More Verilog Examples

BBM233 Logic Design Lab - Fall 2020

Kxample of Behavioral Design
Verilog Sequential Circuits Lab Experiment 5

BBM233 Fall 2019

HACETTEPE UNIVERSITY
Computer Engineering Department
BBM233 Logic Design Laboratory

Fall 2019

Sequential Circuits 1n Verilog

AIM

In this experiment you will design a sequential circuit and implement it in Verilog HDL.

LAB EXPERIMENT

I S R D S PR - [. =/l o o PR RE ESRR pRRp—

By following the steps discussed above, you will design a Synchronous 3-Bit Binary Up/Down
Counter which counts either up or down depending on the counting mode.
e Counter outputs will be from 000 to 111 (from 0 to 7).
e The initial state of the counter is 000. There is a single input M (mode selecting signal)
such that:
o When M = 0, the counter counts down (once O is reached, it should start
counting down from 7 again - cyclically),
o When M =1, the counter counts up (once 7 is reached, it should start counting
up from 0 again - cyclically).

Experiment Steps:

1. Follow the given steps for designing sequential circuits starting with drawing the state
transition diagram. For each step show your work clearly, as it is shown in these
instructions with the example of sequence detector. Use D flip-flops in your
implementation.

2. Once you have designed the circuit, write a Verilog code implementing the counter. Use
behavioral design approach as shown in the alternative implementation. Write an
appropriate testbench which clearly shows that your counter works properly.

3. Write a report that includes all design steps, final circuit design, Verilog codes, and proof
of correct results (e.g. screenshots of waveform, variable changes from the console, etc.).

Report Submission:

The deadline for submission is Wednesday, 11.12.2019 at 13:00 for all sections. Zip your files
(not .rar, only .zip files are supported by the system) and submit your work through
https://submit.cs.hacettepe.edu.tr/index.php with the following file hierarchy:
- <studentID>.zip
- counter.v
- counter testbench.v
- report.pdf

A Student Solution - graded with 100

We created a state transition diagram for our three-bit counter. We need 8 states for the
representation of the digits (0-7). If the input is one, we should go to next stage (counter counts up).
If the input is zero we should go to previous stage. (counter counts down)

' S7
{1 1 | 110 101

We convert our state transition diagram into a state transition table (binary coded state table).

- 3 bit input for previous stage
- One bit input for M (mode selecting signal).

- 3 bit output for next stage

Previous Stage Input Next Stage
0 0 0 0 1 1 1
0 0 0 1] 0 1 1
0 0 1 0 0 0 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 1
0 1 1 0 0 1 0
0 1 1 1 1 0 0
1 0 0 0 0 1 i)
1 0 0 1 1 0 1
1 0 1 0 1 0 0
1 0 1 1] 1 1 0
al 1 0 0 1 0 1
1 1 0 1 1 1 1
1 1 1 0 1 1 0
1 1 1 1 0 0 0

We choose D-type flip-flops. Since there are eight states, we need three flip-flops, And we label their
outputs as A,B and C. The characteristic equation of the D flip-flop is Q(t+1) = D ,which means that
the next state values in the state table specify the D input condition for the flip-flop. From the state
transition table we obtain the following input equations:

AB\CM 00 01 11 10 AB\CM 00 01 11 10
00 1 0 0 0 00 1 0 1 0
01 0 1 0 01 0 0
11 0 11 0 0
10 0 1 1 10 1 0 1 0

DA= A'B'C’'M'+A'BCM+ABC'+AB'M+ACM' DB=B'C'M'+BC'M+B'CM+BCM'
AB\CM 00 01 11 10
00 1 1 0 0
01 1 1 0 0
11 1 1 0 0
10 1 1 0 0

We used simplified functions to design our sequential circuit.

2N
)

% OO

'’ UJ

Behavioral design for our three-bit counter in Verilog:

Firstly, we identify our inputs (M, clock, reset)
and 3’bit output out. Then we made two
register for our state and next state
information. We use parameter to determine
state’s values. In first always block, we select
what we do. If the reset is zero we chose
stateO as a initial state. Otherwise we assign
next state to our current state. In second
always block we have a case block. We use if

else to determine which state we will go next.

