
1

Lex – A tool for lexical
analysis

2

Lexical and syntactic analysis

• Lexical analyzer: scans the input stream and
converts sequences of characters into tokens.
(char list) → (token list)

• Lex is a tool for writing lexical analyzers.

• Syntactic Analysis: reads tokens and assembles
them into language constructs using the grammar
rules of the language.

• Yacc is a tool for constructing parsers.

Input
Stream

Lexical
Analyzer

Syntactic analyzer
(parser)

Parse
tree

Stream of
Tokens

Lexical Analysis
• What do we want to do? Example:

if (i == j)
z = 0;

else
z = 1;

• The input is just a sequence of characters:
if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Goal: Partition input strings into substrings
– And classify them according to their role

3Slide credit: Wes Weimer

Tokens
• Output of lexical analysis is a list of tokens
• A token is a syntactic category

– In English:
• noun, verb, adjective, ...

– In a programming language:
• Identifier, Integer, Keyword, Whitespace, ...

• Parser relies on token distinctions:
– e.g., identifiers are treated differently than

keywords

4Slide credit: Wes Weimer

Example
• Recall:

if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Token-lexeme pairs returned by the lexer:
– <Keyword, “if”>
– <Whitespace, “ ”>
– <OpenPar, “(”>
– <Identifier, “i”>
– <Whitespace, “ ”>
– <Relation, “==”>
– <Whitespace, “ ”>
– ...

5Slide credit: Wes Weimer

Implementation of A Lexical
Analyzer

• The lexer usually discards uninteresting tokens
that don't contribute to parsing.

• Examples: Whitespaces, Comments
– Exception: which language cares about whitespaces?

• The goal is to partition the string. That is
implemented by reading left-to-right, recognizing
one token at a time.

• Lexical structure described can be specified using
regular expressions.

6Slide credit: Wes Weimer

Regular Expressions

http://en.wikipedia.org/wiki/Regular_expression

In computing, a regular expression, also referred to as
"regex" or "regexp", provides a concise and flexible means

for matching strings of text, such as particular
characters, words, or patterns of characters. A regular
expression is written in a formal language that can be

interpreted by a regular expression processor.

Regular Expressions
• Regular expressions are used in many

programming languages and software tools to
specify patterns and match strings.

• Regular expressions are well suited for matching
lexemes in programming languages.

• Regular expressions use a finite alphabet of
symbols and defined by the operators
– (i) union
– (ii) concatenation
– (iii) Kleene closure.

8Slide credit: Wes Weimer

9

Lex − A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

Bell Laboratories
Murray Hill, New Jersey 07974

AABBSSTTRRAA CCTT

Lex helps write programs whose control flow is directed by instances of regular expressions in the input
stream. It is well suited for editor-script type transformations and for segmenting input in preparation for a
parsing routine.
Lex source is a table of regular expressions and corresponding program fragments. The table is translated to a

program which reads an input stream, copying it to an output stream and partitioning the input into strings
which match the given expressions. As each such string is recognized the corresponding program fragment is
executed. The recognition of the expressions is performed by a deterministic finite automaton generated by
Lex. The program fragments written by the user are executed in the order in which the corresponding regular
expressions occur in the input stream.
The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest match

possible at each input point. If necessary, substantial lookahead is performed on the input, but the input stream
will be backed up to the end of the current partition, so that the user has general freedom to manipulate it.
Lex can generate analyzers in either C or Ratfor, a language which can be translated automatically to portable

Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS systems. This manual, however,
will only discuss generating analyzers in C on the UNIX system, which is the only supported form of Lex under
UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-com-
piler system.

July 21, 1975

10

Introduction
• Lex:

– reads in a collection of regular expressions, and uses
it to write a C or C++ program that will perform lexical
analysis. This program is almost always faster than
one you can write by hand.

• Yacc:
– reads in the output from lex and parses it using its

own set of regular expression rules. This is almost
always slower than a handwritten parser, but much
faster to implement.
Yacc stands for “Yet Another Compiler Compiler”.

11

Using lex
• Contents of a lex program:

Declarations
%%
Translation rules
%%
Auxiliary functions

• The declarations section can contain
declarations of variables, manifest
constants, and regular definitions. The
declarations section can be empty.

• The translation rules are each of the form
pattern {action}

• Each pattern is a regular expression which
may use regular definitions defined in the
declarations section.

• Each action is a fragment of C-code.

• The auxiliary functions section starting with
the second %% is optional. Everything in
this section is copied directly to the file
lex.yy.c and can be used in the actions
of the translation rules.

12

Using lex and yacc tools

13

Running lex
On Unix system
$ lex mylex.l

it will create lex.yy.c
then type
$ gcc -o mylex lex.yy.c -lfl

The open-source version of lex is called
“flex”

Lex for pattern matching

14

%%
pattern {action}

• Each pattern is a regular
expression.

