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Introduction
• Imperative programming languages are 

abstractions of the underlying von Neumann 
computer architecture.

• Architecture’s two main components are: 
– Memory – stores both instructions and data
– Processor – provides operations for modifying the 

contents of the memory
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Abstraction
• Abstractions for memory are variables
• Sometimes abstraction is very close to 

characteristics of cells. 
– e.g. Integer – represented directly in one or more 

bytes of a memory
• In other cases, abstraction is far from the 

organization of memory. 
– e.g. Three dimensional array.
– requires software mapping function to support the 

abstraction
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Names
• Variables, subprograms, labels, user defined 

types, formal parameters all have names.

• Design issues for names:
– What is the maximum length of a name?
– Are names case sensitive or not?
– Are special words reserved words or keywords?



Names (continued)
• Length

– If too short, they cannot be connotative
– Language examples:

• Earliest languages : single character
• FORTRAN 95: maximum of 31 characters
• C99: no limit but only the first 63 are significant; 

also, external names are limited to a maximum of 
31 characters

• C#, Ada, and Java: no limit, and all are significant
• C++: no limit, but implementers often impose one
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Name Forms
• Names in most PL have the same form:

– A letter followed by a string consisting of letters, 
digits, and underscore characters

– In some, they use special characters before a 
variable’s name 

• Today “camel” notation is more popular for 
C-based languages (e.g. myStack)

• In early versions of Fortran – embedded spaces  
were ignored. e.g. following two names are 
equivalent

Sum Of Salaries
SumOfSalaries
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Names (continued)
• Special characters

– PHP: all variable names must begin with 
dollar signs

– Perl: all variable names begin with special 
characters ($, @, %), which specify the 
variable’s type

– Ruby: variable names that begin with @ are 
instance variables; those that begin with @@
are class variables
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Names (continued)
• Case sensitivity

– In many languages (e.g. C-based languages) 
uppercase and lowercase letters in names are 
distinct  

• e.g. rose, ROSE, Rose
– Disadvantage: readability (names that look alike are 

different)
• Names in the C-based languages are case sensitive
• Names in others are not
• Worse in C++, Java, and C#  because predefined  names 

are mixed case (e.g. IndexOutOfBoundsException)
– Also bad for writability since programmer has to 

remember the correct cases 9



Names (continued)
• Special words

– An aid to readability; used to delimit or 
separate statement clauses
• A keyword is a word that is special only in 

certain contexts, 
e.g., in Fortran
Real VarName (Real is a data type followed with 

a name, therefore Real is a keyword)

Real = 3.4 (Real is a variable)

INTEGER REAL
REAL INTEGER This is allowed but not readable.
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Names (continued)
• Special words

– A reserved word is a special word that 
cannot be used as a user-defined name
• Can’t define for or while as function or 

variable names.
• Good design choice
• Potential problem with reserved words: If 

there are too many, many collisions occur 
(e.g., COBOL has 300 reserved words!)
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Special Words
• Predefined names: have predefined meanings, but can 

be redefined by the user

• Between special words and user-defined names.

• For  example,  built-in  data  type  names  in  Pascal,  
such  as INTEGER, normal input/output subprogram 
names, such as readln, writeln, are predefined.

• In Ada, Integer and Float are predefined, and they 
can be redefined by any Ada program.
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Variables

• A variable is an abstraction of a memory cell
• It is not just a name for a memory location
• A  variable  is  characterized  by  a  collection  of 

attributes
– Name
– Address
– Value
– Type
– Scope
– Lifetime
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Variable Attributes – Name
• Most variables are named (often referred as 

identifiers).
• Although nameless variables do exist (e.g. 

pointed variables).
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Variable Attributes – Address

• Address - the memory address with which it is 
associated

• It is possible that the same name refer to different 
locations 

• in different parts of a program:
– A program can have two subprograms sub1 and sub2 each of 

defines a local variable that use the same name, e.g. sum

• in different times:
– For a variable declared in a recursive procedure, in different 

steps of recursion it refers to different locations.
• Address of a variable is sometimes called l-value, 

because address is required when a variable appears on 
the left side of an assignment.
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Aliases
• Multiple identifiers reference the same address –

more than one variable are used to access the 
same memory location

• Such identifier names are called aliases.
• Aliases are created via pointers, reference 

variables, C and C++ unions
• Aliases are harmful to readability (program 

readers must remember all of them)
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Variable Attributes – Type
• Type – determines 

