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Introduction

• Programs in logic languages are expressed in a 
form of symbolic logic

• Use a logical inferencing process to produce 
results

• Declarative rather that procedural:
– Only specification of results are stated (not detailed 

procedures for producing them)
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Proposition
• A logical statement that may or may not be true

– Consists of objects and relationships of objects to 
each other
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Symbolic Logic

• Logic which can be used for the basic needs of 
formal logic:
– Express propositions
– Express relationships between propositions
– Describe how new propositions can be inferred 

from other propositions

• Particular form of symbolic logic used for logic 
programming called predicate calculus
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Object Representation

• Objects in propositions are represented by 
simple terms: either constants or variables

• Constant: a symbol that represents an object
• Variable: a symbol that can represent different 

objects at different times
– Different from variables in imperative languages
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Compound Terms

• Atomic propositions consist of compound terms
• Compound term: one element of a mathematical 

relation, written like a mathematical function
– Mathematical function is a mapping
– Can be written as a table
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Parts of a Compound Term

• Compound term composed of two parts
– Functor: function symbol that names the 

relationship
– Ordered list of parameters (tuple)

• Examples:
student(jon)

like(seth, OSX)

like(nick, windows)

like(jim, linux)
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Forms of a Proposition

• Propositions can be stated in two forms:
– Fact: proposition is assumed to be true
– Query: truth of proposition is to be determined

• Compound proposition:
– Have two or more atomic propositions
– Propositions are connected by operators
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Logical Operators

Name Symbol Example Meaning

negation ¬ ¬ a not a

conjunction Ç a Ç b a and b

disjunction È a È b a or b

equivalence º a º b a is equivalent 
to b

implication É
Ì

a É b
a Ì b

a implies b
b implies a
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Quantifiers

Name Example Meaning

universal "X.P For all X, P is true

existential $X.P There exists a value of X 
such that P is true
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Clausal Form

•Too many ways to state the same thing
•Use a standard form for propositions
•Clausal form:
– B1 È B2 È … È Bn Ì A1 Ç A2 Ç … Ç Am

– means if all the As are true, then at least one B is true

•Antecedent: right side
•Consequent: left side

• All predicate calculus propositions can be 
algorithmically converted to clausal form.



Example Clausal Forms
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if bob likes fish and a trout is a fish, then bob likes 
trout.

if al is bob’s father and violet is bob’s mother and 
louis is bob’s grandfather, then 
louis is either al’s father or violet’s father
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Predicate Calculus and Proving 
Theorems

• A use of propositions is to discover new 
theorems that can be inferred from known 
axioms and theorems

• Resolution: an inference principle that allows 
inferred propositions to be computed from 
given propositions



Concept of Resolution 
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Suppose there are two propositions of the form: 

Suppose P1 is identical to Q2

We can write 



Concept of Resolution 
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The mechanics: 
• Terms of the left sides are OR’d
• Terms of the right sides are AND’d. 
• Any term that appears on both sides is removed.



Concept of Resolution 
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The mechanics: 
• Terms of the left sides are OR’d
• Terms of the right sides are AND’d. 
• Any term that appears on both sides is removed.
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Resolution

• Unification: finding values for variables in 
propositions that allows matching process to 
succeed

• Instantiation: assigning temporary values to 
variables to allow unification to succeed

• After instantiating a variable with a value,  if 
matching fails, may need to backtrack and 
instantiate with a different value



Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-18

Proof by Contradiction

• Hypotheses: a set of pertinent propositions
• Goal: negation of theorem stated as a 

proposition
• Theorem is proved by finding an inconsistency
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Theorem Proving

• Basis for logic programming
• When propositions used for resolution, only 

restricted form can be used
• Horn clause - can have only two forms

– Headed: single atomic proposition on left side
– Headless: empty left side (used to state facts)

• Most propositions can be stated as Horn clauses
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Overview of Logic Programming
• Declarative semantics