Finally, we assign our output to next state.

5

g
10
11
13
15
17
13
19
20
23
25
26
29
30
31
32
3
35
36
37
38
39
40
41
42
43
o
45
b
47
48
49

“timescale 1lns / 1lps

inle counter(
at M,

state <= HEXE_SEBEE: end

lways@ (state M) egin
~ase (state)
: if (M==1) next_state =sl;
= 1f (M==0) next_state =s7;

if (M=1) next_state =s2;
lse if (M==0) next_state =s0;

if (M==1) next_state =s3;
se 1f (M==0) next_state =sl;

f (M==1) next_state =s4;
se if (M=0) next_state =s2;

if (M=1) next_state =s5;
f (M==0) next_state =s3;

: if (M==1) next_state =s§;
else if (M==0) next_state =s4;

f (M=1) next_state =s7;
if (M==0) next_state =s5;

M==1) next_state =s0;
se if (M==0) next_state =s6;

t: next_state =s0;

= HEXE_SCBEE}

‘timescale 1ns / 1ps
module counter testbench;
reg M;
reg clock;
reg reset;

Our testbench:

In out testbench we have
M clock and reset as a

register. And three-bit 1 .
output as a wire. We use . '
UUT (Unit under test). : IR et

wire [2:0]out;
counter UUT (.M(M), .clock(clock), .reset(reset), .out(out));

O Joyn b W

eg [19:0] input data;
nteger shift amount;

Then we gave initial values |8 S el e

shift amount=0;

to our inputs To control j rescLsly 0
. 8 reset=1; #1000;
the counter we write an 16 end

. . . initial begin
“input_data” which will : clock =0;
ﬁorever begin

give 1 or 0 to M input | #10;

. . . : clock=~clock;
value. While giving the end
values, we use shifting. -

always@ (posedge clock) begin
M = input data>>shift amount;
shift amount=shift amount+l;
end

endmodule

To start from state O we gave our reset 0 in the 0. Nanosecond. Then the reset fix to 1. Then we
create our clock. In the last always we get the next input.

0.000 ns 50.000 ns 100.000 ns (150.000 ns 200.000 ns 250.000 ns 300.000 ns 350.000 ns 400
l

[a /o0 Y o0 ‘lj" o0 Yoo Yoo Yoo oo

o0 Yoo Yoo Yoo Yool

We can see in the simulator that when the input M becomes 1 it counts up. When we changed the
input value as a 0 it starts the count down. The counter is cyclic. We can see in the simulator that
after 7 0 is comes.

200.000 ns 220.000 ns

160.000 ns 180.000 ns
L {10012 B T AT L B

120,000 ns 140,000 ns
W i I A) O o o e L WA |

100.000 ns
I N S W T I Y O L

60.000 ns 80.000 ns
[

0.000 ns 20.000 ns 40.000 ns
Ll

I A I T T T U Y O W W O W

l

4 M

¥ clock

¥ reset
{ it | — L X | D
A A A A ‘ A\ s

> W out]2:0] d
T T

T

I
Y ooooooos

> W input_data[19:0]
I I I I
/ 00000001 | 00000002 { 00000003 ' 00000004 %' 00000007

> W shift_amount[321:0]

280.000 ns 300.000 ns 320.000 ns . 360.000 ne 380.000 ns
PN G (S (S B A

240,000 x 260.000 ns
PRI TR

| |
| |

220.000 ne

160.000 ns |(180.000 ns 200.000 nes
H T T S T T T T W 1 R T

clock

5 b i { X
L ik 1 A I

» reset
> W out[2:0]) e 6
> W input_data[19:0] 7191ft I
> W shift amount[31:0] § 0000000d liDD(D 00000008 0000000a 00006001) 00006000 [I]ll[![;[]l]d

