
Functional Programming
Languages

BBM 301 – Programming Languages

1-2

Introduction
• The design of the imperative languages is based

directly on the von Neumann architecture
– Efficiency is the primary concern, rather than the

suitability of the language for software development
• The design of the functional languages is based

on mathematical functions
– A solid theoretical basis that is also closer to the

user, but relatively unconcerned with the
architecture of the machines on which programs will
run

1-4

Mathematical Functions

• A mathematical function is a mapping of
members of one set, called the domain set, to
another set, called the range set

• In math functions, the evaluation order is
controlled by recursion

• They don’t have side effects: same value given
the same arguments

1-5

Lambda Expressions

• Lambda expressions describe nameless functions
• A lambda expression specifies the parameter(s) and the

mapping of a function in the following form
l(x) x * x * x
for the function cube (x) = x * x * x

• Lambda expressions are applied to parameter(s) by
placing the parameter(s) after the expression
e.g., (l(x) x * x * x)(2)
which evaluates to 8

1-6

Functional Forms

• A higher-order function, or functional form, is
one that either takes functions as parameters or
yields a function as its result, or both

1-7

Function Composition

• A functional form that takes two functions as
parameters and yields a function whose value is
the first actual parameter function applied to
the application of the second
Form: h º f ° g

which means h(x) º f(g(x))

For f(x) º x + 2 and g(x) º 3 * x,
h º f ° g yields (3 * x)+ 2

1-8

Apply-to-all

• A functional form that takes a single function
as a parameter and yields a list of values
obtained by applying the given function to
each element of a list of parameters
Form: a
For h(x) º x * x

a(h, (2, 3, 4)) yields (4, 9, 16)

1-9

Fundamentals of Functional
Programming Languages

• The objective of the design of a FPL is to mimic
mathematical functions to the greatest extent possible

• The basic process of computation is fundamentally
different in a FPL than in an imperative language
– In an imperative language, operations are done and the

results are stored in variables for later use
– Management of variables is a constant concern and source of

complexity for imperative programming

• In an FPL, variables are not necessary, as is the case in
mathematics

1-10

Fundamentals of Functional
Programming Languages (cont’d.)

• Referential Transparency - In an FPL, the
evaluation of a function always produces the
same result given the same parameters

• Tail Recursion – Writing recursive functions
that can be automatically converted to
iteration

1-11

LISP Data Types and Structures
• LISP was developed by John McCarthy at MIT in

1959
• Data object types: originally only atoms and lists
• List form: parenthesized collections of sublists

and/or atoms
e.g., (A B (C D) E)

• Originally, LISP was a typeless language
• LISP lists are stored internally as single-linked lists

1-12

1-13

LISP Interpretation
• Lambda notation is used to specify functions

and function definitions.
• Function applications and data have the same

form.
e.g., If the list (A B C) is interpreted as data it
is
a simple list of three atoms, A, B, and C

• If it is interpreted as a function application, it
means that the function named A is applied to
the two parameters, B and C

1-14

Origins of Scheme
• A mid-1970s dialect of LISP, designed to be a

cleaner, more modern, and simpler version than
the contemporary dialects of LISP

• Uses only static scoping
• Functions are first-class entities

– They can be the values of expressions and elements
of lists

– They can be assigned to variables, passed as
parameters, and returned from functions

The Scheme Interpreter
• In interactive mode, the Scheme interpreter is

an infinite read-evaluate-print loop (REPL)
– This form of interpreter is also used by Python and

Ruby

• Expressions are interpreted by the function
EVAL

• Literals evaluate to themselves

1-15

1-16

Primitive Function Evaluation
• Parameters are evaluated, in no particular

order
• The values of the parameters are substituted

into the function body
• The function body is evaluated
• The value of the last expression in the body is

the value of the function

1-17

Primitive Functions
• Primitive Arithmetic Functions: +, -, *, /, ABS,

SQRT, REMAINDER, MIN, MAX

e.g., (+ 5 2) yields 7

Examples

• Expression Value
• 42 42
• (* 3 7) 21
• (+ 5 7 8) 20
• (− 5 6) −1
• (− 15 7 2) 6
• (− 24 (* 4 3)) 12