• Each action is a fragment of C-
code.

Simple lex program (ex0.l)
ex0.l : (edit with emacs, vi, etc.)
%%
.|\n ECHO;

($ is the unix prompt)
$lex ex0.l
$gcc -o ex0 lex.yy.c –lfl
$ls
ex0 ex0.l lex.yy.c

15

16

Simple lex program (ex0.l)
$vi test0
$cat test0
ali
Veli

$ cat test0 | ex0 (or $ex0 < test0)
ali
Veli

Simply echos the input file contents

17

Example lex program (ex1.l)
Ex1.l :
%%
zippy printf(“I RECOGNIZED ZIPPY”);

Input:
zippy
ali zip
veli and zippy here
zipzippy
ZIP

Output:
I RECOGNIZED ZIPPY
ali zip
veli and I RECOGNIZED ZIPPY here
zipI RECOGNIZED ZIPPY
ZIP

18

Example lex program (ex2.l)
%%
zip printf(“ZIP”);
zippy printf(“ZIPPY”);

Output:
ZIPPY
ali ZIP
veli and ZIPPY here
ZIPZIPPY

lex matches the input string the longest regular
expression possible!

19

Designing patterns
Designing the proper patterns in lex can be very
tricky, but you are provided with a broad range of
options for your regular expressions.

• . A dot will match any single character except a
newline.

• *,+ Star and plus used to match zero/one or more
of the preceding expressions.

• ? Matches zero or one copy of the preceding
expression.

20

Designing patterns
• | A logical ‘or’ statement - matches either the

pattern before it, or the pattern after.
• ^ Matches the very beginning of a line.
• $ Matches the end of a line.
• / Matches the preceding regular expression, but

only if followed by the subsequent expression.

21

Designing patterns
• [] Brackets are used to denote a character class, which

matches any single character within the brackets. If the first
character is a ‘^’, this negates the brackets causing them
to match any character except those listed. The ‘-’ can be
used in a set of brackets to denote a range.

• “ ” Match everything within the quotes literally - don’t use
any special meanings for characters.

• () Group everything in the parentheses as a single unit
for the rest of the expression.

22

Regular expressions in lex
• a matches a
• abc matches abc
• [abc] matches a, b or c
• [a-f] matches a, b, c, d, e, or f
• [0-9] matches any digit
• X+ matches one or more of X
• X* matches zero or more of X
• [0-9]+ matches any integer
• (…) grouping an expression into a single unit
• | alternation (or)
• (a|b|c)* is equivalent to [a-c]*

23

Regular expressions in lex
• X? X is optional (0 or 1 occurrence)
• if(def)? matches if or ifdef (equivalent to if|ifdef)
• [A-Za-z] matches any alphabetical character
• . matches any character except newline character
• \. matches the . character
• \n matches the newline character
• \t matches the tab character
• \\ matches the \ character
• [\t] matches either a space or tab character
• [^a-d] matches any character other than a,b,c and d

Regular Expressions in lex

[^ab] anything except: a b
[a^b] one of: a ^ b
[a|b] one of: a | b

24

[a-z] any letter a through z
[a\-z] one of: a - z
[-az] one of: - a z

25

Example lex program (ex3.l)
%%
monday|tuesday|wednesday|thursday|friday|
saturday|sunday printf("<%s is a day.>",
yytext);

Input:
today is friday october 15

Output:
today is <friday is a day> October 15

• Lex declares an external variable called yytext
which contains the matched string

26

A slightly more complex program
(ex4.l)

%%
[\t]+ ;
monday|tuesday|wednesday|thursday|friday|
saturday|sunday printf("%s is a day.",yytext);
[a-zA-Z]+ printf("<%s is not a day.>",yytext);

27

Rule order
• If more than one regular expression match the

same string the one that is defined earlier is used.
/* rule-order.l */
%%
for printf("FOR");
[a-z]+ printf("IDENTIFIER");

input
for count := 1 to 10

output
FOR IDENTIFIER := 1 IDENTIFIER 10

28

Rule order
• However, if we swap the two lines in the specification

file:
%%
[a-z]+ printf("IDENTIFIER");
for printf("FOR");

input
for count := 1 to 10

output
IDENTIFIER IDENTIFIER := 1 IDENTIFIER 10

29

ex5.l
%%
[\t]+ ;
monday|tuesday|wednesday|thursday|friday
printf(”<%s is a week day>",yytext);

Saturday|Sunday
printf(”<%s is a weekend>”,yytext);

[a-zA-Z]+

printf(”<%s is not day>”,yytext);

30

Examples
Real numbers, e.g., 0, 27, 2.10, .17

[0-9]*(\.)?[0-9]+

To include an optional preceding sign:
[+-]?[0-9]*(\.)?[0-9]+

Integer or floating point number
[0-9]+(\.[0-9]+)?

