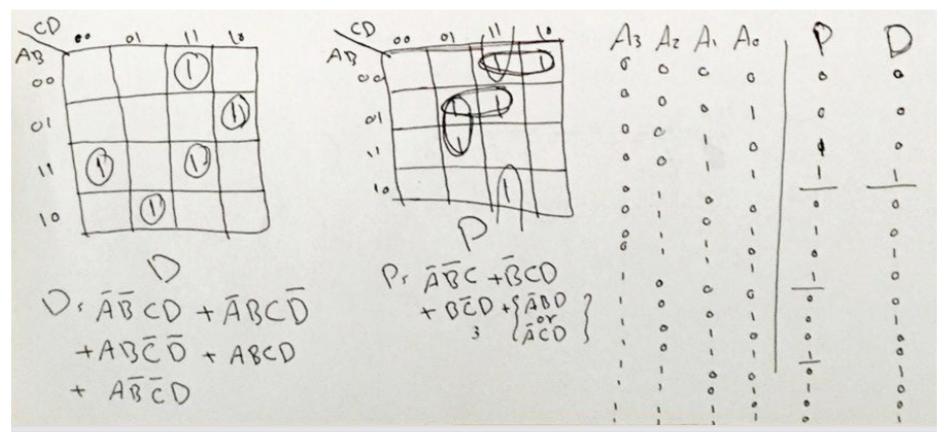
Inputs ABCD	
0000	Γ
0001	ļ
0010	
0011	
0100	Γ
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Implement the following Boolean function with a 4x1 multiplexer and external gates. $F_1(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

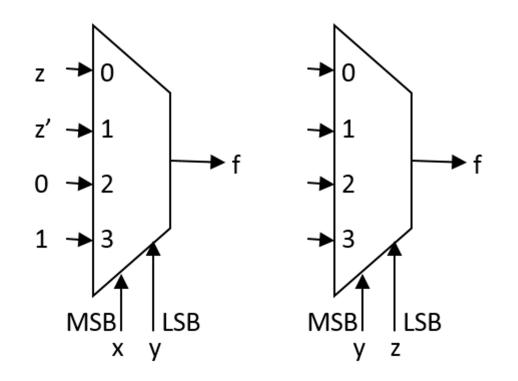
Inputs ABCD	F
0000	0
0001	1
0010	0
0011	1
0100	1
0101	0
0110	0
0111	0
1000	0
1001	0
1010	0
1011	1
1100	1
1101	1
1110	1
1111	1

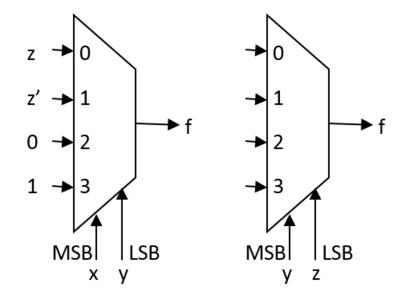
Implement the following Boolean function with a 4x1 multiplexer and external gates. $F_1(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

Inputs ABCD	F	
0000	0	
0001	1	AB = 00
0010	0	F = D
0011	1	
0100	1	4D = 01
0101	0	AB = 01 E = C'D'
0110	0	F = C'D'
0111	0	= (C + D)'
1000	0	
1001	0	AB = 10
1010	0	F = CD
1011	1	
1100	1	4D = 11
1101	1	AB = 11
1110	1	F = 1
1111	1	

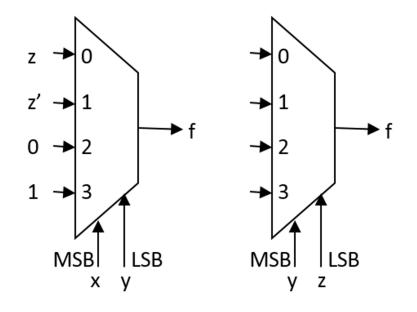

Implement the following Boolean function with a 4x1 multiplexer and external gates. $F_1(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

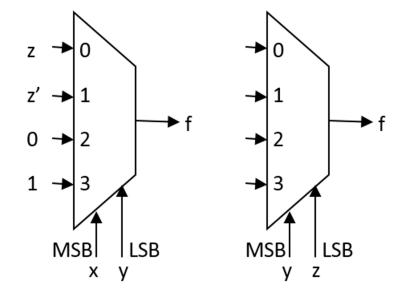
Inputs ABCD	F	
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1001 1010 1101 1100 1101 1110	$\begin{array}{c} 0 \\ 1 & AB = 00 \\ 0 & F = D \\ 1 \\ 1 \\ 1 \\ 0 & F = C'D' \\ 0 & = (C + D)' \\ 0 \\ 0 & AB = 10 \\ 0 & F = CD \\ 1 \\ 1 \\ 1 \\ 1 \\ F = 1 \\ 1 \\ 1 \end{array}$	$A = \begin{bmatrix} s_0 \\ s_1 \\ 0 & 4 \times 1 \\ 1 & MUX \\ 2 & Y \end{bmatrix} F$