1-18

1-19

Function Definition: LAMBDA
• Lambda Expressions

– Form is based on l notation

e.g., (LAMBDA (x) (* x x))

x is called a bound variable
• Lambda expressions can be applied to parameters

e.g., ((LAMBDA (x) (* x x)) 7)
• LAMBDA expressions can have any number of parameters
(LAMBDA (a b x) (+ (* a x x) (* b x)))

(LAMBDA (a b c x) (+ (* a x x) (* b x) c))

1-20

Special Form Function: DEFINE
• A Function for constructing functions: DEFINE - Two

forms:
1. To bind a symbol to an expression

e.g., (DEFINE pi 3.141593)
Example use: (DEFINE two_pi (* 2 pi))

- The evaluation process for DEFINE is different! The first
parameter is never evaluated. The second parameter
is evaluated and bound to the first parameter.

Special Form Function: DEFINE

• 2. The second use of the DEFINE function is to bind a
lambda expression to a name.

• To bind a name to a lambda expression, DEFINE takes
two lists as parameters. The first parameter is the
prototype of a function call, with the function name
followed by the formal parameters, together in a list.
The second list contains an expression to which the
name is to be bound.

• The general form of such a DEFINE is

1-21

Special Form Function: DEFINE

(DEFINE (function_name parameters)

(expression)

)

e.g., (DEFINE (square x) (* x x))
Example use: (square 5)

(DEFINE (hypotenuse side1 side2)
(SQRT(+(square side1)(square side2)))
)

1-22

1-23

Output Functions

• (DISPLAY expression)

• (NEWLINE)

1-24

Numeric Predicate Functions

• #T (or #t) is true and #F (or #f) is false
(sometimes () is used for false)

• =, <>, >, <, >=, <=

• EVEN?, ODD?, ZERO?, NEGATIVE?

• The NOT function inverts the logic of a Boolean
expression

1-25

Control Flow: IF

• Selection- the special form, IF
(IF predicate then_exp else_exp)

e.g.,
(IF (not (= count 0))

(/ sum count)

0)

1-26

Control Flow: COND
• Multiple Selection - the special form, COND

General form:
(COND

(predicate_1 expr {expr})
(predicate_2 expr {expr})
...
(predicate_n expr {expr})
(ELSE expr {expr})

)

• Returns the value of the last expression in the first
pair whose predicate evaluates to true

1-27

Example of COND

(DEFINE (compare x y)
(COND
((> x y) “x is greater than y”)
((< x y) “y is greater than x”)
(ELSE “x and y are equal”)

)
)

1-28

Example of COND

Ex: Leap year: Every year that is exactly divisible by four is
a leap year, except for years that are exactly divisible
by 100, but these centurial years are leap years if they
are exactly divisible by 400.

(DEFINE (leap? year)
(COND
((ZERO? (MODULO year 400)) #T)
((ZERO? (MODULO year 100)) #F)
(ELSE (ZERO? (MODULO year 4)))
)
)

Example

(DEFINE (factorial n)
(IF (<= n 1)

1
(* n (factorial (- n 1)))

)
)

1-30

Function QUOTE
• QUOTE - takes one parameter; returns the parameter

without evaluation
– QUOTE is required because the Scheme interpreter, named

EVAL, always evaluates parameters to function applications
before applying the function. QUOTE is used to avoid
parameter evaluation when it is not appropriate

– QUOTE can be abbreviated with the apostrophe prefix
operator
'(A B) is equivalent to (QUOTE (A B))

1-31

List Functions: CAR and CDR

• CAR takes a list parameter; returns the first
element of that list
e.g., (CAR '(A B C)) yields A
(CAR '((A B) C D)) yields (A B)

• CDR takes a list parameter; returns the list
after removing its first element
e.g., (CDR '(A B C)) yields (B C)
(CDR '((A B) C D)) yields (C D)

1-32

1-33

List Functions: CAR and CDR

• (DEFINE (second a_list) (CAR (CDR a_list)))

Once this function is evaluated, it can be used, as in
(second '(A B C)) = returns B

• Some of the most commonly used functional
compositions in Scheme are built in as single functions.

(CAAR x) = (CAR(CAR x))

(CADR x) = (CAR (CDR x))
(CADDAR x) = (CAR (CDR (CDR (CAR x)))).

