
Names, Bindings, Type
Checking and Scopes

BBM 301 – Programming
Languages

Today
• Introduction
• Names
• Variables
• The Concept of Binding
• Type Inference
• Scope
• Scope and Lifetime
• Referencing Environments
• Named Constants

2

3

Introduction
• Imperative programming languages are

abstractions of the underlying von Neumann
computer architecture.

• Architecture’s two main components are:
– Memory – stores both instructions and data
– Processor – provides operations for modifying the

contents of the memory

4

Abstraction
• Abstractions for memory are variables
• Sometimes abstraction is very close to

characteristics of cells.
– e.g. Integer – represented directly in one or more

bytes of a memory
• In other cases, abstraction is far from the

organization of memory.
– e.g. Three dimensional array.
– requires software mapping function to support the

abstraction

5

Names
• Variables, subprograms, labels, user defined

types, formal parameters all have names.

• Design issues for names:
– What is the maximum length of a name?
– Are names case sensitive or not?
– Are special words reserved words or keywords?

Names (continued)
• Length

– If too short, they cannot be connotative
– Language examples:

• Earliest languages : single character
• FORTRAN 95: maximum of 31 characters
• C99: no limit but only the first 63 are significant;

also, external names are limited to a maximum of
31 characters

• C#, Ada, and Java: no limit, and all are significant
• C++: no limit, but implementers often impose one

6

Name Forms
• Names in most PL have the same form:

– A letter followed by a string consisting of letters,
digits, and underscore characters

– In some, they use special characters before a
variable’s name

• Today “camel” notation is more popular for
C-based languages (e.g. myStack)

• In early versions of Fortran – embedded spaces
were ignored. e.g. following two names are
equivalent

Sum Of Salaries
SumOfSalaries

7

Names (continued)
• Special characters

– PHP: all variable names must begin with
dollar signs

– Perl: all variable names begin with special
characters ($, @, %), which specify the
variable’s type

– Ruby: variable names that begin with @ are
instance variables; those that begin with @@
are class variables

8

Names (continued)
• Case sensitivity

– In many languages (e.g. C-based languages)
uppercase and lowercase letters in names are
distinct

• e.g. rose, ROSE, Rose
– Disadvantage: readability (names that look alike are

different)
• Names in the C-based languages are case sensitive
• Names in others are not
• Worse in C++, Java, and C# because predefined names

are mixed case (e.g. IndexOutOfBoundsException)
– Also bad for writability since programmer has to

remember the correct cases 9

Names (continued)
• Special words

– An aid to readability; used to delimit or
separate statement clauses
• A keyword is a word that is special only in

certain contexts,
e.g., in Fortran
Real VarName (Real is a data type followed with

a name, therefore Real is a keyword)

Real = 3.4 (Real is a variable)

INTEGER REAL
REAL INTEGER This is allowed but not readable.

10

Names (continued)
• Special words

– A reserved word is a special word that
cannot be used as a user-defined name
• Can’t define for or while as function or

variable names.
• Good design choice
• Potential problem with reserved words: If

there are too many, many collisions occur
(e.g., COBOL has 300 reserved words!)

11

Special Words
• Predefined names: have predefined meanings, but can

be redefined by the user

• Between special words and user-defined names.

• For example, built-in data type names in Pascal,
such as INTEGER, normal input/output subprogram
names, such as readln, writeln, are predefined.

• In Ada, Integer and Float are predefined, and they
can be redefined by any Ada program.

12

13

Variables

• A variable is an abstraction of a memory cell
• It is not just a name for a memory location
• A variable is characterized by a collection of

attributes
– Name
– Address
– Value
– Type
– Scope
– Lifetime

14

Variable Attributes – Name
• Most variables are named (often referred as

identifiers).
• Although nameless variables do exist (e.g.

pointed variables).

15

Variable Attributes – Address

• Address - the memory address with which it is
associated

• It is possible that the same name refer to different
locations

• in different parts of a program:
– A program can have two subprograms sub1 and sub2 each of

defines a local variable that use the same name, e.g. sum

• in different times:
– For a variable declared in a recursive procedure, in different

steps of recursion it refers to different locations.
• Address of a variable is sometimes called l-value,

because address is required when a variable appears on
the left side of an assignment.

