
BBM 301 –
Programming Languages

Fall 2022, Lecture 1

General Information
• Webpage:

http://web.cs.hacettepe.edu.tr/~bbm301

• Textbook:
– Robert W. Sebesta,
“Concepts of Programming Languages”,
Pearson, 11th Edition (also 10th is OK)

• Time and Place:
– Thursdays 09:30 – 12:15

• Communication:
– We will use Piazza

https://piazza.com/hacettepe.e
du.tr/fall2022/bbm301

2

http://web.cs.hacettepe.edu.tr/~bbm301
https://piazza.com/hacettepe.edu.tr/fall2022/bbm301

Topics
• Introduction to Programming Languages
• Names, Bindings, Scope
• Syntax and Semantics
• Lex and Yacc
• Functional Languages
• Data Types
• Expressions, Assignments, Control Statements
• Subprograms
• Implementing Subprograms
• Logic Languages

3

Grading Policy (Tentative)
• 30% Midterm exam 1
• 30% Midterm exam 2
• 40% Final exam

4

Lecture 1:
Introduction to Programming

Languages

What is a (Programming)
Language?

6

A programming language is a vocabulary and set of
grammatical rules for instructing a computer to perform
specific tasks. (Definition from webopedia)

A language is a vocabulary and set of grammatical rules
for communication between people.

Why Study Programming Languages?
• One or two languages is not enough for a computer

scientist.
• You should know

– the general concepts beneath the requirements
– choices in designing programming languages.

7

Q: How many Programming Languages do
you know?

8

How many programming languages are out
there?

700 +
Source: Wikipedia (excluding dialects of BASIC)

https://en.wikipedia.org/wiki/List_of_programming_langua
ges

9

https://en.wikipedia.org/wiki/List_of_programming_languages

New Languages will Keep Coming

10

11

Be prepared to program in new
languages

Languages undergo constant change

– FORTRAN 1953

– ALGOL 60 1960

– C 1973

– C++ 1985

– Java 1995

Evolution steps: 12 years per widely adopted language

– are we overdue for the next big one?

... or is the language already here?

– Hint: are we going through a major shift in what computation

programs need to express?

– your answer here:

11
Python

Language as a thought shaper
We will cover less traditional languages, too.
The reason:

A language that doesn't affect the way you think about
programming, is not worth knowing.

an Alan Perlis epigram <http://www.cs.yale.edu/quotes.html>

One of thought-shaper languages is Prolog.
You will both program in it and implement it.

12

http://www.cs.yale.edu/quotes.html

13

ENIAC (1946, University of
Philadelphia)

ENIAC program for external ballistic equations:

Slide from Ras Bodik
13

14

Programming the ENIAC

Slide from Ras Bodik
14

15

ENIAC (1946, Univ. of Philadelphia)

programming done by
– rewiring the interconnections
– to set up desired formulas, etc

Problem (what’s the tedious part?)
– programming = rewiring
– slow, error-prone

solution:
– store the program in memory!
– birth of von Neuman paradigm

Slide from Ras Bodik

Reasons for Studying Concepts of
Programming Languages

Increased Ability to Express Ideas
• Natural languages:

– The depth at which people think is influenced by the
expressive power of the language.

– The more appropriate constructs you have, the easier it is
to communicate.

– It is difficult for people to conceptualize structures that
they cannot describe verbally.

18

Increased Ability to Express Ideas
• Programming Languages:

– This is similar for PL’s. The language in which you develop
software puts limits on the kinds of data structures,
control structures and abstractions that can be used.

– Awareness of a wider variety of programming language
features can reduce such limitations in software
development.

– Programmers increase the range of software development
by learning new language constructs.

– For example, if you learn associate arrays in Perl, you can
simulate them in C.

19

Improved background for choosing
appropriate languages

• Not every programming language can be suitable for all
the software requirements.

• Many programmers learn one or two languages specific
to the projects.