(CADDAR '((A B (C) D) E)) = (C)

• (CADDAR '((A B (C) D) E)) =
• (CAR (CDR (CDR (CAR '((A B (C) D) E))))) =
• (CAR (CDR (CDR '(A B (C) D)))) =
• (CAR (CDR '(B (C) D))) =
• (CAR '((C) D)) =
• (C)

1-35

List Functions: CONS and LIST
• CONS takes two parameters, the first of which can be

either an atom or a list and the second of which is a list;
returns a new list that includes the first parameter as
its first element and the second parameter as the
remainder of its result
e.g., (CONS 'A '(B C)) returns (A B C)

• (CONS 'A '()) returns (A)
• (CONS 'A '(B C)) returns (A B C)
• (CONS '() '(A B)) returns (() A B)
• (CONS '(A B) '(C D)) returns ((A B) C D)

• (CONS (CAR a_list) (CDR a_list))

• BE CAREFUL (CONS 'A 'B) -> (A . B)

1-38

List Functions: CONS and LIST
• LIST takes any number of parameters; returns a list

with the parameters as elements
e.g.(LIST ′apple ′orange ′grape) returns
(apple orange grape)

(CONS 'apple (CONS 'orange (CONS 'grape '())))

1-39

(list 'A '(B C)) => (A (B C))

(list 'A '()) => (A ())

(list '() '(A B)) => (() (A B))

(list '(A B) '(C D)) => ((A B) (C D))

1-40

Predicate Function: EQ?

• EQ? takes two symbolic parameters; it returns
#T if both parameters are atoms and the two
are the same; otherwise #F
e.g., (EQ? 'A 'A) yields #T

(EQ? 'A 'B) yields #F
– Note that if EQ? is called with list parameters, the

result is not reliable
– Also EQ? does not work for numeric atoms

• (EQ? 'A 'A) returns #T
• (EQ? 'A 'B) returns #F
• (EQ? 'A '(A B)) returns #F
• (EQ? '(A B) '(A B)) returns #F or #T
• (EQ? 3.4 (+ 3 0.4)) returns #F or #T

Predicate Function: EQV?

• EQV? is like EQ?, except that it works for both
symbolic and numeric atoms; it is a value
comparison, not a pointer comparison
(EQV? 3 3) yields #T
(EQV? 'A 3) yields #F
(EQV? 3.4 (+ 3 0.4)) yields #T
(EQV? 3.0 3) yields #F (floats and integers
are different)

1-42

1-43

Predicate Functions: LIST? and NULL?

•LIST? takes one parameter; it returns #T if the
parameter is a list; otherwise #F

(LIST? '()) yields #T

(LIST? '(X Y)) returns #T
(LIST? 'X) returns #F

•NULL? takes one parameter; it returns #T if the
parameter is the empty list; otherwise #F

– Note that NULL? returns #T if the parameter is ()
– (NULL? '(())) yields #F
– (NULL? '(A B)) returns #F
– (NULL? '()) returns #T
– (NULL? 'A) returns #F

1-44

Example Scheme Function: member
• member takes an atom and a simple list; returns
#T if the atom is in the list; #F otherwise
(DEFINE (member atm lis)
(COND

((NULL? lis) #F)
((EQ? atm (CAR lis)) #T)
(ELSE (member atm (CDR lis))

)

)
(member 'B '(A B C)) returns #T
(member 'B '(A C D E)) returns #F

1-45

(define (member? atm lis)
(cond
((null? lis) #f)
((eq? atm (car lis)) #t)
(else (member? atm (cdr lis))
)

)

(member? 'a '()) => #f

(member? 'a '(a b)) => #t

(member? 'b '(a b)) => #t à (member? ‘b (cdr ‘(a b)) ->
(member? ‘b ‘(b))

(member? 'a '(b c)) => #f

1-46

Example Scheme Function:
equalsimp

• equalsimp takes two simple lists as parameters;
returns #T if the two simple lists are equal; #F
otherwise
(DEFINE (equalsimp lis1 lis2)
(COND

((NULL? lis1) (NULL? lis2))
((NULL? lis2) #F)