16

Aliases
• Multiple identifiers reference the same address –

more than one variable are used to access the
same memory location

• Such identifier names are called aliases.
• Aliases are created via pointers, reference

variables, C and C++ unions
• Aliases are harmful to readability (program

readers must remember all of them)

17

Variable Attributes – Type
• Type – determines

– the range of values the variable can take, and
– the set of operators that are defined for values of this

type.
– in the case of floating point, type also determines the

precision

• For example int type in Java specifies a range
of
-2147483648 to 2147483647

18

Variable Attributes – Value
• The contents of the location with which the

variable is associated
• e.g. l_value ← r_value (assignment operation)

– The l-value of a variable is its address
– The r-value of a variable is its value

X = 5

19

Abstract memory cell

• Abstract memory cell – the physical cell
or collection of cells associated with a
variable
– Physical cells are 8 bits
– This is too small for most program variables

20

The concept of Binding
• A binding is association between

– entity ↔ attribute (such as between a variable
and its type or value), or

– operation ↔ symbol

• Binding time is the time at which a binding
takes place.
– important in the semantics of PLs

21

Possible Binding Times
• Language design time – bind operator symbols

to operations
– * is bound to the multiplication operation,
– pi=3.14159 in most PL’s.

• Language implementation time
– bind floating point type to a representation
– int in C is bound to a range of possible values

• Compile time -- bind a variable to a type in C or
Java

22

Possible Binding Times (continued)
• Link time

– A call to the library subprogram is bound to the
subprogram code.

• Load time
– A variable is bound to a specific memory location.
– e.g. bind a C or C++ static variable to a memory

cell
• Runtime

– A variable is bound to a value through an assignment
statement.

– A local variable of a Pascal procedure is bound to a
memory location.

23

Binding Times
• Example:

– count = count + 5

• The type of count is bound at compile time
• The set of possible values of count is bound at

compiler design time
• The meaning of the operator symbol + is bound

at compile time, when the types of its operands
have been determined

• The internal representation of the literal 5 is
bound at compiler design time

• The value of count is bound at execution times
with this statement

24

Static and Dynamic Binding
• A binding is static if it first occurs before run

time and remains unchanged throughout
program execution.

• A binding is dynamic if it first occurs during
execution or can change during execution of the
program

25

Type Bindings
• Before a variable can be referenced in a

program, it must be bound to a data type.

• Two important aspects
– How is a type specified?
– When does the binding takes place?

• If static, the type may be specified by
either an explicit or an implicit declaration

26

Static Type Binding –
Explicit/Implicit Declarations

• explicit declaration (by statement)
– A statement in a program that lists variable names and

specifies that they are a particular type

• implicit declaration (by first appearance)
– Means of associating variables with types through

default conventions, rather than declaration
statements. First appearance of a variable name in a
program constitutes its implicit declaration

• Both creates static binding to types

27

Static Type Binding
• Most current PLs require explicit declarations of all

variables
– Exceptions: Perl, Javascript, ML

• Early languages (Fortran, BASIC) have implicit
declarations
– e.g. In Fortran, if not explicitly declared, an identifier

starting with I,J,K,L,M,N are implicitly declared to integer,
otherwise to real type

• Implicit declarations are not good for reliability and
writability because misspelled identifier names
cannot be detected by the compiler
– e.g. In Fortran variables that are accidentally left

undeclared are given default types, and leads to errors
that are difficult to diagnose

28

Static Type Binding
• Some problems of implicit declarations can be

avoided by requiring names for specific types to
begin with a particular special characters

• Example: In Perl
– $apple : scalar
– @apple : array
– %apple : hash

29

Dynamic Type Binding
• Type of a variable is not specified by a declaration

statement, nor it can be determined by the spelling
of its name (JavaScript, Python, Ruby, PHP, and
C# (limited))

• Type is bound when it is assigned a value by an
assignment statement.

• Advantage: Allows programming flexibility.
example languages: Javascript and PHP

• e.g. In JavaScript
– list = [10.2 5.1 0.0]

• list is a single dimensioned array of length 3.
– list = 73

• list is a simple integer.

30

Dynamic Type Binding – Disadvantages
1. Less reliable: compiler cannot check and
enforce types.
• Example: Suppose I and X are integer variables, and Y

is a floating-point.
• The correct statement is

I := X
• But by a typing error

I := Y
• Is typed. In a dynamic type binding language, this error

cannot be detected by the compiler.
I is changed to float during execution.

• The value of I becomes erroneous.

