
Logic Programming Languages

BBM 301 – Programming Languages

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-2

Introduction

• Programs in logic languages are expressed in a
form of symbolic logic

• Use a logical inferencing process to produce
results

• Declarative rather that procedural:
– Only specification of results are stated (not detailed

procedures for producing them)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-3

Proposition
• A logical statement that may or may not be true

– Consists of objects and relationships of objects to
each other

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-4

Symbolic Logic

• Logic which can be used for the basic needs of
formal logic:
– Express propositions
– Express relationships between propositions
– Describe how new propositions can be inferred

from other propositions

• Particular form of symbolic logic used for logic
programming called predicate calculus

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-5

Object Representation

• Objects in propositions are represented by
simple terms: either constants or variables

• Constant: a symbol that represents an object
• Variable: a symbol that can represent different

objects at different times
– Different from variables in imperative languages

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-6

Compound Terms

• Atomic propositions consist of compound terms
• Compound term: one element of a mathematical

relation, written like a mathematical function
– Mathematical function is a mapping
– Can be written as a table

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-7

Parts of a Compound Term

• Compound term composed of two parts
– Functor: function symbol that names the

relationship
– Ordered list of parameters (tuple)

• Examples:
student(jon)

like(seth, OSX)

like(nick, windows)

like(jim, linux)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-8

Forms of a Proposition

• Propositions can be stated in two forms:
– Fact: proposition is assumed to be true
– Query: truth of proposition is to be determined

• Compound proposition:
– Have two or more atomic propositions
– Propositions are connected by operators

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-9

Logical Operators

Name Symbol Example Meaning

negation ¬ ¬ a not a

conjunction Ç a Ç b a and b

disjunction È a È b a or b

equivalence º a º b a is equivalent
to b

implication É
Ì

a É b
a Ì b

a implies b
b implies a

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-10

Quantifiers

Name Example Meaning

universal "X.P For all X, P is true

existential $X.P There exists a value of X
such that P is true

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-11

Clausal Form

•Too many ways to state the same thing
•Use a standard form for propositions
•Clausal form:
– B1 È B2 È … È Bn Ì A1 Ç A2 Ç … Ç Am

– means if all the As are true, then at least one B is true

•Antecedent: right side
•Consequent: left side

• All predicate calculus propositions can be
algorithmically converted to clausal form.

Example Clausal Forms

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-12

if bob likes fish and a trout is a fish, then bob likes
trout.

if al is bob’s father and violet is bob’s mother and
louis is bob’s grandfather, then
louis is either al’s father or violet’s father

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-13

Predicate Calculus and Proving
Theorems

• A use of propositions is to discover new
theorems that can be inferred from known
axioms and theorems

• Resolution: an inference principle that allows
inferred propositions to be computed from
given propositions

Concept of Resolution

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-14

Suppose there are two propositions of the form:

Suppose P1 is identical to Q2

We can write

Concept of Resolution

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-15

The mechanics:
• Terms of the left sides are OR’d
• Terms of the right sides are AND’d.
• Any term that appears on both sides is removed.

Concept of Resolution

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-16

The mechanics:
• Terms of the left sides are OR’d
• Terms of the right sides are AND’d.
• Any term that appears on both sides is removed.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-17

Resolution

• Unification: finding values for variables in
propositions that allows matching process to
succeed

• Instantiation: assigning temporary values to
variables to allow unification to succeed

• After instantiating a variable with a value, if
matching fails, may need to backtrack and
instantiate with a different value

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-18

Proof by Contradiction

• Hypotheses: a set of pertinent propositions
• Goal: negation of theorem stated as a

proposition
• Theorem is proved by finding an inconsistency

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-19

Theorem Proving

• Basis for logic programming
• When propositions used for resolution, only

restricted form can be used
• Horn clause - can have only two forms

– Headed: single atomic proposition on left side
– Headless: empty left side (used to state facts)

