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Today
• Describing Syntax and Semantics (Chapter 3)
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Creating computer programs
• Each programming language provides a set 

of primitive operations 

• Each programming language provides 
mechanisms for combining primitives to 
form more complex, but legal, expressions 

• Each programming language provides 
mechanisms for deducing meanings or 
values associated with computations or 
expressions 
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Aspects of languages 
• Primitive constructs 

– Programming language: numbers, strings, 
simple operators 

– English : words
• Syntax– which strings of characters and 

symbols are well-formed 
– Programming language: 3.2 + 3.2 is a valid C 

expression 
– English: “cat dog boy” is not syntactically valid, 

as not in form of acceptable sentence 
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Aspects of languages 
• Static semantics – which syntactically valid 

strings have a meaning 
– English – “I are big” has form <noun> 

<intransitive verb> <noun>, so syntactically valid, 
but is not valid English because “I” is singular, 
“are” is plural 

– Programming language – for example, <literal> 
<operator> <literal> is a valid syntactic form, but 
2.3/”abc” is a static semantic error! 
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Aspects of languages
• Semantics – what is the meaning associated 

with a syntactically correct string of symbols 
with no static semantic errors 
– English – can be ambiguous

• “I cannot recommend this student too highly”
– "He does not deserve high praise" or 
– "Even the highest praise would be inadequate for him”

• “Yaşlı adamın yüzüne dalgın dalgın baktı.”
– Programming languages – always has exactly one 

meaning 
• But meaning (or value) may not be what programmer 

intended 
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Today
• Syntax: the form or structure of the expressions, 

statements, and program units
• Semantics: the meaning of the expressions,  

statements, and program units
• Syntax and semantics provide a language’s 

definition
– Users of a language definition

• Other language designers
• Implementers
• Programmers (the users of the language)
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Example: Syntax and Semantics

• while statement in Java
• syntax: while (<boolean_expr>)

<statement>
• semantics: when boolean_expr is true, 

statement will be executed

• The meaning of a statement should be clear 
from its syntax (Why?)
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Describing Syntax: Terminology

• Alphabet: Σ, All strings: Σ* 

• A sentence is a string of characters over 
some alphabet

• A language is a set of sentences, L ⊆ Σ*
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Describing Syntax: Terminology
• A language is a set of sentences

– Natural languages: English, Turkish, …
– Programming languages: C, Fortran, Java,…
– Formal languages: a*b*, 0n1n

• String of the language:
– Sentences
– Program statements
– Words (aaaaabb, 000111) 
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Lexemes
• A lexeme is the lowest level syntactic unit of a 

language (e.g., *, sum, begin)
• Lower level constructs are given not by the syntax 

but  by  lexical  specifications.
• Examples: identifiers, constants, operators, 

special words.
total, sum_of_products, 1254, ++, ( :

• So, a language is considered as a set of strings 
of lexemes rather than strings of chars.
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Token 
• A token of  a  language is a category of 

lexemes
• For example, identifier is a token which may 

have lexemes, or instances, sum and total
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Example in Java Language
x = (y+3.1) * z_5 ;
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Describing Syntax
• Higher level constructs are given by syntax 

rules.
• Syntax rules specify which strings from Σ* 

are in the language
• Examples: organization of the program, loop 

structures, assignment, expressions, 
subprogram definitions, and calls.
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Elements of Syntax
• An alphabet of symbols
• Symbols are terminal and non-terminal

– Terminals cannot be broken down
– Non-terminals can be broken down further

• Grammar rules that express how symbols are 
combined to make legal sentences

• Rules are of the general form
non-terminal symbol ::= list of zero or more 
terminals or non-terminals

• One uses rules to recognize (parse) or generate 
legal sentences
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Formal Definition of Languages
• Recognizers

– A recognition device reads input strings over the 
alphabet of the language and decides whether the input 
strings belong to the language 

– Example: syntax analysis part of a compiler

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence 

is syntactically correct by comparing it to the structure of 
the generator
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Formal Methods of Describing Syntax
• Grammars: formal language-generation 

mechanisms.
• In the mid-1950s, Chomsky, described four classes 

of generative devices (or grammars) that define four 
classes of languages. 
– Two of these grammar classes, named context-free  and 

regular,  turned out to be useful for describing the syntax 
of programming languages. 