• Some of those languages may no longer be used.
• When they start a new project they continue to use

those languages which are old and not suited to the
current projects.

20

Improved background for choosing
appropriate languages

• However another language may be more appropriate
to the nature of the project.
– Lots of text processing -> Perl may be a good option.
– Lots of matrix processing -> MATLAB can be used.

• If you are familiar with the other languages, you can
choose better languages.

• Studying the principles of PLs provides a way to judge
languages:
– “The advantages of Perl for this problem are…..”,“The

advantages of Java are….” 21

Increased ability to learn new languages
• Programming languages are still evolving

– Many languages are very new, new languages can be added in
time.

• If you know the programming language concepts
you will learn other languages much easier.
– For example, if you know concept of object oriented

programming, it is easier to learn C++ after learning Java

• Just like natural languages,
– The better you know the grammar of a language, the easier

you find to learn a second language.
– learning new languages actually causes you to learn things

about the languages you already know
22

TIOBE programming community index

Languages in common use (2019)

23

24

Languages in common use (2020)

25

Languages in common use (2022)

TIOBE programming community index

Languages in common use (today)

26

Better understanding of significance of
implementation

• The best programmers are the ones having at least
understanding of how things work under the hood
– Understand the implementation issues

• You can simply write a code and let the compiler do
everything, but knowing implementation details helps
you to use a language more intelligently and write the
code that is more efficient

• Also, it allows you to visualize how a computer
executes language constructs
– Cost optimization; e.g. recursion is slow

27

Better use of languages that are already
known

• Many programming languages are large and complex
– It is uncommon to know all the features

• By studying the concepts of programming languages,
programmers can learn about previously unknown
parts of the languages easily.

28

Overall advancement of computing
• New ways of thinking about computing, new technology,

hence need for new appropriate language concepts
• Not to repeat history

– Although ALGOL 60 was a better language (with better block
structure, recursion, etc) than FORTRAN, it did not become
popular. If those who choose languages are better informed,
better languages would be more popular.

29

Develop your own language
Are you kidding? No. Guess who developed:

– PHP
– Ruby
– JavaScript
– Perl

Done by smart hackers like you
– in a garage
– not in academic ivory tower

Our goal: learn good academic lessons
– so that your future languages avoid known mistakes

Slide from Ras Bodik

30

Ability to Design New Languages

• You may need to design a special purpose language
to enter the commands for a software that you
develop.
– A language for an robotics interface

• Studying PL concepts will give you the ability to
design a new language suitable and efficient for your
software requirements.

31

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost

The main criteria needed to evaluate various
constructs and capabilities of programming
languages

32

33

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost

The main criteria needed to evaluate various
constructs and capabilities of programming
languages

34

Readability
Ease with which programs can be read and understood
• in the early times, efficiency and machine readability was

important
• 1970s-Software life cycle: coding (small) + maintenance

(large)
Readability is important for maintenance
• Characteristics that contribute to readability:

– Overall simplicity
– Orthogonality
– Control statements
– Data types and structures
– Syntax Considerations

35

Overall Simplicity
• A manageable set of features and constructs

– Large number of basic components - difficult to learn
• Minimal feature multiplicity

– Feature multiplicity: having more than one way to
accomplish an operation

• e.g. In Java
count = count + 1
count += 1
count ++
++count

37

Overall Simplicity
• Minimal operator overloading

– Operator overloading: a single operator symbol has more than
one meaning

– This can lead to reduced readability if users are allowed to create
their own and do not do it sensibly
Example:
• using + for integer and floating point addition is
acceptable and contributes to simplicity
• but if a user defines + to mean the sum of all the elements
of two single dimensional arrays is not, different from
vector addition

• Simplest does not mean the best
– Assembly languages: Lack the complex control statements, so

program structure is less obvious

38

Orthogonality
• A relatively small set of primitive constructs can be

combined in a relatively small number of ways to build
the control and data structures of the language

• Every possible combination of primitives is legal and
meaningful.