• Most propositions can be stated as Horn clauses

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-20

Overview of Logic Programming
• Declarative semantics

– There is a simple way to determine the meaning
of each statement

– Simpler than the semantics of imperative
languages

• Programming is nonprocedural
– Programs do not state now a result is to be

computed, but rather the form of the result
– Programming in both imperative and functional

languages is procedural, which means that the
programmer instructs the computer on exactly
how the computation is to be done.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-21

Example: Sorting a List

• Describe the characteristics of a sorted list, not
the process of rearranging a list

sort(old_list, new_list) Ì permute (old_list, new_list) Ç sorted
(new_list)

sorted (list) Ì "j such that 1£ j < n, list(j) £ list (j+1)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-22

The Origins of Prolog

• University of Aix-Marseille (Calmerauer &
Roussel)
– Natural language processing

• University of Edinburgh (Kowalski)
– Automated theorem proving

This book uses the Edinburgh syntax of Prolog

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-23

Terms

• Term: a constant, variable, or structure
• Constant: an atom or an integer
• Atom: symbolic value of Prolog
• Atom consists of either:

– a string of letters, digits, and underscores beginning
with a lowercase letter

– a string of printable ASCII characters delimited by
apostrophes

e.g: elephant, xYZ, a_123, ‘Another atom’

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-24

Terms

• Variable: any string of letters, digits, and
underscores beginning with an uppercase letter

• e.g: X, Elephant, _G10, MyVariable, _

• Instantiation: binding of a variable to a value
– Lasts only as long as it takes to satisfy one complete

goal, which involves the proof or disproof of one
proposition

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-25

Terms

• Structure: represents atomic proposition
functor(parameter list)
– Functor is an atom, parameter list can be atoms,

variables or other structures

– sibling(jack, jill).
– F(g(Alpha,)), 7).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-26

Fact Statements

• Used for the hypotheses / database
– To define something as being unconditionally true

• Headless Horn clauses
female(shelley).

male(bill).

father(bill, jake).

father(bill, shelley).

mother(mary, jake).

mother(mary, shelley).

Notice that every Prolog statement is terminated by a
period.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-27

Rule Statements
Headed Horn clause
The general form of the Prolog headed Horn clause statement:

head :- body.
Head of a rule is true if all predicates in the body can be
proved as true

consequence :- antecedent_expression.
Right side: antecedent (if part)

May be single term or conjunction
Left side: consequent (then part)

Must be single term
“consequence can be concluded if the antecedent
expression is true or can be made to be true by some
instantiation of its variables.”

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-28

Example Rules
ancestor(mary,shelley):- mother(mary,shelley).

• Conjunction: multiple terms separated by
logical AND operations (implied)

• Can use variables (universal objects) to
generalize meaning:
parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).

grandparent(X,Z):- parent(X,Y), parent(Y,Z).

Here X, Y, Z are variables (they start with uppercase letters)

doughter(shelley):-female(shelley), child(shelley).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-29

Goal Statements
• For theorem proving, theorem is in form of proposition

that we want system to prove or disprove – goal
statement

• Same format as headless Horn
man(fred)

• yes means that the system has proved the goal was true under the given
database of facts and relationships

• No means that goal was determined to be false or the system was simply
unable to prove it.

Conjunctive propositions and propositions with variables
also legal goals.
• When variables are present, the system not only asserts the validity of the goal but also identifies

the instantiations of the variables that make the goal true.

father(X, mike).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-30

Inferencing Process of Prolog

• Queries are called goals
• If a goal is a compound proposition, each of the facts is a subgoal
• To prove a goal is true must find a chain of inference rules

and/or facts. For goal Q,
either Q must be found as a fact in the database or
the inferencing process must find a fact P1 and a sequence of propositions P2, P3, c, Pn such
that

P2 :- P1
P3 :- P2
…
Q :- Pn

• Process of proving a subgoal called matching, satisfying, or
resolution

Query : man(bob).

1:
man(bob).

2:
father(bob).
man(X) :- father(X).