– There is a simple way to determine the meaning 
of each statement

– Simpler than the semantics of imperative 
languages

• Programming is nonprocedural
– Programs do not state now a result is to be 

computed, but rather the form of the result
– Programming in both imperative and functional 

languages is procedural, which means that the 
programmer instructs the computer on exactly 
how the computation is to be done.
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Example: Sorting a List

• Describe the characteristics of a sorted list, not 
the process of rearranging a list

sort(old_list, new_list) Ì permute (old_list, new_list) Ç sorted 
(new_list)

sorted (list) Ì "j such that 1£ j < n, list(j) £ list (j+1)
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The Origins of Prolog

• University of Aix-Marseille (Calmerauer & 
Roussel)
– Natural language processing

• University of Edinburgh (Kowalski)
– Automated theorem proving

This book uses the Edinburgh syntax of Prolog
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Terms

• Term: a constant, variable, or structure
• Constant: an atom or an integer
• Atom: symbolic value of Prolog
• Atom consists of either:

– a string of letters, digits, and underscores beginning 
with a lowercase letter

– a string of printable ASCII characters delimited by 
apostrophes

e.g: elephant, xYZ, a_123, ‘Another atom’
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Terms

• Variable: any string of letters, digits, and 
underscores beginning with an uppercase letter

• e.g: X, Elephant, _G10, MyVariable, _

• Instantiation: binding of a variable to a value
– Lasts only as long as it takes to satisfy one complete 

goal, which involves the proof or disproof of one 
proposition
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Terms

• Structure: represents atomic proposition
functor(parameter list)
– Functor is an atom, parameter list can be atoms, 

variables or other structures

– sibling(jack, jill).
– F(g(Alpha,)), 7).
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Fact Statements

• Used for the hypotheses / database
– To define something as being unconditionally true

• Headless Horn clauses
female(shelley).

male(bill).

father(bill, jake).

father(bill, shelley).

mother(mary, jake).

mother(mary, shelley).

Notice that every Prolog statement is terminated by a 
period.
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Rule Statements
Headed Horn clause
The general form of the Prolog headed Horn clause statement:

head :- body.
Head of a rule is true if all predicates in the body can be
proved as true

consequence :- antecedent_expression.
Right side: antecedent (if part)

May be single term or conjunction
Left side: consequent (then part)

Must be single term
“consequence can be concluded if the antecedent 
expression is true or can be made to be true by some 
instantiation of its variables.”
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Example Rules
ancestor(mary,shelley):- mother(mary,shelley).

• Conjunction: multiple terms separated by 
logical AND operations (implied)

• Can use variables (universal objects) to 
generalize meaning:
parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).

grandparent(X,Z):- parent(X,Y), parent(Y,Z).

Here X, Y, Z are variables (they start with uppercase letters)

doughter(shelley):-female(shelley), child(shelley).
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Goal Statements
• For theorem proving, theorem is in form of proposition 

that we want system to prove or disprove – goal 
statement

• Same format as headless Horn
man(fred)

• yes means that the system has proved the goal was true under the given
database of facts and relationships

• No means that goal was determined to be false or the system was simply 
unable to prove it.

Conjunctive propositions and propositions with variables 
also legal goals. 
• When variables are present, the system not only asserts the validity of the goal but also identifies 

the instantiations of the variables that make the goal true.

father(X, mike).



Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-30

Inferencing Process of Prolog

• Queries are called goals
• If a goal is a compound proposition, each of the facts is a subgoal
• To prove a goal is true must find a chain of inference rules 

and/or facts.  For goal Q, 
either Q must be found as a fact in the database or 
the inferencing process must find a fact P1 and a sequence of propositions P2, P3, c, Pn such 
that

P2 :- P1
P3 :- P2
…
Q :- Pn

• Process of proving a subgoal called matching, satisfying, or 
resolution



Query : man(bob).

1:
man(bob).

2:
father(bob).
man(X) :- father(X).