I I

I A i
T91EE
I I
' 0000000e i 00D0O0OODE 00000010

I I I
{ ooDoooii Y 00000012 Y 00000013) 0000

320.000 ns 340.000 ns 360.000 ns 400.000 ns
PR SR

O AT Y S T 0 R O O O WY v |

280.000 ns (300.000 ns

IS B

I W 00 YO W W

T B R

I

clock

4 reset

¥ out[2:0]

W input_data[19:0]
W shift_amount[31:0] § 00000013

T91££

791ff
I I I - I I
0000000e | 0000000f£ | 00000010 X Y 00000014) 00000015

Example of Structural Design
Verilog Sequential Circuits Lab Experiment 6

BBM233 Fall 2019

HACETTEPE UNIVERSITY
Computer Engineering Department
BBM233 Logic Design Laboratory

Fall 2019

Verilog Sequential Circuits Lab Experiment

Registers

AIM

In this experiment you will design a serial adder and implement it in Verilog HDL.

BACKGROUND

Shift registers are registers that are capable of shifting binary information held in each cell to its
neighboring cell, either to the left or to the right. The simplest possible shift register is one that
uses only flip-flops. A 4-bit unidirectional (left-to-right) shift register is shown in the figure below.

Serial S/ SO Serial
input output

Bals > C > S0
bl — L — |

An example application would be serial transfer. A digital system is said to operate in a serial
mode when information is manipulated one bit at a time. Computer may operate in a serial
mode, a parallel mode, or a combination of both. Serial operations are slower, because
information is manipulated one bit at a time. However, serial computers require less hardware,
because one common circuit can be used over and over again to manipulate the bits coming out
of shift registers.

In serial transfer, information is transferred one bit at a time by shifting the bits out of a source
register into a destination register. The serial transfer of information from register A to register B
is done with shift registers, as shown in figure below.

SOp

A SO,| Slg
»| Shift register A Shift register B
; ‘C LK
CLK L
Clock — \
Shift —
control
Timing Diagram:
cog - LEd DIGE DR TR0 LA PR
- ———O———0—
Shift % (\ 2
control
S T L Ty T

Si, SO | Sy SOy
—| Shift register A . »| Shift register B [—>

CLK TCLK

Shift —
control

Clock —{ "\
>

The serial output (SO) of register A is connected to the serial input (SI) of register B. To prevent
the loss of information stored in the source register, the information in register A is made to
circulate by connecting the serial output to its serial input. The initial content of register B is
shifted out through its serial output and is lost unless it is transferred to a third shift register.

S, SO, | Slg SOy
Shift register A Shift register B |—>

Y

Y

A 4

CLK CLK
Clock \
Shift —
control
Timing Diagram:
Clock ‘ ’ ‘ ; ’ ‘ ' | ‘ ’
- - . Y —
Shift = .
control
CLK . ’ R 52

n D T 7

Let’s assume that the shift registers are 4 bit wide. The control unit that supervises the transfer of
data must be designed in such a way that it enables the shift registers, through the shift control
signal, for a fixed time of four clock pulses in order to pass an entire word. When the shift control
signal is active, the output of the AND gate connected to the CLK inputs produces four pulses: T1,
T2, T3, and T4. Each rising edge of the pulse causes a shift in both registers. After the fourth
pulse, the shift control is changed to 0, and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B is 0010. The serial
transfer from A to B occurs in four steps, as shown in the table below.

Serial-Transfer Example

Timing Pulse Shift Register A Shift Register B

Initial value } X a3 0O 0 1 0

After T, i 1 @ 13 1 0 0 1

After T, 1 1 1 0 1 1 0 0

After Ty o 3 ¥ 3 O 1 1 ©

After T, U T P & & 3
Timing Diagram:

oy bl LT D] CL0R FLT LG FRCE
Shift 5 rio—%ﬁ .

control

CLK

LI

You will implement a Serial Adder in Verilog using structural design approach.

The two binary numbers to be added serially are stored in two shift registers. Beginning with the

least significant pair of bits, the circuit adds one pair at a time through a single full-adder (FA)
circuit, as shown in the figure below.