What happens if the query is
man(X).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-32

Approaches

• Matching is the process of proving a proposition
• Proving a subgoal is called satisfying the subgoal
• Bottom-up resolution, forward chaining

– Begin with facts and rules of database and attempt to find sequence that
leads to goal

– Works well with a large set of possibly correct answers

• Top-down resolution, backward chaining
– Begin with goal and attempt to find sequence that leads to set of facts in

database
– Works well with a small set of possibly correct answers

• Prolog implementations use backward chaining

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-33

Subgoal Strategies

• When goal has more than one subgoal, can use
either
– Depth-first search: find a complete proof for the

first subgoal before working on others
– Breadth-first search: work on all subgoals in parallel

• Prolog uses depth-first search
– Can be done with fewer computer resources

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-34

Backtracking

• With a goal with multiple subgoals, if fail to
show truth of one of subgoals, reconsider
previous subgoal to find an alternative solution:
backtracking

• Begin search where previous search left off
• Can take lots of time and space because may

find all possible proofs to every subgoal

male(X), parent(X, shelley).

male(bill).
male(dan).
male(mike).
Parent(mike, shelley).

Prolog finds the first fact in the database with male as its functor. It then instantiates
X to the parameter of the found fact, say mike. Then, it attempts to prove that
parent(mike, shelley) is true. If it fails, it backtracks to the first subgoal, male(X), and
attempts to resatisfy it with some alternative instantiation of X.

example goal might be processed more efficiently if the order of the two subgoals
were reversed. Then, only after resolution had found a parent of shelley would it try
to match that person with the male subgoal. This is more efficient if shelley has fewer
parents than there are males in the database

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-36

Simple Arithmetic

• Prolog supports integer variables and integer
arithmetic

• is operator: takes an arithmetic expression as
right operand and variable as left operand
A is B / 17 + C

• Not the same as an assignment statement!
– The following is illegal (Left side variable cannot be

previously instantiated)

Sum is Sum + Number.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-37

Example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),

time(X,Time),
Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-38

Trace

• Built-in structure that displays instantiations at
each step

• Tracing model of execution - four events:
– Call (beginning of attempt to satisfy goal)
– Exit (when a goal has been satisfied)
– Redo (when backtrack occurs)
– Fail (when goal fails)

trace.
distance(chevy, Chevy_Distance).
(1) 1 Call: distance(chevy, _0)?
(2) 2 Call: speed(chevy, _5)?
(2) 2 Exit: speed(chevy, 105)
(3) 2 Call: time(chevy, _6)?
(3) 2 Exit: time(chevy, 21)
(4) 2 Call: _0 is 105*21?
(4) 2 Exit: 2205 is 105*21
(1) 1 Exit: distance(chevy, 2205)
Chevy_Distance = 2205

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-40

Example
likes(jake,chocolate).

likes(jake, apricots).

likes(darcie, licorice).

likes(darcie, apricots).

trace.

likes(jake, X), likes(darcie, X).
(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?

(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?

(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)

X = apricots

Recall
Programs are list of facts and rules
A fact declares something as being true
A rule states conditions for a statement being true

Answering a query means proving that the goal represented by that query can be
satisfied.
• if a goal matches with a fact then it is satisfied
• If a goal matches the head of a rule, then it is satisfied if the goal represented

by the rule’s body is satisfied
• If a rule consists of several subgoals separated by commas, then it is satisfied

if all its subgoals are satisfied

Adapted from Ulle Endriss(University of Amsterdam)

Example
Consider the following argument

All men are mortal
Socrates is a man

Hence, Socrates is mortal.

It has two premises and a conclusion
The corresponding Prolog program is :

mortal(X) :- man(X).
man(socrates).

?-mortal(socrates).
Yes.