What happens if the query is
man(X).
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Approaches

• Matching is the process of proving a proposition
• Proving a subgoal is called satisfying the subgoal
• Bottom-up resolution, forward chaining

– Begin with facts and rules of database and attempt to find sequence that 
leads to goal

– Works well with a large set of possibly correct answers

• Top-down resolution, backward chaining
– Begin with goal and attempt to find sequence that leads to set of facts in 

database
– Works well with a small set of possibly correct answers

• Prolog implementations use backward chaining
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Subgoal Strategies

• When goal has more than one subgoal, can use 
either
– Depth-first search:  find a complete proof for the 

first subgoal before working on others
– Breadth-first search: work on all subgoals in parallel

• Prolog uses depth-first search
– Can be done with fewer computer resources
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Backtracking

• With a goal with multiple subgoals, if fail to 
show truth of one of subgoals, reconsider 
previous subgoal to find an alternative solution: 
backtracking

• Begin search where previous search left off
• Can take lots of time and space because may 

find all possible proofs to every subgoal



male(X), parent(X, shelley).

male(bill).
male(dan).
male(mike).
Parent(mike, shelley).

Prolog finds the first fact in the database with male as its functor. It then instantiates
X to the parameter of the found fact, say mike. Then, it attempts to prove that
parent(mike, shelley) is true. If it fails, it backtracks to the first subgoal, male(X), and
attempts to resatisfy it with some alternative instantiation of X.

example goal might be processed more efficiently if the order of the two subgoals
were reversed. Then, only after resolution had found a parent of shelley would it try
to match that person with the male subgoal. This is more efficient if shelley has fewer
parents than there are males in the database
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Simple Arithmetic

• Prolog supports integer variables and integer 
arithmetic

• is operator: takes an arithmetic expression as 
right operand and variable as left operand
A is B / 17 + C

• Not the same as an assignment statement!
– The following is illegal (Left side variable cannot be 

previously instantiated)

Sum is Sum + Number.
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Example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),

time(X,Time), 
Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).
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Trace

• Built-in structure that displays instantiations at 
each step

• Tracing model of execution - four events:
– Call (beginning of attempt to satisfy goal)
– Exit (when a goal has been satisfied)
– Redo (when backtrack occurs)
– Fail (when goal fails)



trace.
distance(chevy, Chevy_Distance).
(1) 1 Call: distance(chevy, _0)?
(2) 2 Call: speed(chevy, _5)?
(2) 2 Exit: speed(chevy, 105)
(3) 2 Call: time(chevy, _6)?
(3) 2 Exit: time(chevy, 21)
(4) 2 Call: _0 is 105*21?
(4) 2 Exit: 2205 is 105*21
(1) 1 Exit: distance(chevy, 2205)
Chevy_Distance = 2205
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Example
likes(jake,chocolate).

likes(jake, apricots).

likes(darcie, licorice).

likes(darcie, apricots).

trace.

likes(jake, X), likes(darcie, X).
(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?

(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?

(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)

X = apricots



Recall
Programs are list of facts and rules
A fact declares something as being true
A rule states conditions for a statement being true

Answering a query means proving that the goal represented by that query can be 
satisfied.
• if a goal matches with a fact then it is satisfied
• If a goal matches the head of a rule, then it is satisfied if the goal represented 

by the rule’s body is satisfied
• If a rule consists of several subgoals separated by commas, then it is satisfied 

if all its subgoals are satisfied

Adapted from Ulle Endriss(University of Amsterdam)



Example
Consider the following argument

All men are mortal
Socrates is a man

Hence, Socrates is mortal.

It has two premises and a conclusion
The corresponding Prolog program is :

mortal(X) :- man(X).
man(socrates).

?-mortal(socrates).
Yes.

Adapted from Ulle Endriss(University of Amsterdam)



Examples
bigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

Queries:
?-bigger(donkey,dog).
Yes
?-bigger(monkey, elephant).
No

?-bigger(elephant, monkey).
No

Adapted from Ulle Endriss(University of Amsterdam)



Examplesbigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

?-is_bigger(elephant, monkey).
Yes

?-is_bigger(X, donkey).
X=horse;
X=elephant;
No

Adapted from Ulle Endriss(University of Amsterdam)



Examples
bigger(elephant, horse).
bigger(horse,donkey).
bigger(donkey, dog).
bigger(donkey, monkey).
is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