– Regular grammars: The forms of the tokens of 
programming languages 

– Context-free grammars: The syntax of whole programming
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Deterministic Finite Automata ∑ = {0,1}

1110000100000
00000000000001
01
0000
111111
There should be 
at least one “01” in 
anywhere of the input.

the input contains an even number of 0

?
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a DFA can only have one transition for each 
symbol going outwards from the state. But, an 
NFA can have multiple transitions for a symbol 
from the same state

an NFA is not required to have a transition 
for each symbol. 

NFA can have a transition for an empty 
string.

Non deterministic Finite Automata



Regular Languages

• Tokens can be generated using three formal rules
– Concatenation
– Alternation (|)
– Kleene closure (repetition an arbitrary number of times)(*)

• Any sets of strings that can be defined by these 
three rules is called a regular set or a regular 
language
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Regular expressions
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| means OR
• Means 0 OR more

0 | 1 L = {0,1}
(0 | 1) (0 | 1) L = {00, 01, 10, 11}
0 (1 | 0) L = {01, 00}
0* L = {empty, 0, 00, 000, 0000….}
(0 | 10) * L = {0, 010, 00000, 1010, 1000, 0010…}
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0*1*

0*01*1
0+1+
+ means 1 OR more
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Is the following language regular?

L = {number of 0s followed by equal number of 1s}

L = {0n1n, n>=0}
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Context Free Grammars

L = {anbn, n>=0 }

S ->  aSb | empty

L = {anbn, n>=1 }

S ->  aSb | ab
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Regular Language vs CFL
• Tokens can be generated using three formal rules

– Concatenation
– Alternation (|)
– Kleene closure (repetition an arbitrary number of times)(*)

• Any sets of strings that can be defined by these 
three rules is called a regular set or a regular 
language

• Any set of strings that can be defined if we add 
recursion is called context-free language (CFL).
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Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the 

syntax of natural languages
– Define the class of context-free languages
– Programming languages are contained in the 

class of CFL’s.
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Backus-Naur Form (BNF)
• A notation to describe the syntax of programming 

languages.
• Named after 

– John Backus – Algol 58
– Peter Naur  – Algol 60

• A metalanguage is a language used to  describe  
another language.

• BNF is a metalanguage used to describe PLs.
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BNF Fundamentals 
• BNF uses abstractions for syntactic 

structures. 
<LHS> → <RHS>

• LHS: abstraction being defined
• RHS: definition
• “→” means “can have the form”
• Sometimes ::= is used for →
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BNF Fundamentals 
• Example, Java assignment statement can   be 

represented by the abstraction <assign>
• <assign> → <var> = <expression>
• This is a rule or production
• Here, <var> and <expression> must also be 

defined.
• example instances of this abstraction can be
total = sub1 + sub2
myVar = 4
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BNF Fundamentals
• These   abstractions are called Variables or 

Nonterminals of a Grammar.
• Lexemes  and  tokens  are  the  Terminals

of  a grammar.
• Nonterminals are often enclosed in angle 

brackets

• Examples of BNF rules:
<ident_list> → identifier | identifier, <ident_list>
<if_stmt> → if <logic_expr> then <stmt>
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BNF Fundamentals
• A formal definition of rule:

A rule has a left-hand side (LHS), which is a 
nonterminal, and a right-hand side (RHS), 
which is a string of terminals and/or 
nonterminals

<LHS> → <RHS>
• Grammar: a finite non-empty set of rules
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Additional Notes on Terminals and 
NonTerminals

37
Source: https://tomassetti.me/ebnf/



Additional Notes on Terminals and 
NonTerminals

• Terminals are the smallest block we consider 
in our grammars.