Adapted from Ulle Endriss(University of Amsterdam)

Examples
bigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

Queries:
?-bigger(donkey,dog).
Yes
?-bigger(monkey, elephant).
No

?-bigger(elephant, monkey).
No

Adapted from Ulle Endriss(University of Amsterdam)

Examplesbigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

?-is_bigger(elephant, monkey).
Yes

?-is_bigger(X, donkey).
X=horse;
X=elephant;
No

Adapted from Ulle Endriss(University of Amsterdam)

Examples
bigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).
is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

?-is_bigger(donkey, X), is_bigger(X, monkey).
No

?-is_bigger(horse, X), is_bigger(X, dog).
X= donkey
No

Adapted from Ulle Endriss(University of Amsterdam)

More examples
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

Adapted from William Mitchell (University of Arizona)

?-food(carrot).
Yes
?-food(pickle).
No
?-food(Edible).
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
Edible = lettuce ;
Edible = rice ;
No

More examples
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

color(sky, blue).
color(soil, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).
color(rose, red).
color(tomato, red).

Adapted from William Mitchell (University of Arizona)

?- food(F), color(F, green).
F = broccoli ;
F = lettuce ;
No

?- color(F, blue), food(F).
No

More examples
food(apple).

…
color(sky, blue).
…
likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

Adapted from William Mitchell (University of Arizona)

Who likes baseball
?- likes(Who, baseball).

Whol likes a food
?- likes(Who, X), food(X).

Who likes green foods
?- likes(Who,X),food(X),color(X, green).

Who likes foods with the same color as
foods that Mary likes
?- likes(mary,F1), food(F1), color(F1,C),

likes(Who,F2), food(F2), color(F2,C),

More examples
food(apple).

food(broccoli).
food(carrot).
food(lettuce).
food(rice).

color(sky, blue).
color(soil, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).
color(rose, red).
color(tomato, red).

Adapted from William Mitchell (University of Arizona)

Are there two foods with the same color?

?- food(F1), food(F2), color(F1,C),
color(F2,C).
F1 = apple
F2 = apple
C = red;

F1 = broccoli
F2 = broccoli
C = green;

?- food(F1), food(F2), F1 \== F2,
color(F1,C), color(F2,C).
F1 = broccoli
F2 = lettuce
C = green

Matching/Unification
Recall that two terms match if they are either identical or if they ca be made identical
by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by using equality
predicate = (which we will read as unify)

?-born(mary, newyork) = born(mary, X).
X = newyork
Yes

?- f(a, g(X,Y)) = f(X,Z), Z = g(W,h(X)).
X = a
Y = h(a)
Z = g(a, h(a))
W = a
Yes

Adapted from Ulle Endriss(University of Amsterdam)

Matching
?-p(X,2,2) = p(1,Y,X).
No

?- p(_,2,2) = p(1,Y,_).
Y=2
Yes

_ (underscore) is called the anonymous variable
Every occurrence of _ represents a different variable
The instantiations are not being reported

Adapted from Ulle Endriss(University of Amsterdam)

Adapted from Stuart C. Shapiro (SUNY, Buffalo)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Adapted from William Mitchell (University of Arizona)

Computing with structures
The Prolog structure, which is the notation of a predicate symbol with
arguments, can be treated as a data structure, and run computations on it.
Consider the following arithmetic.
We introduce zero as a symbol zero, and the number X’s successor as s(X).
This is called the Peano arithmetic.
For example, the number 5 is written as: s(s(s(s(s(zero))))).

We want to define addition with the sum(S1, S2, S3) predicate, which would be
true if, and only if, the S3 argument was the sum of the first two arguments:

sum(zero, S1, S1).
sum(s(X), S1, s(S2)) :-sum(X, S1, S2).

Now we can conduct computations in this arithmetic, eg. to compute 3+4:
?-sum(s(s(s(zero))), s(s(s(s(zero)))), X).
X = s(s(s(s(s(s(s(zero)))))))

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-66

List Structures

• Other basic data structure (besides atomic
propositions we have already seen): list

• List is a sequence of any number of elements
• Elements can be atoms, atomic propositions, or

other terms (including other lists)

[apple, prune, grape, kumquat]

[] (empty list)
[X | Y] (head X and tail Y)

this_is_a_list([apricot, peach, pear]).
this_is_a_list([apple, apricot, peach, pear]).