?-is_bigger(donkey, X), is_bigger(X, monkey).
No

?-is_bigger(horse, X), is_bigger(X, dog).
X= donkey
No

Adapted from Ulle Endriss(University of Amsterdam)



More examples
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

Adapted from William Mitchell (University of Arizona)

?-food(carrot).
Yes
?-food(pickle).
No
?-food(Edible).
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
Edible = lettuce ;
Edible = rice ;
No



More examples
food(apple).
food(broccoli).
food(carrot).
food(lettuce).
food(rice).

color(sky, blue).
color(soil, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).
color(rose, red).
color(tomato, red).

Adapted from William Mitchell (University of Arizona)

?- food(F), color(F, green).
F = broccoli ;
F = lettuce ;
No

?- color(F, blue), food(F).
No



More examples
food(apple).

…
color(sky, blue).
…
likes(bob, carrot).
likes(bob, apple).
likes(joe, lettuce).
likes(mary, broccoli).
likes(mary, tomato).
likes(bob, mary).
likes(mary, joe).
likes(joe, baseball).
likes(mary, baseball).
likes(jim, baseball).

Adapted from William Mitchell (University of Arizona)

Who likes baseball
?- likes(Who, baseball).

Whol likes a food
?- likes(Who, X), food(X).

Who likes green foods
?- likes(Who,X),food(X),color(X, green).

Who likes foods with the same color as 
foods that Mary likes
?- likes(mary,F1), food(F1), color(F1,C),

likes(Who,F2), food(F2), color(F2,C),



More examples
food(apple).

food(broccoli).
food(carrot).
food(lettuce).
food(rice).

color(sky, blue).
color(soil, brown).
color(grass, green).
color(broccoli, green).
color(lettuce, green).
color(apple, red).
color(carrot, orange).
color(rice, white).
color(rose, red).
color(tomato, red).

Adapted from William Mitchell (University of Arizona)

Are there two foods with the same color?

?- food(F1), food(F2), color(F1,C), 
color(F2,C).
F1 = apple
F2 = apple
C = red;

F1 = broccoli
F2 = broccoli
C = green;

?- food(F1), food(F2), F1 \== F2, 
color(F1,C), color(F2,C).
F1 = broccoli
F2 = lettuce
C = green



Matching/Unification
Recall that two terms match if they are either identical or if they ca be made identical 
by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by using equality 
predicate = (which we will read as unify)

?-born(mary, newyork) = born(mary, X).
X = newyork
Yes

?- f(a, g(X,Y)) = f(X,Z), Z = g(W,h(X)).
X = a
Y = h(a)
Z = g(a, h(a))
W = a
Yes

Adapted from Ulle Endriss(University of Amsterdam)



Matching
?-p(X,2,2) = p(1,Y,X).
No

?- p(_,2,2) = p(1,Y,_).
Y=2
Yes

_ (underscore) is called the anonymous variable
Every occurrence of _ represents a different variable
The instantiations are not being reported

Adapted from Ulle Endriss(University of Amsterdam)



Adapted from Stuart C. Shapiro (SUNY, Buffalo)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Adapted from William Mitchell (University of Arizona)



Computing with structures
The Prolog structure, which is the notation of a predicate symbol with 
arguments, can be treated as a data structure, and run computations on it. 
Consider the following arithmetic. 
We introduce zero as a symbol zero, and the number X’s successor as s(X). 
This is called the Peano arithmetic. 
For example, the number 5 is written as: s(s(s(s(s(zero))))). 

We want to define addition with the sum(S1, S2, S3) predicate, which would be 
true if, and only if, the S3 argument was the sum of the first two arguments: 

sum(zero, S1, S1). 
sum(s(X), S1, s(S2)) :-sum(X, S1, S2). 

Now we can conduct computations in this arithmetic, eg. to compute 3+4: 
?-sum(s(s(s(zero))), s(s(s(s(zero)))), X). 
X = s(s(s(s(s(s(s(zero)))))))
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List Structures

• Other basic data structure (besides atomic 
propositions we have already seen): list

• List is a sequence of any number of elements
• Elements can be atoms, atomic propositions, or 

other terms (including other lists)

[apple, prune, grape, kumquat]

[] (empty list)
[X | Y] (head X and tail Y)



this_is_a_list([apricot, peach, pear]).
this_is_a_list([apple, apricot, peach, pear]).