• A terminal could be either:
– a quoted literal
– a regular expression
– a name referring to a terminal definition. 
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Terminals
• Let’s see some typical terminals:

– identifiers: these are the names used for 
variables, classes, functions, methods and so on. 

– keywords: almost every language uses 
keywords. They are exact strings that are used to 
indicate the start of a definition (think about class 
in Java or def in Python), a modifier (public, 
private, static, final, etc.) or control flow structures 
(while, for, until, etc.)
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Terminals
– literals: these permit to define values in our 

languages. We can have string literals, numeric 
literal, char literals, boolean literals (but we could 
consider them keywords as well), array literals, 
map literals, and more, depending on the 
language

– separators and delimiters: like colons, 
semicolons, commas, parenthesis, brackets, 
braces

– whitespaces: spaces, tabs, newlines.
– comments
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Terminals and Non-terminals
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Non-terminals
• Examples of non-terminals are:

– program/document: represent the entire file
– module/classes: group several declarations 

togethers
– functions/methods: group statements together
– statements: these are the single instructions. 

Some of them can contain other statements. 
Example : loops 

– expressions: are typically used within statements 
and can be composed in various ways
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Examples
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An initial example
• Consider the sentence “Mary greets John”

• A simple grammar
<sentence> ::= <subject><predicate>
<subject> ::= Mary
<predicate> ::= <verb><object>
<verb> ::= greets
<object> ::= John
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Alternations
• Multiple definitions can be separated by | (OR).

<object> ::= John | Alfred

• This adds “Mary greets Alfred” to legal sentences
<subject> ::= Mary | John | Alfred
<object> ::= Mary | John | Alfred

• Alternation to the previous grammar
<sentence> ::= <subject><predicate>
<subject> ::= <noun>
<predicate> ::= <verb><object>
<verb> ::= greets
<object> ::= <noun>
<noun> ::= Mary | John | Alfred
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Infinite Number of Sentences
<object> ::= John |

John again | 
John again and again |
….

Instead use recursive definition
<object> ::= John |

John <repeat factor>
<repeat factor> ::= again |

again and <repeat factor>
A rule is recursive if its LHS appears in its RHS
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Simple example for PLs
• How you can describe simple arithmetic?

<expr> ::= <expr> <operator> <expr> |<var>
< operator > ::= + | - | * | /
<var> ::= a | b | c | …
<var> ::= <signed number>
<signed number> ::=  + <number> | - <number>
<number> ::=  <number> <digit> | <digit>
….
….
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Identifiers
<identifier> → <letter> | 

<identifier><letter> |
<identifier><digit>
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PASCAL/Ada If Statement
<if_stmt> → if <logic_expr> then <stmt>
<if_stmt> → if  <logic_expr>  then  <stmt> else <stmt>

Or 

<if_stmt> → if <logic_expr> then <stmt>
|  if  <logic_expr>  then  <stmt>  else <stmt>
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Grammars and Derivations

• A grammar is a generative device for defining 
languages

• The sentences of the language are generated
through a sequence of applications of the  rules, 
starting  from  the special nonterminal called start 
symbol.

• Such a generation is called a derivation.
• Start symbol represents a complete program. So it 

is usually named as <program>.
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An Example Grammar
<program>   → begin <stmt_list> end
<stmt_list> → <stmt> |    

<stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C
<expression>→ <var> |    

<var> <arith_op> <var>
<arith_op> →        + | - | * | /
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Derivation
• In order to check if a given string represents 

a valid program  in  the  language,  we  try  to  
derive  it  in  the grammar.

• Derivation starts from the start symbol 
<program>.