• Example:
– Four primitive data types : integer, float, double and character
– Two type operators : array and pointer
– If the two type operators can be applied to themselves and the

four primitive data types, a large number of data structures can
be defined

– However, if pointers were not allowed to point to arrays, many
of those useful possibilities would be eliminated

39

Orthogonality
• Example : Adding two 32-bit integers residing in memory or

registers, and replacing one of them with the sum

• IBM (Mainframe) Assembly language has two instructions:
A Register1, MemoryCell1
AR Register1, Register2

meaning
Register1 ← contents(Register1) + contents(MemoryCell1)
Register1 ← contents(Register1) + contents(Register2)

• VAX Assembly language has one instruction:
ADDL operand1, operand2

meaning
operand2 ← contents(operand1) + contents(operand2)

Here, either operand can be a register or a memory cell.

Not orthogonal

orthogonal

40

More restricted
Less writable

Orthogonality
• Orthogonality is closely related to simplicity
• The more orthogonal the design of a language, the fewer

exceptions the language rules require
• Too much orthogonality can cause problems as well:
• ALGOL68 is the most orthogonal language.

– Every construct has a type
– Most constructs produce values
– This may result in extremely complex constructs,

Ex: A conditional can appear as the left side of an assignment statement, as long
as it produces a location:
(if (A<B) then C else D) := 3

• This extreme form of orthogonality leads to unnecessary
complexity

• Functional languages offer a good combination of simplicity and orthogonality.42

Data Types and Structures
• Facilities for defining data types and data structures

are helpful for readability
– If there is no boolean type available then a flag may be

defined as integer:
found = 1 (instead of found = true)

May mean something is found as boolean or what is found is 1
– An array of record type is more readable than a set of

independent arrays

43

Syntax considerations
• Identifier Forms:

– restricting identifier length is bad for readability.
• FORTRAN77 identifiers can have at most 6 characters.
• ANSI BASIC : an identifier is either a single character or a single character

followed by a single digit.

– Availability of word concatenating characters (e.g., _) is good
for readability.

• Special Words: Readability is increased by special words(e.g.,
begin, end, for).
– In PASCAL and C, end or } is used to end a compound statement. It is

difficult tell what an end or } terminates.

– However, ADA uses end if and end loop to terminate a selection and
a loop, respectively.

44

Syntax Considerations
• Forms and Meaning: Forms should relate to their meanings.

Semantics should directly follow from syntax.

For example,
sin(x) => should be the sine of x,

not the sign of x or cosign of x.
•grep is hard to understand for the people who are not

familiar with using regular expressions
grep : g/reg_exp/p

=> /reg_exp/ : search for that reg_exp
g: scope is whole file , make it global

p:print

45

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost

The main criteria needed to evaluate various
constructs and capabilities of programming
languages

46

Writability
• Ease of creating programs
• Most of the characteristics that contribute to readability

also contribute to writability
• Characteristics that contribute to writability

– Simplicity and Orthogonality
– Support for abstraction
– Expressivity

• Writability of a language can also be application
dependent

47

Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set of rules
for combining them

• Support for abstraction
– The ability to define and use complex structures or operations in

ways that allow details to be ignored

• Expressivity
– A set of relatively convenient ways of specifying operations
– Strength and number of operators and predefined functions

48

Simplicity and orthogonality
• Simplicity and orthogonality are also good for writability.
• When there are large number of constructs, programmers

may not be familiar with all of them, and this may lead to
either misuse or disuse of those items.

• A smaller number of primitive constructs (simplicity) and
consistent set of rules for combining them (orthogonality)
is good for writability

• However, too much orthogonality may lead to undetected
errors, since almost all combinations are legal.

49

Support for abstraction
• Abstraction: ability to define and use complicated structures

and operations in ways that allows ignoring the details.
• PLs can support two types of abstraction:

– process
– data

• Abstraction is the key concept in contemporary
programming languages

• The degree of abstraction allowed by a programming
language and the naturalness of its expressions are very
important to its writability.