– the range of values the variable can take, and
– the set of operators  that are defined for values of this 

type.
– in the case of floating point, type also determines the 

precision

• For example int type in Java specifies a range
of 
-2147483648 to 2147483647
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Variable Attributes – Value
• The contents of the location with which the 

variable is associated
• e.g. l_value ← r_value (assignment operation)

– The l-value of a variable is its address 
– The r-value of a variable is its value

X = 5
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Abstract memory cell

• Abstract memory cell – the physical cell 
or collection of cells associated with a 
variable
– Physical cells are 8 bits
– This is too small for most program variables
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The concept of Binding
• A binding is association between

– entity ↔ attribute (such as between a variable 
and its type or value), or  

– operation ↔ symbol

• Binding time is the time at which a binding 
takes place.
– important in the semantics of PLs



21

Possible Binding Times
• Language design time – bind operator symbols 

to operations
– * is bound to the multiplication operation, 
– pi=3.14159 in most PL’s.

• Language implementation time
– bind floating point type to a representation
– int in  C  is  bound  to  a  range  of possible values

• Compile time -- bind a variable to a type in C or 
Java
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Possible Binding Times (continued)
• Link time

– A call to the library subprogram is bound to the 
subprogram code.

• Load time
– A variable is bound to a specific memory location.
– e.g. bind a C or C++ static variable to a memory 

cell
• Runtime

– A variable is bound to a value through an assignment 
statement.

– A local variable of a Pascal procedure is bound to a 
memory location.
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Binding Times
• Example:

– count = count + 5

• The type of count is bound at compile time
• The set of possible values of count is bound at  

compiler design time
• The meaning of the operator symbol + is bound 

at compile time, when the types of its operands 
have been determined

• The internal representation of the literal 5 is 
bound at compiler design time

• The value of count is bound at execution times  
with this statement
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Static and Dynamic Binding
• A binding is static if it first occurs before run 

time and remains unchanged throughout 
program execution.

• A binding is dynamic if it first occurs during 
execution or can change during execution of the 
program
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Type Bindings 
• Before a variable can be referenced in a 

program, it must be bound to a data type.

• Two important aspects
– How is a type specified?
– When does the binding takes place?

• If static, the type may be specified by 
either an explicit or an implicit declaration
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Static Type Binding –
Explicit/Implicit Declarations

• explicit declaration (by statement)
– A statement in a program that lists variable names and  

specifies that they are a particular type

• implicit declaration (by first appearance)
– Means of associating variables with types through 

default conventions, rather than declaration  
statements. First appearance of a variable name in a 
program constitutes its implicit declaration

• Both creates static binding to types
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Static Type Binding
• Most current PLs require explicit declarations of all 

variables 
– Exceptions: Perl, Javascript, ML

• Early languages (Fortran, BASIC) have implicit 
declarations
– e.g. In Fortran, if not explicitly declared, an identifier  

starting with I,J,K,L,M,N are implicitly declared to integer, 
otherwise to real type

• Implicit declarations are not good for reliability and 
writability because misspelled identifier names 
cannot be detected by the compiler
– e.g.  In Fortran variables that are accidentally left  

undeclared are given default types, and leads to errors 
that are difficult to diagnose
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Static Type Binding
• Some problems of implicit declarations can be 

avoided by requiring names for specific types to 
begin with a particular special characters

• Example: In Perl
– $apple : scalar
– @apple : array
– %apple : hash
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Dynamic Type Binding
• Type of a variable is not specified by a declaration 

statement, nor it can be determined by the spelling  
of its name (JavaScript, Python, Ruby, PHP, and 
C# (limited))

• Type is bound when it is assigned a value by an 
assignment statement.

• Advantage: Allows programming flexibility.    
example languages: Javascript and PHP

• e.g.  In JavaScript
– list = [10.2 5.1 0.0]

• list is a single dimensioned array of length 3.
– list = 73

• list is a simple integer.
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Dynamic Type Binding – Disadvantages
1. Less reliable: compiler cannot check and 
enforce types.
• Example: Suppose I and X are integer variables, and Y

is a floating-point.
• The correct statement is

I := X
• But by a typing error

I := Y
• Is typed. In a dynamic type binding language, this error 

cannot be detected by the compiler. 
I is changed to float during execution. 

• The value of I becomes erroneous.
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2. Cost:
• Type checking must be done at run-time. 
• Every variable must have a descriptor to 

maintain current type.
• The correct code for evaluating an expression  

must  be determined during execution.
• Languages that use dynamic type bindings are  

usually implemented as interpreters 
(LISP is such a language).