Shift »| SI SO
control »| Shift register A
CLK > (Augend)
> x S
>y FA
o N C
e oL -
P »| Shift register B
>{ (Addend)
Q
D
€<
1]
Clear —I
)

The carry out of the full adder is transferred to a D flip-flop, the output of which is then used as
the carry input for the next pair of significant bits. The sum bit from the S output of the full adder
could be transferred into a third shift register. However, by shifting the sum into A while the bits
of A are shifted out, it is possible to use one register for storing both the augend and the sum
bits.

The operation of the serial adder is as follows: Initially, register A holds the augend, register B
holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B provide a
pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides the input
carry at z. The shift control enables both registers and the carry flip-flop, so at the next clock
pulse, both registers are shifted once to the right, the sum bit from S enters the leftmost flip-flop
of A, and the output carry is transferred into flip-flop Q. The shift control enables the registers for
a number of clock pulses equal to the number of bits in the registers. For each succeeding clock
pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are
shifted once to the right. This process continues until the shift control is disabled. Thus, the
addition is accomplished by passing each pair of bits together with the previous carry through a
single full-adder circuit and transferring the sum, one bit at a time, into register A.

Note that, unlike parallel adders (e.g. Ripple-Carry Adder) which require the number of full-adder
circuits to be the same as the number of bits in the binary numbers (a 4-bit ripple-carry adder
requires four full adder circuits), a serial adder requires only one full-adder circuit and a carry
flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the serial
adder is a sequential circuit which consists of a full adder and a flip-flop that stores the output
carry. This design is typical in serial operations because the result of a bit-time operation may
depend not only on the present inputs, but also on previous inputs that must be stored in
flip-flops.

Shift »| SI SO
control Shift register A
CLK >| (Augend) L
x S—
y FA
Serial >l 51 SO g &
input p—»>| Shift register B
»| (Addend)

Clear

9]
AN

.

Experiment Steps:

P

Implement a D flip-flop in Verilog.

Implement a Full Adder in Verilog. You may use any design approach you wish.
Implement a 4-bit Shift Register in Verilog using D flip-flip module and a structural design
approach based on the figure below.

Serial S

SO Serial

mnput

D

C

D

> ¢

> C

CLK [

-

[

D

C

-+

output

Use the figure of a Serial Adder circuit given above to implement a 4-bit serial adder in
Verilog using structural design approach. Use D flip-flop, full adder, and shift register

modules you implemented in the previous steps as necessary.

Write testbenches that test your Serial Adder module for the following initial states of the

shift registers A and B:

a. Shift-register-A = 4’b0001, Shift-register-B = 4’b1110

b. Shift-register-A = 4’b0101, Shift-register-B = 4’b0011

c. Shift-register-A = 4’b1111, Shift-register-B = 4’b0001

d. Shift-register-A = 4’b1111, Shift-register-B = 4’b1111
Write a report that explains your design steps in detail, Verilog codes, and proof of correct
results (e.g. screenshots of waveforms, variable changes from the console, etc.).

Report Submission:

The deadline for submission is Friday, 03.01.2020 at 22:00 for all sections. Zip your files (not .rar,

only .zip files are supported by the system) and submit your work through

https://submit.cs.hacettepe.edu.tr/index.php with the following file hierarchy:
- <studentID>.zip

= B EEW

- full adder.v

& shifz;register.v
- serial adder.v

- serial adder tb.v
- report.pdf

A Student Solution - graded with 100

Step 1 - Implementing D flip-flop: A D-ff with asynchronous reset is implemented.

"timescale 1ns
//Asynchronous re:
module D ff (Q, clk reset) ;
input D, clk, reset;
output reg Q;
always (@ (posedge clk or posedge reset) begin
if(reset) Q <= 0O;
else Q <= D;
end
endmodule

1
2
3
4
D
6
7
3
9
0

1

Figure.1 D flip-flop Verilog code

Step 2 — Implementing a Full Adder: Behavioral design approach is used.
“timescale 1lns / lps

module full adder(S, Cout, A, B, Cin);
input A, B, Cing
output 5; CoulL;:
assign S = (A”B)“*Cin;
assign Cout = (A&B) | (A&Cin) | (B&Cin) ;
endmodule