50

Process abstraction
• The simplest example of abstraction is subprograms

(e.g., methods).
• You define a subprogram, then use it by ignoring

how it actually works.
• Eliminates replication of the code
• Ignores the implementation details

– e.g. sort algorithm

51

Data abstraction
• As an example of data abstraction, a tree can be

represented more naturally using pointers in nodes.
• In FORTRAN77, where pointer types are not available, a

tree can be represented using 3 parallel arrays, two of
which contain the indexes of the offspring, and the last
one containing the data.

52

Expressivity
• Having more convenient and shorter ways of

specifying computations.
• For example, in C,

count++;

is more convenient and expressive than
count = count + 1;

for is more easier to write loops than while

53

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost

The main criteria needed to evaluate various
constructs and capabilities of programming
languages

54

Reliability
Reliable: it performs to its specifications under all
conditions
•Type checking

– Testing for type errors

•Exception handling
– Intercept run-time errors and take corrective measures

•Aliasing
– Presence of two or more distinct referencing methods for the same memory

location

•Readability and writability
– The easier a program to write, the more likely it is correct.
– Programs that are difficult to read are difficult both to write and modify.

55

Type Checking
• Testing for type errors in a given program either by the

compiler or during program execution
• The compatibility between two variables or a variable and a

constant that are somehow related (e.g., assignment,
argument of an operation, formal and actual parameters
of a method).

• Run-time (Execution-time) checking is expensive.
• Compile-time checking is more desirable.
• The earlier errors in programs are detected, the less

expensive it is to make the required repairs

56

Type Checking
• Original C language requires no type checking neither in

compilation nor execution time. That can cause many problems.
– Current version required all parameters to be type-checked

• For example, the following program in original C compiles and
runs!
foo (float a) {

printf (“a: %g and square(a): %g\n”, a,a*a);
}
main () {

char z = ‘b’;
foo(z);

}

• Output is : a: 98 and square(a): 9604
57

Language Evaluation Criteria

• Readability
• Writability
• Reliability
• Cost

The main criteria needed to evaluate various
constructs and capabilities of programming
languages

60

Cost
• Types of costs:

1. Cost of training the programmers: Function
of simplicity and orthogonality, experience of
the programmers.

2. Cost of writing programs: Function of the
writability

Note: These two costs can be reduced in a good
programming environment
3. Cost of compiling programs: cost of compiler,

and time to compile
• First generation Ada compilers were very costly

61

Cost

4. Cost of executing programs: If a language requires
many run-time type checking, the programs written
in that language will execute slowly.

– Trade-off between compilation cost and execution
cost.

– Optimization: decreases the size or increases the
execution speed.
• Without optimization, compilation cost can be reduced.
• Extra compilation effort can result in faster execution.
• More suitable in a production environment, where

compiled programs are executed many times

62

Cost
5. Cost of the implementation system. If expensive or

runs only on expensive hardware it will not be widely
used.

6. Cost of reliability – important for critical systems such
as a power plant or X-ray machine

7. Cost of maintaining programs. For corrections,
modifications and additions.
• Function of readability.
• Usually, and unfortunately, maintenance is done by people

other that the original authors of the program.
• For large programs, the maintenance costs is about 2 to 4

times the development costs.
63

Other Criteria for Evaluation
• Portability: The ease with which programs can be

moved from one implementation to another
• Generality: The applicability to a wide range of

applications
• Well-definedness: The completeness and precision of

the language’s official definition

64

Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements

be checked for proper indexing, which leads to increased
execution costs

• Readability vs. writability
Example: APL provides many powerful operators for

arrays(and a large number of new symbols), allowing
complex computations to be written in a compact program
but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but

are unreliable

65

66

Home Exercise

How does Zen of Python relate to Language Evaluation criteria?