Dynamic Type Binding – Disadvantages
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Type Inference
• ML is a PL that supports both functional and imperative 

programming
• In ML, the types of most expressions can be determined 

without  requiring  the  programmer  to  specify  the  types  of 
the variables

• General syntax of ML
fun function_name(formal parameters) = 
expression;

• The type of an expression and a variable can be determined 
by the type of a constant in the expression 

• Examples
fun circum (r) = 3.14 *r*r; (circum is real)
fun times10 (x) = 10*x; (times10 is integer)

[Note: fun is for function declaration.]
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Type Inference
fun square (x) = x*x;
– Determines the type by the definition of * operator
– Default is int. if called with square(2.75) it would cause an 

error
– ML does not coerce real to int

• It could be rewritten as:
fun square (x: real) = x*x;

fun square (x):real = x*x;

fun square (x) = (x:real)*x;

fun square (x) = x*(x:real);

– In ML, there is no overloading, so only one of the above can coexist

• Purely functional languages Miranda and Haskell uses 
Type Inference.
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Storage Bindings and Lifetime
• Allocation: process of taking the memory cell to which 

a variable is bound from a pool of available memory

• Deallocation: process  of  placing  the  memory  cell  
that  has  been unbound from a variable back into the 
pool of available memory

• Lifetime of a variable: Time during the variable is 
bound to a specific memory location 

• According to their lifetimes, variables can be separated 
into four categories:
– static,
– stack-dynamic,
– explicit heap-dynamic, 
– implicit dynamic.



35

Static Variables
• Static variables are bound to memory cells before execution 

begins, and  remains bound to the same memory cells until  
execution terminates.

• Applications: globally accessible variables, to make some 
variables of subprograms to retain values between separate  
execution of the subprogram

• Such variables are history sensitive.
• Advantage: Efficiency. Direct  addressing  (no  run-time  

overhead  for allocation and deallocation).
• Disadvantage: Reduced flexibility (no recursion).
• If a PL has only static variables, it cannot support recursion.
• Examples:   

– All variables in FORTRAN I, II, and IV
– Static variables in C, C++ and Java



36

Stack-Dynamic Variables

• Storage binding: when declaration statement is 
elaborated (in run-time).

• Type binding: static.

• The  local  variables  get  their  type  binding  statically  
at  compile  time,  but  their storage  binding  takes  
place  when  that  procedure  is  called.  Storage  is 
deallocated when the procedure returns.

• Local variables in C functions.
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Stack-Dynamic Variables
• Advantages:

– Dynamic  storage  allocation  is  needed  for  recursion. Each 
subprogram can have its own copy of the variables 

– Same  memory cells can be used for different variables 
(efficiency)

• Disadvantages: Runtime overhead for allocation and 
deallocation

• In C and C++, local variables are, by default, stack-
dynamic, but can be made static through static qualifier.

foo () 
{
static int x; 
…
}

All attributes other than storage is statically bound to this type of variables
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Explicit Heap-Dynamic Variables
• Nameless variables
• storage allocated/deallocated by explicit run-time 

instructions
• can be referenced only through pointer variables
• e.g. dynamic objects in C++ (via new and delete), 

all objects in Java
• types can be determined at run-time
• storage is allocated when created explicitly
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Explicit Heap-Dynamic Variables
• Example:

– In C++

• Advantages:
– Required  for  dynamic  structures  (e.g.,  linked  lists, 

trees)
• Disadvantages:

– Difficult  to  use  correctly,  costly  to  refer,  allocate, 
deallocate.

int *intnode; // Create a pointer
intnode = new int; // Create the heap-dynamic variable
….
delete intnode; // Deallocate the heap-dynamic variable
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Implicit Heap-Dynamic Variables
• Storage and type bindings are done when they 

are assigned values.
• Advantages:

– Highest degree of flexibility (generic code)
• Disadvantages:

– Runtime overhead for allocation/deallocation and 
maintaining all the attributes which can include array 
subscript types and ranges.

– Loss of error detection by compiler
• Examples: All variables in APL; all strings and 

arrays in Perl, JavaScript, and PHP.
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Variable Attributes – Scope
• Scope of a variable is the range of statements in 

which the variable is visible.
• A variable is visible in a statement if it can be 

referenced in that statement.
• The scope rules of a language determine how 

references to variables declared outside the 
currently executing subprogram or block are 
associated with variables



Variable Attributes – Scope
• The local variables of a program unit are 

those that are declared in that unit
• The nonlocal variables of a program unit 

are those that are visible in the unit but not 
declared there

• Global variables are a special category of 
nonlocal variables
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Static Scope
• Scope of variables can be determined statically 

– by looking at the program
– prior to execution

• First defined in ALGOL 60.