((EQ? (CAR lis1) (CAR lis2))

(equalsimp(CDR lis1)(CDR lis2)))
(ELSE #F)

))

1-47

(define (equalsimp lis1 lis2)
(cond
((null? lis1) (null? lis2))
((null? lis2) #f)
((eq? (car lis1) (car lis2))
(equalsimp(cdr lis1)(cdr lis2)))

(else #f)
))

(equalsimp '() '()) => #t
(equalsimp '() '(a)) => #f
(equalsimp '(a) '()) => #f
(equalsimp '(a) '(a)) => #t (equalsimp '(a) '(a)) -> (equalsimp '() '())
(equalsimp '(a) '(b)) => #f
equalsimp '(a) '(a b)) => #f
(equalsimp '(a b) '(a b)) => #t (equalsimp ‘(a b) ‘(a c))

-> (equalsimp ‘(b) ‘(c))
(equalsimp '(a b) '(a c)) => #f

1-48

Example Scheme Function: equal
• equal takes two general lists as parameters; returns
#T if the two lists are equal; #F otherwise
(DEFINE (equal lis1 lis2)
(COND
((NOT (LIST? lis1))(EQ? lis1 lis2))
((NOT (LIST? lis2)) #F)
((NULL? lis1) (NULL? lis2))
((NULL? lis2) #F)
((equal (CAR lis1) (CAR lis2))

(equal (CDR lis1) (CDR lis2)))
(ELSE #F)

))

1-49

(define (equal lis1 lis2)
(cond
((not (list? lis1))(eq? lis1 lis2))
((not (list? lis2)) #f)
((null? lis1) (null? lis2))
((null? lis2) #f)
((equal (car lis1) (car lis2))
(equal (cdr lis1) (cdr lis2)))

(else #f)
))

(equal ' ((a b) c) '((a b) c) => #t
(equal ' ((a b) c) '((a b) c) -> (equal ‘(a b) ‘(a b)) (equal ‘(c) ‘(c)

(equal ‘a ‘a) (equal ‘(b) ‘(b) (equal ‘c ‘c) (equal ‘() ‘())
#t (equal ‘b ‘b) (equal ‘() ‘()) #t #t

#t #t

1-50

Example Scheme Function:
append

• append takes two lists as parameters; returns the first
parameter list with the elements of the second parameter list
appended at the end
(DEFINE (append lis1 lis2)

(COND
((NULL? lis1) lis2)

(ELSE (CONS (CAR lis1)

(append (CDR lis1) lis2)))

))

(append '(A B) '(C D R)) returns (A B C D R)
(append '((A B) C) '(D (E F))) returns ((A B) C D (E F))

1-51

(define (append lis1 lis2)
(cond
((null? lis1) lis2)
(else (cons (car lis1)

(append (cdr lis1) lis2)))
))

(append ‘(a b c) ‘ (d e))
(cons ’a (append ‘(b c) ‘(d e)))
(cons ‘a (cons ‘b (append ‘(c) ‘(d e))))
(cons ‘a (cons ‘b (cons ‘c (append ‘() ‘(d e)))))

(cons ‘a (cons ‘b (cons ‘c ‘(d e))))
(cons ‘a (cons ‘b ’(c d e)))
(cons ‘a ’(b c d e))
’(a b c d e)

1-52

(append '(a b) '(a b)) => (a b a b)

(list '(a b) '(a b)) => ((a b) (a b))

(cons '(a b) '(a b)) => ((a b) a b)

Exercise

1-53

(define (guess list1 list2)
(cond
((null? list1) '())
((null? list2) '())
((eq? (car list1) (car list2))
(cons (car list1) (guess (cdr list1) (cdr list2))))

(else (guess (cdr list1) (cdr list2))
)))

1-54

Example Scheme Function: LET
• General form:
(LET (

(name_1 expression_1)

(name_2 expression_2)
...

(name_n expression_n))
body

)

• Evaluate all expressions, then bind the values to the
names; evaluate the body

• Each binding of a <variable> has <body> as its region.