Integer, floating point, or scientific notation.
[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?

31

Example
/* echo-uppercase-words.l */
%%
[A-Z]+[\t\n\.\,] printf("%s",yytext);
. ; /* no action specified */

The scanner for the specification above echo all strings of capital
letters, followed by a space tab (\t) or newline (\n) dot (\.) or
comma (\,) to stdout, and all other characters will be ignored.

Input Output
Ali VELI A7, X. 12 VELI X.
HAMI BEY a HAMI BEY

32

Structure of a lex program

32

Declarations
%%
Translation rules
%%
Auxiliary functions

• The declarations section can contain
declarations of variables, manifest
constants, and regular definitions. The
declarations section can be empty.

• The translation rules are each of the form
pattern {action}

• Each pattern is a regular expression which
may use regular definitions defined in the
declarations section.

• Each action is a fragment of C-code.

• The auxiliary functions section starting with
the second %% is optional. Everything in
this section is copied directly to the file
lex.yy.c and can be used in the actions
of the translation rules.

33

Declarations
%%
[+-]?[0-9]*(\.)?[0-9]+ printf("FLOAT");

The same lex specification can be written as:

digit [0-9]
%%
[+-]?{digit}*(\.)?{digit}+ printf("FLOAT");

input: ab7.3c--5.4.3+d++5
output: abFLOATc-FLOATFLOAT+d+FLOAT

34

Declarations (ex7.l)
%{
float val;
%}
digit [0-9]
sign [+-]
%%
{sign}?{digit}*(\.)?{digit}+ {sscanf(yytext, "%f", &val);

printf(">%f<", val);
}

Input Output
ali-7.8veli ali>-7.800000<veli
ali--07.8veli ali->-7.800000<veli
+3.7.5 >3.700000<>0.500000<

35

Declarations
Declarations can be used in Declarations

/* def-in-def.l */
alphabetic [A-Za-z]
digit [0-9]
alphanumeric ({alphabetic}|{digit})
%%
{alphabetic}{alphanumeric}*
printf("Variable");

\, printf("Comma");
\{ printf("Left brace");
\:\= printf("Assignment");

36

Lex file structure
Definitions
%%
Regular expressions and associated actions
(rules)
%%
User routines

Important Note: Do not leave extra spaces and/or
empty lines at the end of the lex specification file.

37

Auxiliary functions
• The user sub-routines section is for any additional

C or C++ code that you want to include. The only
required line is:

main() { yylex(); }

• This is the main function for the resulting program.
• Lex builds the yylex() function that is called, and

will do all of the work for you.
• Other functions here can be called from the rules

section

38

Example Number Identifications
(ex8.l)

%%
[\t]+ /* Ignore Whitespace */;

[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?
printf(" %s:number", yytext);

[a-zA-Z]+
printf(" %s:NOT number", yytext);
%%
main() { yylex(); }

39

Counting Words (ex9.l)
%{
int char_count = 0;
int word_count = 0;
int line_count = 0;
%}
word [^ \t\n]+
eol \n
%%
{word} {word_count++; char_count+=yyleng;}
{eol} {char_count++; line_count++;}
. char_count++;
%%
main() {
yylex();
printf("line_count = %d , word_count = %d,
char_count = %d\n", line_count, word_
count, char_count);
}

lex also
provides a
count yyleng
of the number
of characters
matched

40

Counting words (cont’d.)
Input:
how many words
and how many lines
are there
in this file

Output:
line_count = 5, word_count =
12,char_count = 58

41

ex10.l
%{
int k;
%}
%%
-?[0-9]+ {

k = atoi(yytext);
printf(”<%d>", k%7 == 0 ? k+3 :k+1);

}
-?[0-9\.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ printf(“<%s>",yytext);
%%

42

ex11.l
%{
int lengs[100];
%}
%%
[a-z]+ {lengs[yyleng]++ ;

if(yyleng==1) printf(“<%s> ", yytext); }
. | \n ;
%%
yywrap()
{
int i;

printf("Lenght No. words\n");
for(i=0; i<100; i++) if(lengs[i] >0)
printf("%5d%10d\n", i, lengs[i]);
return(1) ;
}

yywrap is called whenever lex reaches an end-of-file

43

ex12.l
%{ int total=0 %}
WS [\t]+
%%
I total += 1;
IV total += 4;
V total += 5;
IX total += 9;
X total += 10;
XL total += 40;
L total += 50;
XC total += 90;
C total += 100;
CD total += 400;
D total += 500;
CM total += 900;
M total += 1000;

{WS} |
\n return total;
%%
Int main (void) {

int first, second;

first = yylex ();
second = yylex ();

printf (“%d + %d = %d\n”, first, second,
first+second);
return 0;
}

44

Home Exercise
• Write the lex file to recognize strings in

Python.

• How about comments? How can we write the
lex file to recognize (and ignore) the
comments of Python?