Programming Domains
•Scientific Applications (first digital computers –1940s)

– Large floating-point arithmetic, execution efficiency, arrays and matrices,
counting loops

– Examples: FORTRAN, ALGOL 60, C

•Business Applications (1950s)
– Producing elaborate reports, decimal numbers and character data
– Examples: COBOL(1960s),Spreadsheets,Wordprocessors,Databases(SQL)

•Artificial Intelligence
– Symbolic programming (names rather than numbers, linked lists rather than

arrays)
– Examples: LISP(1959),PROLOG(early1970s)

67

Programming Domains (cont’d.)
•Systems Programming

– System software: Operating system and all of the programming support tools
of a computer system

– Efficient and fast execution, low-level features for peripheral device drivers
– Examples: PLS/2(IBM Mainframe), BLISS (Digital), C (Unix)

•Scripting Languages
– List of commands (Script) to be executed is put in a file.
– Examples:sh, csh, tcsh, awk, gawk, tcl, perl, javascript

•Special-Purpose languages
– Examples: RPG (Business Reports), SPICE (Simulation of Electronic Circuitry),

SPSS (Statistics), Latex (Document preparation). HTML, XML (web prog.)

68

Language Categories
• Imperative

– Central features are variables, assignment statements, and
iteration

– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme, ML, F#

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT

69

“Hello World” in different languages

https://www.geeksforgeeks.org/hello-world-in-30-different-languages/

70

https://www.geeksforgeeks.org/hello-world-in-30-different-languages/

Java
public class Hello {
public static void main(String[] args) {
System.out.println("Hello, world!");
}

}

71

Assembly Language
bdos equ 0005H ; BDOS entry point
start: mvi c,9 ; BDOS function: output string
lxi d,msg$; address of msg
call bdos ret ; return to CCP
msg$: db 'Hello, world!$'
end start

72

FORTRAN
PROGRAM
HELLO
WRITE(*,10)

10 FORMAT('Hello, world!')
STOP
END

73

COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO-WORLD.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.
DISPLAY "Hello, world!".
STOP RUN.

74

Ada

with Ada.Text_Io;
procedure Hello is
begin
Ada.Text_Io.Put_Line ("Hello, world!");

end Hello;

75

C
#include <stdio.h>
int main()
{
printf("Hello, world!\n");
return 0;

}

76

C++
#include <iostream>
int main()
{

std::cout << "Hello, world!\n";
}

77

C#
using System;
class HelloWorldApp
{
public static void Main()
{

Console.WriteLine("Hello, world!");
}

}

78

Scala

object HelloWorld extends App {
println("Hello, World!")
}

79

LISP
(format t "Hello world!~%")

80

PERL
print "Hello, world!\n";

81

Prolog
write('Hello world'),nl.

82

Python
print("Hello World!")

83

Swift

84

import Swift
print(“Hello World!”)

HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Hello, world!</title>
<meta http-equiv="Content-Type“ content="text/html;
charset=UTF-8">
</head>
<body>
<p>Hello, world!</p>
</body>
</html>

85

Summary
• The study of programming languages is valuable for a number

of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming languages
include:
– Readability, writability, reliability, cost

86

An optional exercise
List three new languages, or major features added to established major languages, that have appeared in the last
seven years. For each language, answer with one sentence these questions:

• Why did the languages appear? Or, why have these features been added? Often, a new language is motivated by
technical problems faced by programmers. Sometimes the motivation for a new feature is cultural, related to,
say, the educational background of programmers in a given language.

• Who are the intended users of this language/feature? Are these guru programmers, beginners, end-users (non-
programmers)?

• Show a code fragment that you find particularly cool. The fragment should exploit the new features to produce
highly readable and concise code.

Links that may help you start your exploration of the programming language landscape:

• http://lambda-the-ultimate.org/

• http://bit.ly/ddH47v

• http://www.google.com

http://lambda-the-ultimate.org/
http://bit.ly/ddH47v
http://www.google.com/