• At  each  step  we  replace  a  nonterminal  
with  its definition (RHS of the rule).
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Derivations
• Every string of symbols in a derivation is a 

sentential form
• A sentence is a sentential form that has only 

terminal symbols
• A leftmost derivation is one in which the 

leftmost nonterminal in each sentential form 
is the one that is expanded

• A derivation may be neither leftmost nor 
rightmost
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<program>   → begin <stmt_list> end

<stmt_list> → <stmt> | <stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C
<expression>→ <var> | <var> <arith_op> <var>
<arith_op> →        + | - | * | /

Derive string:
begin A := B; C := A * B end

<program> ⇒ begin <stmt_list> end

Leftmost derivation
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <var> := <expression>; <stmt_list> end

Rightmost derivation
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <stmt>; <stmt> end
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<program>   → begin <stmt_list> end

<stmt_list> → <stmt> | <stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C
<expression>→ <var> | <var> <arith_op> <var>
<arith_op> →        + | - | * | /

Derive string:
begin A := B; C := A * B end

<program> ⇒ begin <stmt_list> end
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <var> := <expression>; <stmt_list> end
⇒ begin A := <expression>; <stmt_list> end
⇒ begin A := B; <stmt_list> end
⇒ begin A := B; <stmt> end
⇒ begin A := B; <var> := <expression> end
⇒ begin A := B; C := <expression> end
⇒ begin A := B; C := <var><arith_op><var> end
⇒ begin A := B; C := A <arith_op> <var> end
⇒ begin A := B; C := A * <var> end
⇒ begin A := B; C := A * B end

If always the leftmost nonterminal is replaced, then it is called leftmost derivation.
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<program>   → begin <stmt_list> end

<stmt_list> → <stmt> | <stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C
<expression>→ <var> | <var> <arith_op> <var>
<arith_op> →        + | - | * | /

Derive string:
begin A := B; C := A * B end

<program> ⇒ begin <stmt_list> end
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <stmt> ; <stmt> end
⇒ begin <stmt> ; <var> := <expression> end
⇒ begin <stmt> ; <var> := <var><arith_op><var> end
⇒ begin <stmt> ; <var> := <var><arith_op> B end
⇒ begin <stmt> ; <var> := <var> * B end
⇒ begin <stmt> ; <var> := A * B end
⇒ begin <stmt> ; C := A * B end
⇒ begin <var> := <expression>; C := A * B end
⇒ begin <var> := <var>; C := A * B end
⇒ begin <var> := B ; C := A * B end
⇒ begin A := B; C := A * B end

If always the rightmost nonterminal is replaced, then it is called rightmost derivation.
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<program> ⇒ begin <stmt_list> end
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <var> := <expression>; <stmt_list> end
⇒ begin A := <expression>; <stmt_list> end
⇒ begin A := B; <stmt_list> end
⇒ begin A := B; <stmt> end
⇒ begin A := B; <var> := <expression> end
⇒ begin A := B; C := <expression> end
⇒ begin A := B; C := <var><arith_op><var> end
⇒ begin A := B; C := A <arith_op> <var> end
⇒ begin A := B; C := A * <var> end
⇒ begin A := B; C := A * B end

<program> ⇒ begin <stmt_list> end
⇒ begin <stmt> ; <stmt_list> end
⇒ begin <stmt> ; <stmt> end
⇒ begin <stmt> ; <var> := <expression> end
⇒ begin <stmt> ; <var> := <var><arith_op><var> end
⇒ begin <stmt> ; <var> := <var><arith_op> B end
⇒ begin <stmt> ; <var> := <var> * B end
⇒ begin <stmt> ; <var> := A * B end
⇒ begin <stmt> ; C := A * B end
⇒ begin <var> := <expression>; C := A * B end
⇒ begin <var> := <var>; C := A * B end
⇒ begin <var> := B ; C := A * B end
⇒ begin A := B; C := A * B end

<program>   → begin <stmt_list> end

<stmt_list> → <stmt> | <stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C
<expression>→ <var> | <var> <arith_op> <var>

<arith_op> →        + | - | * | /

Derive string:
begin A := B; C := A * B end

Leftmost derivation

Rightmost derivation



Parse Tree
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A hierarchical 
representation of a 
derivation

<program>   → begin <stmt_list> end
<stmt_list> → <stmt> | <stmt> ; <stmt_list>
<stmt>      → <var> := <expression>
<var>       → A | B | C