31

2. Cost:
• Type checking must be done at run-time.
• Every variable must have a descriptor to

maintain current type.
• The correct code for evaluating an expression

must be determined during execution.
• Languages that use dynamic type bindings are

usually implemented as interpreters
(LISP is such a language).

Dynamic Type Binding – Disadvantages

32

Type Inference
• ML is a PL that supports both functional and imperative

programming
• In ML, the types of most expressions can be determined

without requiring the programmer to specify the types of
the variables

• General syntax of ML
fun function_name(formal parameters) =
expression;

• The type of an expression and a variable can be determined
by the type of a constant in the expression

• Examples
fun circum (r) = 3.14 *r*r; (circum is real)
fun times10 (x) = 10*x; (times10 is integer)

[Note: fun is for function declaration.]

33

Type Inference
fun square (x) = x*x;
– Determines the type by the definition of * operator
– Default is int. if called with square(2.75) it would cause an

error
– ML does not coerce real to int

• It could be rewritten as:
fun square (x: real) = x*x;

fun square (x):real = x*x;

fun square (x) = (x:real)*x;

fun square (x) = x*(x:real);

– In ML, there is no overloading, so only one of the above can coexist

• Purely functional languages Miranda and Haskell uses
Type Inference.

34

Storage Bindings and Lifetime
• Allocation: process of taking the memory cell to which

a variable is bound from a pool of available memory

• Deallocation: process of placing the memory cell
that has been unbound from a variable back into the
pool of available memory

• Lifetime of a variable: Time during the variable is
bound to a specific memory location

• According to their lifetimes, variables can be separated
into four categories:
– static,
– stack-dynamic,
– explicit heap-dynamic,
– implicit dynamic.

35

Static Variables
• Static variables are bound to memory cells before execution

begins, and remains bound to the same memory cells until
execution terminates.

• Applications: globally accessible variables, to make some
variables of subprograms to retain values between separate
execution of the subprogram

• Such variables are history sensitive.
• Advantage: Efficiency. Direct addressing (no run-time

overhead for allocation and deallocation).
• Disadvantage: Reduced flexibility (no recursion).
• If a PL has only static variables, it cannot support recursion.
• Examples:

– All variables in FORTRAN I, II, and IV
– Static variables in C, C++ and Java

36

Stack-Dynamic Variables

• Storage binding: when declaration statement is
elaborated (in run-time).

• Type binding: static.

• The local variables get their type binding statically
at compile time, but their storage binding takes
place when that procedure is called. Storage is
deallocated when the procedure returns.

• Local variables in C functions.

37

Stack-Dynamic Variables
• Advantages:

– Dynamic storage allocation is needed for recursion. Each
subprogram can have its own copy of the variables

– Same memory cells can be used for different variables
(efficiency)

• Disadvantages: Runtime overhead for allocation and
deallocation

• In C and C++, local variables are, by default, stack-
dynamic, but can be made static through static qualifier.

foo ()
{
static int x;
…
}

All attributes other than storage is statically bound to this type of variables

38

Explicit Heap-Dynamic Variables
• Nameless variables
• storage allocated/deallocated by explicit run-time

instructions
• can be referenced only through pointer variables
• e.g. dynamic objects in C++ (via new and delete),

all objects in Java
• types can be determined at run-time
• storage is allocated when created explicitly

39

Explicit Heap-Dynamic Variables
• Example:

– In C++

• Advantages:
– Required for dynamic structures (e.g., linked lists,

trees)
• Disadvantages:

– Difficult to use correctly, costly to refer, allocate,
deallocate.

int *intnode; // Create a pointer
intnode = new int; // Create the heap-dynamic variable
….
delete intnode; // Deallocate the heap-dynamic variable

40

Implicit Heap-Dynamic Variables
• Storage and type bindings are done when they

are assigned values.
• Advantages:

– Highest degree of flexibility (generic code)
• Disadvantages:

– Runtime overhead for allocation/deallocation and
maintaining all the attributes which can include array
subscript types and ranges.

– Loss of error detection by compiler
• Examples: All variables in APL; all strings and

arrays in Perl, JavaScript, and PHP.

41

Variable Attributes – Scope
• Scope of a variable is the range of statements in

which the variable is visible.
• A variable is visible in a statement if it can be

referenced in that statement.
• The scope rules of a language determine how

references to variables declared outside the
currently executing subprogram or block are
associated with variables

Variable Attributes – Scope
• The local variables of a program unit are

those that are declared in that unit
• The nonlocal variables of a program unit

are those that are visible in the unit but not
declared there

• Global variables are a special category of
nonlocal variables

42

43

Static Scope
• Scope of variables can be determined statically

– by looking at the program
– prior to execution

• First defined in ALGOL 60.