LET examples

(let ((x 2) (y 3))

(* x y))

Þ6
(let ((x 3) (y (+ x 1)))

(+ x y))
ÞError : unbound symbol x

1-55

Let example

(let ((x 2) (y 3))

(let ((x 7) (z (+ x y)))

(* z x))

)

=> 35

1-56

Let*

• Let* is similar to let, but the bindings are performed sequentially
from left to right, and the region of a binding indicated
by (<variable> <init>) is that part of the let* expression to the
right of the binding. Thus the second binding is done in an
environment in which the first binding is visible, and so on.

(let ((x 2) (y 3))

(let* ((x 7) (z (+ x y)))

(* z x)))

=> 70

1-57

1-58

LET Example

(DEFINE (quadratic_roots a b c)
(LET (

(root_part_over_2a
(/ (SQRT (- (* b b) (* 4 a c)))(* 2 a)))

(minus_b_over_2a (/ (- 0 b) (* 2 a)))
(DISPLAY (+ minus_b_over_2a root_part_over_2a))
(NEWLINE)
(DISPLAY (- minus_b_over_2a root_part_over_2a))

))

Tail Recursion in Scheme
• Definition: A function is tail recursive if its

recursive call is the last operation in the function
• A tail recursive function can be automatically

converted by a compiler to use iteration, making
it faster

• Scheme language definition requires that its
language systems convert all tail recursive
functions to use iteration

1-59

Tail Recursion Example

(define (my-last lst)

(if (null? (cdr lst))
(car lst)

(my-last (cdr lst))))

(my-last '(1 2 3)) ⇒ 3

Tail Recursion in Scheme

1-61

(DEFINE (member atm a_list)
(COND

((NULL? a_list) #F)
((EQ? atm (CAR a_list)) #T)

(ELSE (member atm (CDR a_list)))
))

the member function is tail recursive

This function can be automatically converted by a compiler
to use iteration, resulting in faster execution than in its
recursive form

Tail Recursive Example

Is the following function tail recursive ?
(define (list-sum lis)

(if (null? lis)
0

(+ (car lis) (list-sum (cdr lis)))

)
)

The problem here is control must always return so that the actual
call can be done.

1-62

Writing Tail Recursive Functions
• We can write a tail-recursive version of list-sum that

adds things in front-to-back order instead. The trick is to do
the addition before the tail call, and to pass the sum so far
to the recursive call.

• To do this, we have to keep a running sum, and each
recursive call must pass it as an argument to the next. To
start it off, we have to have a "running sum" of 0.

(define (loop lis sum-so-far)
(cond ((null? lis) sum-so-far)

(else (loop (cdr lis) (+ sum-so-far (car lis))))))

;; a wrapper that supplies an initial running sum of 0
(define (list-sum lis)

(loop lis 0))

(define (list-sum lis)
(if (null? lis)

0
(+ (car lis) (list-sum (cdr lis)))

)
)

Not Tail Recursive:

Tail Recursive:

Tail Recursion in Scheme (cont’d.)
• Example of rewriting a function to make it tail recursive, using helper a function

Original: (DEFINE (factorial n)

(IF (= n 0)

1

(* n (factorial (- n 1)))

))

you can use an accumulator -- an additional parameter to a function that accumulates
the answer -- to convert a non-tail recursive function into a tail recursive one.

Tail recursive: (DEFINE (facthelper n factpartial)

(IF (= n 0)

factpartial

(facthelper (- n 1) (* n factpartial)))

))

(DEFINE (factorial n)
(facthelper n 1))

1-65

1-66

Functional Form - Composition
– If h is the composition of f and g, h(x) = f(g(x))
(DEFINE (g x) (* 3 x))
(DEFINE (f x) (+ 2 x))

(DEFINE h x) (+ 2 (* 3 x))) (The composition)

– In Scheme, the functional composition function compose can be
written:
(DEFINE (compose f g) (LAMBDA (x) (f (g x))))

Remember our discussion on CADR, CDDR, etc.