• Based on program text
• To connect a name reference to a variable, you  

(or the compiler) must find the declaration
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Static Scope
• Search process:  

– search declarations, 
• first locally, 
• then in increasingly larger enclosing scopes, 
• until one is found for the given name
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Static Scope
• In  all  static-scoped  languages  (except  C),  

procedures  are nested inside the main program.
• Some languages also allow nested 

subprograms, which create nested static scopes
– Ada, JavaScript, Common LISP, Scheme, Fortran 

2003+, F#, and Python - do
– C based languages – do not

• In this case all procedures and the main unit  
create their scopes.



46

Static Scope

• Enclosing static scopes (to a specific scope) are  
called its static ancestors

• the nearest static ancestor is called a static 
parent
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Static Scope

• main is the static parent 
of p2 and p1.

• p2 is the static parent of 
p1

main

p2
var x

p1

var x

.x.

x

….
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Static Scope

• The reference to 
variable x in sub1 
is to the x declared 
in procedure Big

• x in Big is hidden 
from sub2 because 
there is another x
in sub2



function big() {
function sub1() {
var x = 7;
sub2();
}
function sub2() {
var y = x;
}

var x = 3;
sub1();
}
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Static Scope
• In some languages that use static scoping, regardless of 

whether nested subprograms are allowed, some variable 
declarations can be hidden from some other code segments

• e.g. In C++

void sub1() {
int count;
...
while (...) {
int count;
...
}
...
}

• The reference to count in while loop is local
• count of sub1() is hidden from the code inside the while loop
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Static Scope
• Variables  can  be  hidden  from  a  unit  by  

having  a  "closer" variable with the same name
• C++ and Ada allow access to these "hidden" 

variables
– In Ada:  unit.name
– In C++: class_name::name
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Blocks
• Some languages  allow new static scopes to be 

defined without a name.
• It allows a section of code its own local  

variables whose scope is minimized.
• Such a section of code is called a block
• The variables are typically stack dynamic so 

they have their storage allocated when the 
section is entered and deallocated when the 
section is exited

• Blocks are first introduced in Algol 60
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Blocks
• In Ada

...

declare TEMP: integer;
begin

TEMP := FIRST;

FIRST := SECOND;      Block
SECOND := TEMP;

end;
...
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Blocks
C and C++ allow blocks.

int first, second;
...
first = 3; second = 5;
{ int temp;

temp = first;
first = second;
second = temp;

}
...

temp is undefined here.
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Blocks
• C++ allows variable definitions to appear anywhere in 

functions. The scope is from the definition statement to the 
end of the function

• In C, all data declarations (except the ones for blocks) 
must appear at the beginning of the function

• for statements in C++, Java and C# allow variable 
definitions in their initialization expression. The scope is 
restricted to the for construct
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Dynamic Scope
• APL, SNOBOL4, early dialects of LISP use  

dynamic scoping.
• COMMON LISP and Perl also allows dynamic  

scope but also uses static scoping
• In dynamic scoping

– scope is based on the calling sequence of 
subprograms

– not on the spatial relationships
– scope is determined at run-time.
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Dynamic Scope

• When the search of a local   
declaration fails, the declarations of 
the dynamic parent is searched

• Dynamic parent is the calling 
procedure

• Big calls sub2 
• sub2 calls sub1

• Dynamic parent of sub1 is sub2, 
sub2 is Big

Big -> sub2 -> sub1

(1)

(2)

Visible Hidden
1 x (sub2) x (Big)
2 x (sub2) x (Big)



59

Dynamic Scope

From H.A. Güvenir’s notes

Case1  (call of sub2 in big) 
big->sub2->sub1              P1- x of sub2

Case2: (call of sub1 in big)
big -> sub1  P1- x of big

P1



function big() {
function sub1() {
var x = 7;   (1)
}
function sub2() {
var y = x;
var z = 3;    (2)
}

var x = 3;                 (3)
sub1()
}

First, big calls sub1, which 
calls sub2.
Next, sub2 is called directly 
from big
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Static Scoping

Point in code Visible Hidden
1 x (sub1) x (big)
2 y,z (sub2), 

x(big)
3 x (big)

Dynamic Scoping

Point in code Visible Hidden
1 x (sub1) x (big)
2 y,z (sub2), 

x(sub1)
x (big)