In query mode, one of the elements of new_list can be dismantled into
head and tail with
this_is_a_list([New_List_Head | New_List_Tail]).

the following are equivalent:
[apricot, peach, pear | []]
[apricot, peach | [pear]]
[apricot | [peach, pear]]

[a]

[X,Y]

[1,2,3,4]

[a,[1,X],[],[],a,[a]]

[1|[2|[3|[4|[]]]]] /* exactly equal to the list [1,2,3,4] */

[1|[2|[3|[4]]]] /* another way of writing the list [1,2,3,4] */

[1,2|[3,4]] /* this is also allowed and is the same [1,2,3,4] */

http://www.inf.ed.ac.uk/teaching/courses/aipp/

add_element([E|L], E, L).

?-add_element(L, apple , [apricot, peach]).
L = [apple, apricot, peach]
?-add_element(L, apple , []).
L = [apple]

get_element(E, [E|L]).

?-get_element(E, [apricot, peach]).
E = apricot
?-get_element(E, [apricot]).
E = apricot

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-70

Append Example

append([], List, List).

append([Head | List_1], List_2, [Head | List_3]) :-

append (List_1, List_2, List_3).

trace.
append([bob, jo], [jake, darcie], Family).
(1) 1 Call: append([bob, jo], [jake, darcie], _10)?
(2) 2 Call: append([jo], [jake, darcie], _18)?
(3) 3 Call: append([], [jake, darcie], _25)?
(3) 3 Exit: append([], [jake, darcie], [jake, darcie])
(2) 2 Exit: append([jo], [jake, darcie], [jo, jake, darcie])
(1) 1 Exit: append([bob, jo], [jake, darcie], [bob, jo, jake, darcie])
Family = [bob, jo, jake, darcie]
yes

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-71

?-append(X, Y, [a, b, c]).
X = []
Y = [a, b, c]
;
X = [a]
Y = [b, c]
;
X = [a, b]
Y = [c]
;
X = [a, b, c]
Y = []

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-73

More Examples

member(Element, [Element | _]).

member(Element, [_ | List]) :-

member(Element, List).

The underscore character means an anonymous variable—it means we do not
care what instantiation it might get from unification

• trace.
• member(a, [b, c, d]).
• (1) 1 Call: member(a, [b, c, d])?
• (2) 2 Call: member(a, [c, d])?
• (3) 3 Call: member(a, [d])?
• (4) 4 Call: member(a, [])?
• (4) 4 Fail: member(a, [])
• (3) 3 Fail: member(a, [d])
• (2) 2 Fail: member(a, [c, d])
• (1) 1 Fail: member(a, [b, c, d])
• no
• member(a, [b, a, c]).
• (1) 1 Call: member(a, [b, a, c])?
• (2) 2 Call: member(a, [a, c])?
• (2) 2 Exit: member(a, [a, c])
• (1) 1 Exit: member(a, [b, a, c])
• yes

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-74

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-75

More Examples
reverse([], []).
reverse([Head | Tail], List) :-

reverse (Tail, Result),

append (Result, [Head], List).

• trace.
• reverse([a, b, c], Q).
• (1) 1 Call: reverse([a, b, c], _6)?
• (2) 2 Call: reverse([b, c], _65636)?
• (3) 3 Call: reverse([c], _65646)?
• (4) 4 Call: reverse([], _65656)?
• (4) 4 Exit: reverse([], [])
• (5) 4 Call: append([], [c], _65646)?
• (5) 4 Exit: append([], [c], [c])
• (3) 3 Exit: reverse([c], [c])
• (6) 3 Call: append([c], [b], _65636)?
• (7) 4 Call: append([], [b], _25)?
• (7) 4 Exit: append([], [b], [b])
• (6) 3 Exit: append([c], [b], [c, b])
• (2) 2 Exit: reverse([b, c], [c, b])
• (8) 2 Call: append([c, b], [a], _6)?
• (9) 3 Call: append([b], [a], _32)?
• (10) 4 Call: append([], [a], _39)?
• (10) 4 Exit: append([], [a], [a])
• (9) 3 Exit: append([b], [a], [b, a])
• (8) 2 Exit: append([c, b], [a], [c, b, a])
• (1) 1 Exit: reverse([a, b, c], [c, b, a])

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-76

Backtracking
bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), large(X).

trace, (ostrich(oscar)).