<expression>→ <var> | <var> <arith_op> <var>
<arith_op> →        + | - | * | /

begin A := B; C := A * B end
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Another Example

<program>

<stmt_list>

<stmt>

const

a<var>

= <expr>

<var>

b

<term> + <term>

<program> ® <stmt_list>
<stmt_list> ® <stmt> 

| <stmt> ; <stmt_list>
<stmt> ® <var> = <expr>
<var> ® a | b | c | d
<expr> ® <term> + <term> 

| <term> - <term>
<term> ® <var> | const

a
62

a = b + const

Þ <stmt_list>
Þ <stmt>
Þ <var> = <expr>
Þ a = <expr>
Þ a = <term> + <term>
Þ a = <var> + <term>
Þ a = b + <term>
Þ a = b + const

Þ <stmt_list>
Þ <stmt>
Þ <var> = <expr>
Þ <var> = <term> + <term>
Þ <var> = <term> + const
Þ <var> = <var> + const
Þ <var> = b + const
Þ a = b + const
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Ambiguity (Belirsizlik) in Grammars

• A grammar is ambiguous if and only if 
it generates a sentential form that has 
two or more distinct parse trees
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Example
• Given the following grammar
<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

Parse Tree(s) for A = B + C * A
64



Two Parse Trees 
for A = B + C * A
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<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>
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Two Leftmost derivations
for A = B + C * A

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

<assign> => <id> = <expr>
=> A = <expr>
=> A = <expr> + <expr>
=> A = <id> + <expr>
=> A = B + <expr>
=> A = B + <expr> * <expr>
=> A = B + <id> * <expr>
=> A = B + C * <expr>
=> A = B + C * <id>
=> A = B + C * A

<assign> => <id> = <expr>
=> A = <expr>
=> A = <expr> * <expr>
=> A = <expr> + <expr> * <expr>
=> A = <id> + <expr> * <expr>
=> A = B + <expr> * <expr>
=> A = B + <id> * <expr>
=> A = B + C * <expr>
=> A = B + C * <id>
=> A = B + C * A



67

Two Rightmost derivations
for A = B + C * A
<assign> => <id> = <expr>

=> <id> = <expr> + <expr>
=> <id> = <expr> + <expr> * <expr>
=> <id> = <expr> + <expr> * <id>
=> <id> = <expr> + <expr> * A
=> <id> = <expr> +  <id> * A
=> <id> = <expr> + C * A
=> <id> = <id> + C * A
=> <id> = B + C * A
=> A = B + C * A

<assign> => <id> = <expr>
=> <id> = <expr> * <expr>
=> <id> = <expr> * <id>
=> <id> = <expr> * A
=> <id> = <expr> + <expr> * A
=> <id> = <expr> + <id> * A
=> <id> = <expr> + C * A
=> <id> = <id> + C * A
=> <id> = B + C * A
=> A = B + C * A

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>



A = B + C * A
A = 3 , B = 4, C = 5
3 + 4 * 5
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3 + [ 4 * 5 ] [ 3 + 4 ] * 5

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>



A = B + C + A
A = 3 , B = 4, C = 5
3 + 4 + 5
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3 + [ 4 + 5 ] [ 3 + 4 ] + 5

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>



Single leftmost  derivation 
for A = B + C

<assign> => <id> = <expr>
=> A  = <expr>
=> A = <expr> + <expr>
=> A = <id> + <expr>
=> A = B + <expr>
=> A = B + <id>
=> A = B + C

There is also a single rightmost derivation 
And a single parse tree for A = B + C
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Finding at least one string with more than a single parse tree
(or more than a single leftmost derivation
Or more than a single rightmost derivation)
is sufficient to prove ambiguity of a grammar

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>



Handling Ambiguity

• The grammar of a PL must not be 
ambiguous

• There are solutions for correcting the
ambiguity
– Operator precedence
– Associativity rules
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Operator Precedence
• In mathematics * operation has a higher 

precedence than +
• This can be implemented with extra 

nonterminals
<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <term>

| <term>
<term> ::= <term> * <factor>

| <factor>
<factor> ::= (<expr>)

| <id>

<assign> ::= <id> = <expr>
<id> ::= A | B | C
<expr> ::= <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>
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Unique Parse Tree for A = B + C * A
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Associativity of Operators 

• What about equal precedence operators?