3 x (big)

big-> sub1 -> sub2

big -> sub2

Dynamic Scoping

Point in code Visible Hidden
2 y,z (sub2), 

x(big)
3 x (big)
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Referencing Environments
• The referencing environment of a statement is the  

collection of all names that are visible in the statement
• In a static-scoped language, it is the local variables plus  

all of the visible variables in all of the enclosing scopes 
• A subprogram is active if its execution has begun but  

has not yet terminated
• In a dynamic-scoped language, the referencing  

environment is the local variables plus all visible 
variables in all active subprograms



void sub1() {
int a, b;
. . . 1
} /* end of sub1 */
void sub2() {
int b, c;
.. . . 2
sub1();
} /* end of sub2 */
void main() {
int c, d;
. . . 3
sub2();
} /* end of main */
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Point Referencing Environment
1 a and b of sub1, c of sub2, d of main, (c of main

and b of sub2 are hidden)
2 b and c of sub2, d of main, (c of main is hidden)
3 c and d of main

main() -> sub2() -> sub1()

Visible Hidden
1 a,b(sub1), 

c(sub2), d(main)
b (sub2), c(main)

2 b,c(sub2),d(main) c(main)
3 c,d(main)



Further Examples
Assume the following JavaScript program was interpreted using 
A- static-scoping rules. What value of x is displayed in function sub1? 
B- Under dynamic-scoping rules, what value of x is displayed in function sub1?

var x;
function sub1() {
document.write("x = " + x + "<br />");
}
function sub2() {
var x;
x = 10;
sub1();
}
x = 5;
sub2();
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Static Scoping

in sub1 x(main) is visible
x = 5

Dynamic Scoping

main()-> sub2() -> sub1()

in sub1 x(sub2) is visible, x(main) is hidden

x = 10



Consider the following JavaScript program:
var x, y, z;
function sub1() {
var a, y, z; 
function sub2() {
var a, b, z;
. . .                 (1)
}
. . .  (2)
}
function sub3() {
var a, x, w;
. . .   (3)
}
List all the variables, along with the program units 
where they are
declared, that are visible in the bodies of sub1, 
sub2, and sub3, assuming static scoping is 
used.
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Visible Hidden
1 a,b,z(sub2), 

y(sub1), x(main)
a,z(sub1), 
y,z(main)

2 a,y,z(sub1), 
x(main)

y,z(main)

3 a,x,w(sub3), y,z
(main)

x(main)



Consider the following skeletal C program:
void fun1(void); /* prototype */
void fun2(void); /* prototype */
void fun3(void); /* prototype */
void main() {
int a, b, c;
. . .
}
void fun1(void) {
int b, c, d;
. . . (2)
}
void fun2(void) {
int c, d, e;
. . .
}
void fun3(void) {
int d, e, f;
. . . (1)
}
Given the following calling sequences and assuming that dynamic scoping is used, what variables are visible during execution 
of the last function called? Include with each visible variable the name of the function in which it was defined.
a. main calls fun1; fun1 calls fun2; fun2 calls fun3.
b. main calls fun1; fun1 calls fun3.
c. main calls fun2; fun2 calls fun3; fun3 calls fun1.
d. main calls sub3; sub3 calls sub1.
e. main calls sub1; sub1 calls sub3; sub3 calls sub2.
f. main calls sub3; sub3 calls sub2; sub2 calls sub1.
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a) main->fun1->fun2->fun3

Dynamic scoping

Visible Hidden
(1) d,e,f(fun3), 

c(fun2), b(fun1)
a(main)

d,e(fun2)
c,d(fun1)
b,c(main)

c) main->fun2->fun3->fun1

Dynamic scoping

Visible Hidden
(2) b,c,d(fun1),

e,f(fun3),
a(main)

d(fun3),
c,d,e(fun2),
b,c(main)



Blocks
void main() {
int x, y, z;
while ( . . . ) {
int a, b, c;
. . .
while ( . . . ) {
int d, e;
. . .
}
}
while ( . . . ) {
int f, g;
. . .
}
. . .
}
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while1

while2

while3



Summary
• Case sensitivity and the relationship of names to special 

words represent design issues of names
• Variables are characterized by the sextuples: name, 

address, value, type, lifetime, scope
• Binding is the association of attributes with program 

entities
• Scalar variables are categorized as: static, stack 

dynamic, explicit heap dynamic, implicit heap dynamic
• Scope of a variable is the range of statements in which 

the variable is visible and can be static, or dynamic.
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