Call:ostrich(oscar)
Call:bird(oscar)
Exit:bird(oscar)
Call:large(oscar)
Exit:large(oscar)
Exit:ostrich(oscar)

trace, (ostrich(X)).

Call:ostrich(_4470)
Call:bird(_4470)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Redo:bird(_4470)
Exit:bird(oscar)
Call:large(oscar)
Exit:large(oscar)
Exit:ostrich(oscar)
X = oscar

Stuart C. Shapiro (SUNY, Buffalo)

Unwanted Backtracking & Cut
bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), large(X).

trace, (ostrich(tweety)).
Call:ostrich(tweety)
Call:bird(tweety)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Redo:bird(tweety)
Call:feathered(tweety)
Fail:feathered(tweety)
Fail:bird(tweety)
Fail:ostrich(tweety)
false

trace, (ostrich(tweety)).

Call:ostrich(tweety)
Call:bird(tweety)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Fail:ostrich(tweety)
false

No need to
try tweety
again

bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), !, large(X).

Stuart C. Shapiro (SUNY, Buffalo)

Fail : Forcing failure
bird(tweety).
bird(willy).
canary(tweety).
swims(willy).
penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).

trace, (penguin(tweety)).

Call:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)
false

trace, (penguin(willy)).
Call:penguin(willy)
Call:canary(willy)
Fail:canary(willy)
Redo:penguin(willy)
Call:bird(willy)
Exit:bird(willy)
Call:swims(willy)
Exit:swims(willy)
Exit:penguin(willy)
1true

If something
is a canary it
is not a
penguin

Stuart C. Shapiro (SUNY, Buffalo)

trace, (penguin(X)).
Call:penguin(_4902)
Call:canary(_4902)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(_4902)
false

Use cut when
seeing if a ground
atom is satisfied,
not for generating
satisfying
instances

Rule order
penguin(X) :- bird(X), swims(X).
penguin(X) :- canary(X), !, fail.
bird(X) :- canary(X).
bird(willy).
canary(tweety).
swims(willy).

trace, (penguin(tweety)).

Call:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)

trace, (penguin(tweety)).
Call:penguin(tweety)
Call:bird(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Exit:bird(tweety)
Call:swims(tweety)
Fail:swims(tweety)
Redo:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)

Stuart C. Shapiro (SUNY, Buffalo)

penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).
bird(X) :- canary(X).
bird(willy).
canary(tweety).
swims(willy).

bad

good

Avoid left recursive rules
parent(a,b).
parent(b,c).
ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z), ancestor(Y,Z).

Stuart C. Shapiro (SUNY, Buffalo)

Do not use the following:

ancestor(X,Y):- ancestor(X,Z), parent(Y,Z).

ancestor(X,Y):- ancestor(X,Z), ancestor(Y,Z).

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-83

Deficiencies of Prolog

• Resolution order control
– In a pure logic programming environment, the order of

attempted matches is nondeterministic and all matches would
be attempted concurrently

• The closed-world assumption
– The only knowledge is what is in the database

• The negation problem
– Anything not stated in the database is assumed to be false

• Intrinsic limitations
– It is easy to state a sort process in logic, but difficult to actually

do—it doesn’t know how to sort

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-84

Applications of Logic Programming

• Relational database management systems
• Expert systems
• Natural language processing

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-85

Summary

• Symbolic logic provides basis for logic
programming

• Logic programs should be nonprocedural
• Prolog statements are facts, rules, or goals
• Resolution is the primary activity of a Prolog

interpreter
• Although there are a number of drawbacks with

the current state of logic programming it has
been used in a number of areas