((compose CAR CDR) '((a b) c d)) yields c

1-67

Write the alternative of CDAR using compose

((compose CDR CAR) '((a b) c d))

(DEFINE (third a_list)

((compose CAR (compose CDR CDR)) a_list))
is equivalent to CADDR

Write the function to return the third element of a list

1-68

Functional Form – Apply-to-All

• Apply to All - one form in Scheme is map
– Applies the given function to all elements of the

given list;
(DEFINE (map fun lis)

(COND
((NULL? lis) ())
(ELSE (CONS (fun (CAR lis))

(map fun (CDR lis))))
))

(map (lambda (num) (* num num num)) '(3 4 2 6))
yields (27 64 8 216)

Functional Form – Apply-to-All
(map cdr '((a b c) (d e) (f g)))

=> ((b c) (e) (g))
(map round '(3 3.3 4.6 5))

Þ(3 3 5 5)
(map null? '(3 () () 5))

Þ(#f #t #t #f)

(map + '(1 2 3) '(10 11 12))

=> (11 13 15)
(map (lambda (x y) (list x y)) '(a b c) '(j k l))

=> ((a j) (b k) (c l))

1-69

Nested Scopes
• You can have arbitrarily nested scopes (scopes within

scopes within scopes ...). Further, since function names
are bound like any other variable, function names also
obey the scope rules.

(define x 100)

(define y 200)
(define (simple y) (+ y 300))

(define (myfunc x)

(let ((simple (lambda (y) (+ y 10))))

(simple x)))

(myfunc 18) => 28
(simple 18) => 318

1-70

1-71

Functions That Build Code
• It is possible in Scheme to define a function that

builds Scheme code and requests its
interpretation

• This is possible because the interpreter is a
user-available function, EVAL

1-72

Adding a List of Numbers
• Suppose that in a program we have a list of numeric atoms and

need the sum. We cannot apply + directly on the list, because
+ can take only atomic parameters, not a list of numeric atoms.

• Solution 1: Use recursion to go through the list:
(DEFINE (adder a_list)

(COND

((NULL? a_list) 0)

(ELSE (+ (CAR a_list) (adder (CDR a_list))))

))

1-73

(adder '(3 4 5))
(+ 3 (adder (4 5)))
(+ 3 (+ 4 (adder (5))))
(+ 3 (+ 4 (+ 5 (adder ()))))
(+ 3 (+ 4 (+ 5 0)))
(+ 3 (+ 4 5))
(+ 3 9)
(12)

an example call to adder

1-74

Adding a List of Numbers
((DEFINE (adder lis)
(COND
((NULL? lis) 0)
(ELSE (EVAL (CONS '+ lis)))

))

• The parameter is a list of numbers to be added; adder
inserts a + operator and evaluates the resulting list
– Use CONS to insert the atom + into the list of numbers.
– Be sure that + is quoted to prevent evaluation
– Submit the new list to EVAL for evaluation

1-75

(adder '(3 4 5))
(EVAL (+ 3 4 5)
(12)

an example call to adder version 2

1-76

Applications of Functional Languages

• LISP is used for artificial intelligence
– Knowledge representation
– Machine learning
– Natural language processing
– Modeling of speech and vision

• Scheme is used to teach introductory
programming at some universities

• Support for functional programming is
increasingly creeping into imperative languages

1-77

Comparing Functional and Imperative
Languages

• Imperative Languages:
– Efficient execution
– Complex semantics
– Complex syntax
– Concurrency is programmer designed

• Functional Languages:
– Simple semantics
– Simple syntax
– Inefficient execution
– Programs can automatically be made concurrent

Examples
• Write a Scheme function intersection that takes as arguments

two simple lists lst1 and lst2, and returns the intersection of the
two lists. For example:

(intersection '(7 2 3 5) '(5 2)) => (2 5)

(intersection '(1 2 3 5) '(6 4)) => ()
(intersection '(a c d e g) '(h g a f d)) => (a d g)

1-78

(define (intersect lst1 lst2)
(cond
((null? lst1) '())
((null? lst2) '())
((member (car lst1) lst2) (cons (car lst1)

(intersect (cdr lst1) lst2)))
(else (intersect (cdr lst1) lst2))))

1-79

(define (insert x lst)
(if (null? lst)

(list x)
(let ((y (car lst))

(ys (cdr lst)))
(if (<= x y)

(cons x lst)
(cons y (insert x ys))))))

(define (insertion-sort lst)
(if (null? lst)

'()
(insert (car lst)

(insertion-sort (cdr lst)))))

(insertion-sort '(6 8 5 9 3 2 1 4 7))