• In math addition and multiplication are associative
A+B+C = (A+B)+C = A+(B+C)

• However computer arithmetic may not be associative
• Ex: for floating point addition where floating points values store 7 

digits of accuracy, adding eleven numbers together where one of 
the numbers is 107 and the others are 1 result would be 1.000001 
* 107 only if the ten 1s are added first

• Subtraction and division are not associative
A/B/C/D = ?    ((A/B)/C)/D ≠A/(B/(C/D))
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Associativity of Operators
• Operator associativity can also be indicated by 

a grammar

<expr> -> <expr> + <expr> |  const (ambiguous)
<expr> -> <expr> + const |  const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+
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Associativity (birleşirlik)
• In a BNF rule, if the LHS appears at the beginning of the 

RHS, the rule is said to be left recursive
• Left recursion specifies left associativity

<expr> ::= <expr> + <term>
| <term>

• Similar for the right recursion
• In most of the languages exponential is defined as a right 

associative operation
<factor> ::= <expr> ** <factor>

| <expr>
<expr> ::= (<expr>)

| <id>
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A parse tree for A = B + C + A illustrating the 
associativity of addition

Left associativity
Left addition is lower than the right addition
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Is this ambiguous?
<stmt> ::= <if_stmt> | <other_stmt>
<if_stmt> ::= if <logic_expr> then <stmt>

| if <logic_expr> then <stmt> else <stmt>
<other_stmt> ::= S1 | S2
<logic_expr> ::= L1 | L2
Derive for : If L1 then if L2 then S1 else S2
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L1

L2 S1

S2
L1

L2 S1 S2



An Unambiguous grammar for “if then 
else”

• Dangling else problem: there are more if then else
• To design an unambiguous if-then-else statement we 

have to decide which if a dangling else belongs to
• Most PL adopt the following rule:

– “an else is matched with the closest previous 
unmatched if statement”

– (unmatched if = else-less if)

<stmt> ::= <matched> | <unmatched>
<matched> ::= if <logic_expr> then <matched> else <matched>

| any non-if-statement
<unmatched> ::= if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

Has a unique parse tree
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Draw the parse tree

If L1 then if L2 then S1 else S2

<stmt> ::= <matched> | <unmatched>
<matched> ::= if <logic_expr> then <matched> else <matched>

| <other_stmt>
<unmatched> ::= if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>
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Extended BNF
• EBNF: Same power but more convenient
• Optional parts are placed in brackets [ ]

[X] : X is optional (0 or 1 occurrence) 
<writeln> ::= WRITELN [(<item_list>)]
<selection>::= if (<expr>) <stmt> [else<stmt>]

• Repetitions (0 or more) are placed inside braces { }
{X}: 0 or more occurrences 
<identlist> = <identifier> {,<identifier>}

• Alternative parts of RHSs are placed inside parentheses 
and separated via vertical bars 
(X1|X2|X3) : choose X1 or X2 or X3
<term> → <term> (+|-) const
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BNF vs Extended BNF
< expr> ::= <expr> + <term>

| <expr>  - <term>
| <term>

<term> ::= <term> * <factor>
| <term> / <factor>
| <factor>

<factor> ::= <expr> ** 
<factor>

| <expr>
<expr> ::= (<expr>)

| <id>

• BNF
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BNF vs Extended BNF

<expr> ::= <term> {(+ | -) <term>}
<term> ::= <factor> {(*|/) <factor>}
<factor> ::= <expr> {**<expr>}
<expr> ::=  (<expr>)

| id

• EBNF
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Recent Variations in EBNF
• Alternative RHSs are put on separate lines
• Use of a colon instead of =>
• Use of opt for optional parts
• Use of oneof for choices
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