_w N

9
6
]
8

Figure.2 Full Adder Verilog Code

Step 3 — Implementing a Shift Register: D3 flip-flop represents the most significant
bit and DO represents the least significant bit. We connected the flip-flops to each
other by wires. We have resets in all D flip-flops in order to set the register to 0000 in
the beginning, otherwise it will be XXXX. Shift register doesn’t work on every clock
rise. It requires clock and Sctrl to be ON together which is named clk in the code. SO
Is the serial output which is the least significant bit. In order to see what is stored in
the registers we also took D3to2, D2to1, D1to0 wires as output, together with SO

they represent the 4 bits stored in the register.

Step 3 — Implementing a Shift Register:

“timescale 1ns / 1ps

module shift registe®(SO; Si,; eloek, Set¥l; weset, D3te2; D2tel, Dite0);
input ST; clock; Sctrl; resel;
antput SO.. D3te2, D2tel, Dltol;
wire clk;
andl{clk, clock, Sctrl);
D & D3 (.Q(D3te2), D31}, wLlklclk), resetlreset)});
D It D28:0(B2t01) ; DiD3tazZ); =Elklelky; sresct (Pesct)y;
b Ef D1¢.0¢01Ltal}, .D{D2tal}), -eclkiclk), .reset (reset)):
b £t DO (-Q(50) ; -D{bltold}); vlkiclk), «resstf{reset));
endmodule

il
2
3
-
3
6
7
8
9
0
1
2

Figure.3 Shift Register Verilog code

Step 4 — Implementing a Serial Adder: Numbers are input to Shift Register B (SIB)
and Shift Register A behaves as the sum of numbers input to register B. The serial
output of Shift Register A and B is fed into the full adder together with the carry
stored inside Carry D-ff. ClrCarry is used for resetting carry flip-flop and reset is used
for resetting both registers to 0000. The adder will work only if Sctrl is on and the

clock is ticking.

“timescale 1ns / 1lps

module serial adder(x, A3, A2, Al, y, B3, B2, Bl, SIB, clock, Sctrl, reset, ClrCarry);
input Sctrl, clock, SIB, ClrCarry, reset;
output x; A3 A2- Al y; B3; B2; Bl;
wire clk, x, y, z, S, C;
and(clk,; Sctrl, clock):;
shift register SrA(.SO(x), .SI(S), .clock(clock), .Sctrl(Sctrl), .D3to2(A3), .D2tol(A2), .D1toO(Al), .reset(reset));
shift register SrB(.SO(y), .SI(SIB), .clock(clock), .Sctrl(Sctrl), .D3to2(B3), .D2tol(B2), .Dlto0O(Bl), .reset(reset));
full adder FA(.S(S), .Cout(C), .A(x), .B(y), .Cin(z));
D ff Carry(.Q(z), .D(C), .clk(clk), .reset(ClrCarry)):;

Figure.4 Serial Adder Verilog code

Step 5 — Writing the testbench for the Serial Adder: The 4-bit wires A and B are
what is stored in Shift register A and B respectively. A clock configured to go on and
off every 5 ms. For the given 4 initial states for testing, 4 code block are written, each
starting with resetting the registers and the Carry D-ff. And then Shift control is turned
on and input is given in to Shift register B (SIB).

“timescale 1ns lps

module serial adder tb():
reg SIB,: clock, Sctrl,. CGlErCarry;, teset:
wire [3:0] A, B;

serial adder UUT(A[O], A[3], A[2], A[l]l, B[O], B[3], B[2], B[1l], SIB, clock, Sctrl, reset, ClrCarry):;

O ~J O O WN

initial begin
clock = 0;

forever begin

#5; clock = ~clock; end
end

initial begin

ClrCarry = l;reset = 1;Sctrl = 0;#10;reset = 0;ClrCarry = 0;#10;Sctrl =
SIB = 1;#10;SIB = 0;#10;SIB = 0;#10;SIB = 0;#10;

SIB = 0;#10;SIB = 1;#10;SIB = 1;#10;SIB = 1;#10;

SIB =i 0:#40:5ctrl =:0:;