44

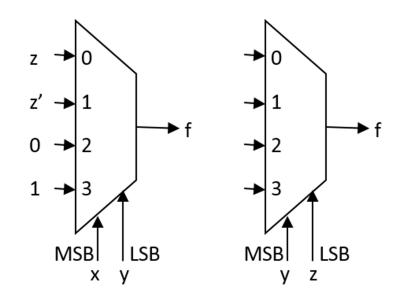

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, $A_{3:0}$, represent a number from 0 to 15. Output *P* should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output *D* should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, $A_{3:0}$, represent a number from 0 to 15. Output *P* should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output *D* should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

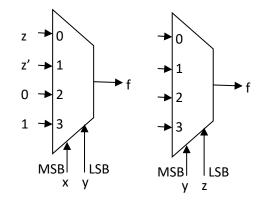

Q1


Q1

Х	у	Z	input	F	F
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			


Q1

х	у	Z	input	F	F			
0	0	0	0					
0	0	1	0					
0	1	0	1					
0	1	1						
1	0	0	2	2				
1	0	1						
1	1	0	2	0	0	0		
1	1	1	3					


Q1

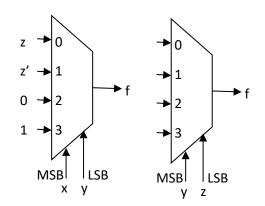
х	у	Z	input	F	F										
0	0	0	0	0			0	0					0	1	
0	0	1			Z										
0	1	0	1												
0	1	1		Z'											
1	0	0	2	2	0										
1	0	1		0											
1	1	0	2	1											
1	1	1	3												

Q1

х	у	Z	input	F	F
0	0	0	0	-	0
0	0	1	U	Z	1
0	1	0	1	1 z'	1
0	1	1			0
1	0	0	2 0	0	
1	0	1			0
1	1	0	0	1	1
1	1	1	3	I	1

Q1

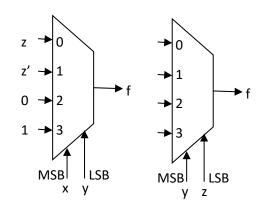
х	у	Z	input	F	F	
0	0	0	0	-	0	
0	0	1	0	Z	1	
0	1	0	1	-,	1	
0	1	1		Z'	0	
1	0	0	2	2 0	0	
1	0	1		2 0	0	
1	1	0	2		1	1
1	1	1	3	I	1	


0 0 Ζ z′ -0 2 2 1 3 3 -LSB MSB LSB MSB Х y Ζ y

Q1

у	z	Х	input	F	F
0	0	0	0		
0	0	1	U		
0	1	0	1		
0	1	1	I		
1	0	0	0		
1	0	1	2		
1	1	0	2		
1	1	1	3		

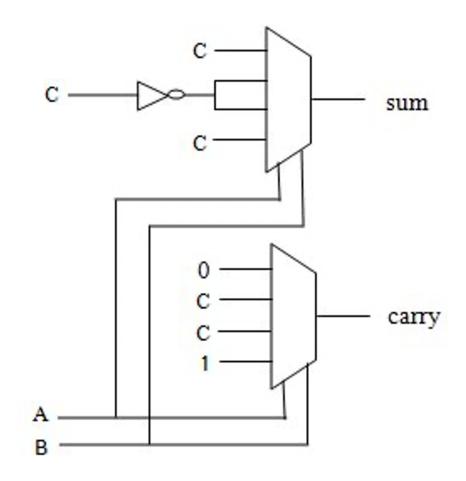
У	Z	X	input	F	F	
0	0	0			0	
0	0	1	0		0	
0	1	0	1		1	
0	1	1	l		0	
1	0	0	ر د		1	
1	0	1	2		1	
1	1	0	ر د		0	
1	1	1	3		1	
•	•					


х	у	z	input	F	F
0	0	0	0	-	0
0	0	1	0	Z	1
0	1	0	1	z'	1
0	1	1	L		0
1	0	0	2	0	0
1	0	1	Z	0	0
1	1	0	3	3 1	1
1	1	1	5	T	1

Q1

У	Z	Х	input	F	F
0	0	0	0	0	0
0	0	1	0		0
0	1	0	1	х'	1
0	1	1	l		0
1	0	0	ر د	1	1
1	0	1	2		1
1	1	0	0		0
1	1	1	3	X	1

х	у	z	input	F	F
0	0	0	0	_	0
0	0	1	0	Z	1
0	1	0	1	z'	1
0	1	1	L		0
1	0	0	2	0	0
1	0	1	Z	0	0
1	1	0	2	3 1	1
1	1	1	5		1



Q1

Implement a full adder using two 4to1 multiplexers.

A	В	С	Carry	
0	0	0	0	0
0	0	1	0	U
0	1	0	0	С
0	1	1	1	C
1	0	0	0	С
1	0	1	1	C
1	1	0	1	1
1	1	1	1	T

۵	b	С	Sum	
0	0	0	0	C
0	0	1	1	С
0	1	0	1	C'
0	1	1	0	C
1	0	0	1	C'
1	0	1	0	C
1	1	0	0	С
1	1	1	1	L L