• Based on program text
• To connect a name reference to a variable, you

(or the compiler) must find the declaration

44

Static Scope
• Search process:

– search declarations,
• first locally,
• then in increasingly larger enclosing scopes,
• until one is found for the given name

45

Static Scope
• In all static-scoped languages (except C),

procedures are nested inside the main program.
• Some languages also allow nested

subprograms, which create nested static scopes
– Ada, JavaScript, Common LISP, Scheme, Fortran

2003+, F#, and Python - do
– C based languages – do not

• In this case all procedures and the main unit
create their scopes.

46

Static Scope

• Enclosing static scopes (to a specific scope) are
called its static ancestors

• the nearest static ancestor is called a static
parent

47

Static Scope

• main is the static parent
of p2 and p1.

• p2 is the static parent of
p1

main

p2
var x

p1

var x

.x.

x

….

48

Static Scope

• The reference to
variable x in sub1
is to the x declared
in procedure Big

• x in Big is hidden
from sub2 because
there is another x
in sub2

function big() {
function sub1() {
var x = 7;
sub2();
}
function sub2() {
var y = x;
}

var x = 3;
sub1();
}

49

50

Static Scope
• In some languages that use static scoping, regardless of

whether nested subprograms are allowed, some variable
declarations can be hidden from some other code segments

• e.g. In C++

void sub1() {
int count;
...
while (...) {
int count;
...
}
...
}

• The reference to count in while loop is local
• count of sub1() is hidden from the code inside the while loop

51

Static Scope
• Variables can be hidden from a unit by

having a "closer" variable with the same name
• C++ and Ada allow access to these "hidden"

variables
– In Ada: unit.name
– In C++: class_name::name

52

Blocks
• Some languages allow new static scopes to be

defined without a name.
• It allows a section of code its own local

variables whose scope is minimized.
• Such a section of code is called a block
• The variables are typically stack dynamic so

they have their storage allocated when the
section is entered and deallocated when the
section is exited

• Blocks are first introduced in Algol 60

53

Blocks
• In Ada

...

declare TEMP: integer;
begin

TEMP := FIRST;

FIRST := SECOND; Block
SECOND := TEMP;

end;
...

54

Blocks
C and C++ allow blocks.

int first, second;
...
first = 3; second = 5;
{ int temp;

temp = first;
first = second;
second = temp;

}
...

temp is undefined here.

55

Blocks
• C++ allows variable definitions to appear anywhere in

functions. The scope is from the definition statement to the
end of the function

• In C, all data declarations (except the ones for blocks)
must appear at the beginning of the function

• for statements in C++, Java and C# allow variable
definitions in their initialization expression. The scope is
restricted to the for construct

57

Dynamic Scope
• APL, SNOBOL4, early dialects of LISP use

dynamic scoping.
• COMMON LISP and Perl also allows dynamic

scope but also uses static scoping
• In dynamic scoping

– scope is based on the calling sequence of
subprograms

– not on the spatial relationships
– scope is determined at run-time.

58

Dynamic Scope

• When the search of a local
declaration fails, the declarations of
the dynamic parent is searched

• Dynamic parent is the calling
procedure

• Big calls sub2
• sub2 calls sub1

• Dynamic parent of sub1 is sub2,
sub2 is Big

Big -> sub2 -> sub1

(1)

(2)

Visible Hidden
1 x (sub2) x (Big)
2 x (sub2) x (Big)

59

Dynamic Scope

From H.A. Güvenir’s notes

Case1 (call of sub2 in big)
big->sub2->sub1 P1- x of sub2

Case2: (call of sub1 in big)
big -> sub1 P1- x of big

P1

function big() {
function sub1() {
var x = 7; (1)
}
function sub2() {
var y = x;
var z = 3; (2)
}

var x = 3; (3)
sub1()
}

First, big calls sub1, which
calls sub2.
Next, sub2 is called directly
from big

60

Static Scoping

Point in code Visible Hidden
1 x (sub1) x (big)
2 y,z (sub2),

x(big)
3 x (big)

Dynamic Scoping

Point in code Visible Hidden
1 x (sub1) x (big)
2 y,z (sub2),

x(sub1)
x (big)