ClrCarry = 1l;reset = 1;#10;reset = 0;ClrCarry = 0;#10;Sctrl
SIB = 1;#10;SIB = 0;#10;SIB = 1;#10;SIB = 0;#10;

SIB = 1;:;#10;SIB = 1;:;#10;SIB = 0;#10;SIB = 0;:#10;

SIB = 0;#40;Sctrl = 0;

ClrCarry = l;reset = 1;#10;reset = 0;ClrCarry = 0;
SIB = 1;:;#10;SIB = 1:#10;SIB = 1:#10:;SIB = 1:#10;
SIB = 1;#10;SIB = 0;#10;SIB = 0;#10;SIB = 0;#10;
SIB 0;#40;Sctrl = 0;

ClrCarry = l;reset = 1;#10;reset = 0;ClrCarry = 0;#1
SIB = 1;#10;SIB = 1;#10;SIB = 1;#10;SIB = 1;#10;
SIB = 1:#10:5IB = 1:410:STB = 1:#10:S1IB = #
SIB 0;#40;Sctrl D
end

endmodule

LV,

Figure.5 Serial Adder Testbench Verilog code

Simulation Results: Explanation for the first test; the sum of 0001 + 1110 is wanted.
To achieve this we fed 0001 into register B and then 1110. To clarify, until 20ms The
Serial adder is reset. At 20ms Sctrl is on and input (SIB) starts to be fed into shift
register B. From 20 to 60ms 1, 0, 0, 0 is fed (notice the least significant bit is fed first)
into SIB and now register B is set to 0001 while reg A is still 0000. The next 4 clocks
until 100ms, At the same time 0, 1, 1, 1 is fed into SIB and 0000+0001 is calculated
and stored in register Asonowreg B is 1110 and reg A is 0001 which is what we
wanted. The next 4 clocks simply A and B is added and stored in A (100ms to
140ms). The yellow line represents the final state after addition. Basically, we input 2

4-bit numbers one after the other and the sum is stored in A.

+|SIB

clock
Scirl
+ ClrCarry
s reset
. kX))
o [3]
e [2]
e (1]
e [0]
v W B[3:0]
o [3]
o [2]
e [1]
e [0]

0.000 ns

40.000 ns

Bt e |

60.000 ns

100.000 ns

120.000 ns

T |

140.000 ns

Figure.6 Waveform for 0001 + 1110

140.000 ns 160.000 ns 180.000 ns 200.000 ns 220.000 ns 240.000 ns 260.000 ns 280.000 ns

IIIIIIlIIlllllllllIllIllllll|llll|llllllll|lllllllllllllllllllll N T T T T -

]
Il I B I |

+ SIB
+ clock
e Scirl

+ CIrCarry

4 reset |

v M A[3:0]
o [3]
e [2]
]
]

O O O O O O O O -« W O 0 & a o

Figure.7 Waveform for 0101 + 0011

+ SIB

clock

Sctrl

ClIrCarry

Z280.000 ns

T NS I e [e (O

300.000 ns

| T T I T |

320.000 ns

I I I T I T |

340.000 ns

360.000 ns

IIIIIlIII|IIII|llII

380.000 ns

I T S T I T I |

400.000 ns

N T T I |

420.000 ns

\
.ireset

v B A[3:0]

o [3]
o [2]
e [1]
o [0]
¥ B[3:0]
e [3]
e [2]
e [1]
e [0]

o O O O O O O O O O 0|0 <A 4 O

.

= |

I

Il B

Figure.8 Waveform for 1111 + 0011

+ SIB
clock

s Sctrl

+ CirCarry

4 reset
W A[3:0]
o (3]
e [2]
e [1]
e [0]
- W B[3:0]
o [3]
o [2]
e [1]
e [0]

420.000 ns

I T T T N T — -

440.000 ns

I I N O S |

460.000 ns

T I EEON T Y [5N

480.000 ns

ol b b o 1.}

500.000 ns

SN T T T S T — -~

£520.000 ns

S T T TR S T ——

£40.000 ns

N T T T N 'l

5€60.000 ns

N T T T S - -l

.

N

i*I

Figure.9 Waveform for 1111+1111

Arithmetic Logic Unit (ALU)
An Kxample of Behavioral Design

Solution from

https://www.fpgadstudent.com

/* ALU Arithmetic and Logic Operations

| @@@@ | ALU Out = A + B;

| 001 | AW OWt-A-8
| o060 | AW OWt-A*B;
| o011 | AWoOut-A/B
| o0 | AW OWE-A<<1;
| ete1 | AW Out=-A>1;
| 0116 | ALUOut - A rotated left by 1;
| 6111 | ALUOut - A rotated right by 1;
| 1000 | ALUOut = A andB;
| 1001 | AWOut-AorB;
| 1010 | ALUOut - AxorB;
| 1011 | ALW.Out - AnorB;
| 1106 | ALUOut = AnandB;
| 1101 | ALUOut - A xnorB;
| 1116 | ALUOut - 1 if ASB else @3
| 1111 | ALUOut - 1 if A-B else @3

https://www.fpga4student.com/2017/06/Verilog-code-for-ALU.html

module alu(
input [7:0] A,B, // ALU 8-bit Inputs
input [3:0] ALU_Sel,// ALU Selection
output [7:0] ALU_Out, // ALU 8-bit Output
output CarryOut // Carry Out Flag
)i
reg [7:0] ALU_Result;
wire [8:0] tmp;
assign ALU_Out = ALU_Result; // ALU out
assign tmp = {1'b0,A} + {1'b0,B};
assign CarryOut = tmp[8]; // Carryout flag
always @(*)
begin
case(ALU_Sel)
4'b0000: // Addition
ALU Result = A+ B ;
4'b@001: // Subtraction
ALU_Result = A - B ;
4'b@010: // Multiplication
ALU_Result = A = B;
4'bo011: // Division
ALU_Result = A/B;
4'b010@: // Logical shift left
ALU_Result = A<<1;
4'b@101: // Logical shift right
ALU_Result = A>>1;
4'b0110: // Rotate left
ALU_Result = {A[6:0],A[7]1};
4'b@111: // Rotate right
ALU_Result = {A[0],A[7:1]};
4'b1000: // Logical and
ALU_Result = A & B;
4'b1001: // Logical or
ALU_Result = A | B;
4'b1010: // Logical xor
ALU_Result = A * B;
4'b1011: // Logical nor
ALU_Result = ~(A | B);
4'b1100: // Logical nand
ALU_Result = ~(A & B);
4'b1101: // Logical xnor
ALU_Result = ~(A ~ B);
4'b1110: // Greater comparison
ALU_Result = (A>B)?8'd1:8'd0 ;
4'b1111: // Egqual comparison
ALU_Result = (A==B)?8'd1:8'd0 ;
default: ALU_Result = A+ B ;
endcase
end

endmodule

Testbench Verilog code for the ALU:

// fpgadstudent.com: FPGA projects, Verilog projects, VHDL projects
// Verilog project: Verilog code for ALU

// by FPGA4STUDENT

“timescale 1ns / 1ps

module tb_alu;
//Inputs
reg[7:@] A,B;
reg[3:0] ALU_Sel;

//Outputs
wire[7:0] ALU_Out;
wire CarryOut;
// Verilog code for ALU
integer 1i;
alu test_unit(
A,B, // ALU 8-bit Inputs
ALU_Sel,// ALU Selection
ALU_Out, // ALU 8-bit Output
CarryOut // Carry Out Flag
)
initial begin
// hold reset state for 108 ns.
A = 8'h@A;
B = 4'h@2;
ALU_Sel = 4'he;

for (i=0;i<=15;i=i+1)
begin

ALU_Sel = ALU_Sel + 8°ho1;
#10;

end;

A = 8'hF6;
B = 8'heA;

end
endmodule

Simulation waveform for the ALU:

B YA

| ECR D ¥ 1 ! 1 > {]
BN AL_SeI0) (! 2 . : neXd
BN AU _oudol () 14) os z ta | O

fpgadstudent.com