3 x (big)

big-> sub1 -> sub2

big -> sub2

Dynamic Scoping

Point in code Visible Hidden
2 y,z (sub2),

x(big)
3 x (big)

61

Referencing Environments
• The referencing environment of a statement is the

collection of all names that are visible in the statement
• In a static-scoped language, it is the local variables plus

all of the visible variables in all of the enclosing scopes
• A subprogram is active if its execution has begun but

has not yet terminated
• In a dynamic-scoped language, the referencing

environment is the local variables plus all visible
variables in all active subprograms

void sub1() {
int a, b;
. . . 1
} /* end of sub1 */
void sub2() {
int b, c;
.. . . 2
sub1();
} /* end of sub2 */
void main() {
int c, d;
. . . 3
sub2();
} /* end of main */

63

Point Referencing Environment
1 a and b of sub1, c of sub2, d of main, (c of main

and b of sub2 are hidden)
2 b and c of sub2, d of main, (c of main is hidden)
3 c and d of main

main() -> sub2() -> sub1()

Visible Hidden
1 a,b(sub1),

c(sub2), d(main)
b (sub2), c(main)

2 b,c(sub2),d(main) c(main)
3 c,d(main)

Further Examples
Assume the following JavaScript program was interpreted using
A- static-scoping rules. What value of x is displayed in function sub1?
B- Under dynamic-scoping rules, what value of x is displayed in function sub1?

var x;
function sub1() {
document.write("x = " + x + "
");
}
function sub2() {
var x;
x = 10;
sub1();
}
x = 5;
sub2();

64

Static Scoping

in sub1 x(main) is visible
x = 5

Dynamic Scoping

main()-> sub2() -> sub1()

in sub1 x(sub2) is visible, x(main) is hidden

x = 10

Consider the following JavaScript program:
var x, y, z;
function sub1() {
var a, y, z;
function sub2() {
var a, b, z;
. . . (1)
}
. . . (2)
}
function sub3() {
var a, x, w;
. . . (3)
}
List all the variables, along with the program units
where they are
declared, that are visible in the bodies of sub1,
sub2, and sub3, assuming static scoping is
used.

65

Visible Hidden
1 a,b,z(sub2),

y(sub1), x(main)
a,z(sub1),
y,z(main)

2 a,y,z(sub1),
x(main)

y,z(main)

3 a,x,w(sub3), y,z
(main)

x(main)

Consider the following skeletal C program:
void fun1(void); /* prototype */
void fun2(void); /* prototype */
void fun3(void); /* prototype */
void main() {
int a, b, c;
. . .
}
void fun1(void) {
int b, c, d;
. . . (2)
}
void fun2(void) {
int c, d, e;
. . .
}
void fun3(void) {
int d, e, f;
. . . (1)
}
Given the following calling sequences and assuming that dynamic scoping is used, what variables are visible during execution
of the last function called? Include with each visible variable the name of the function in which it was defined.
a. main calls fun1; fun1 calls fun2; fun2 calls fun3.
b. main calls fun1; fun1 calls fun3.
c. main calls fun2; fun2 calls fun3; fun3 calls fun1.
d. main calls sub3; sub3 calls sub1.
e. main calls sub1; sub1 calls sub3; sub3 calls sub2.
f. main calls sub3; sub3 calls sub2; sub2 calls sub1.

67

a) main->fun1->fun2->fun3

Dynamic scoping

Visible Hidden
(1) d,e,f(fun3),

c(fun2), b(fun1)
a(main)

d,e(fun2)
c,d(fun1)
b,c(main)

c) main->fun2->fun3->fun1

Dynamic scoping

Visible Hidden
(2) b,c,d(fun1),

e,f(fun3),
a(main)

d(fun3),
c,d,e(fun2),
b,c(main)

Blocks
void main() {
int x, y, z;
while (. . .) {
int a, b, c;
. . .
while (. . .) {
int d, e;
. . .
}
}
while (. . .) {
int f, g;
. . .
}
. . .
}

68

while1

while2

while3

Summary
• Case sensitivity and the relationship of names to special

words represent design issues of names
• Variables are characterized by the sextuples: name,

address, value, type, lifetime, scope
• Binding is the association of attributes with program

entities
• Scalar variables are categorized as: static, stack

dynamic, explicit heap dynamic, implicit heap dynamic
• Scope of a variable is the range of statements in which

the variable is visible and can be static, or dynamic.

69