In query mode, one of the elements of new_list can be dismantled into 
head and tail with
this_is_a_list([New_List_Head | New_List_Tail]).

the following are equivalent:
[apricot, peach, pear | []]
[apricot, peach | [pear]]
[apricot | [peach, pear]]



[a] 

[X,Y]

[1,2,3,4] 

[a,[1,X],[],[],a,[a]]

[1|[2|[3|[4|[]]]]] /* exactly equal to the list [1,2,3,4] */ 

[1|[2|[3|[4]]]] /* another way of writing the list [1,2,3,4] */ 

[1,2|[3,4]] /* this is also allowed and is the same [1,2,3,4] */

http://www.inf.ed.ac.uk/teaching/courses/aipp/



add_element([E|L], E, L).

?-add_element(L, apple , [apricot, peach]).
L = [apple, apricot, peach]
?-add_element(L, apple , []).
L = [apple]

get_element(E, [E|L]).

?-get_element(E, [apricot, peach]). 
E = apricot
?-get_element(E, [apricot]). 
E = apricot
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Append Example

append([], List, List).

append([Head | List_1], List_2, [Head | List_3]) :-

append (List_1, List_2, List_3).



trace.
append([bob, jo], [jake, darcie], Family).
(1) 1 Call: append([bob, jo], [jake, darcie], _10)?
(2) 2 Call: append([jo], [jake, darcie], _18)?
(3) 3 Call: append([], [jake, darcie], _25)?
(3) 3 Exit: append([], [jake, darcie], [jake, darcie])
(2) 2 Exit: append([jo], [jake, darcie], [jo, jake, darcie])
(1) 1 Exit: append([bob, jo], [jake, darcie], [bob, jo, jake, darcie])
Family = [bob, jo, jake, darcie]
yes
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?-append(X, Y, [a, b, c]).
X = []
Y = [a, b, c]
;
X = [a]
Y = [b, c]
;
X = [a, b]
Y = [c]
;
X = [a, b, c]
Y = []
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More Examples

member(Element, [Element | _]).

member(Element, [_ | List]) :-

member(Element, List).

The underscore character means an anonymous variable—it means we do not 
care what instantiation it might get from unification



• trace.
• member(a, [b, c, d]).
• (1) 1 Call: member(a, [b, c, d])?
• (2) 2 Call: member(a, [c, d])?
• (3) 3 Call: member(a, [d])?
• (4) 4 Call: member(a, [])?
• (4) 4 Fail: member(a, [])
• (3) 3 Fail: member(a, [d])
• (2) 2 Fail: member(a, [c, d])
• (1) 1 Fail: member(a, [b, c, d])
• no
• member(a, [b, a, c]).
• (1) 1 Call: member(a, [b, a, c])?
• (2) 2 Call: member(a, [a, c])?
• (2) 2 Exit: member(a, [a, c])
• (1) 1 Exit: member(a, [b, a, c])
• yes
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More Examples
reverse([], []).
reverse([Head | Tail], List) :-

reverse (Tail, Result),  

append (Result, [Head], List).



• trace.
• reverse([a, b, c], Q).
• (1) 1 Call: reverse([a, b, c], _6)?
• (2) 2 Call: reverse([b, c], _65636)?
• (3) 3 Call: reverse([c], _65646)?
• (4) 4 Call: reverse([], _65656)?
• (4) 4 Exit: reverse([], [])
• (5) 4 Call: append([], [c], _65646)?
• (5) 4 Exit: append([], [c], [c])
• (3) 3 Exit: reverse([c], [c])
• (6) 3 Call: append([c], [b], _65636)?
• (7) 4 Call: append([], [b], _25)?
• (7) 4 Exit: append([], [b], [b])
• (6) 3 Exit: append([c], [b], [c, b])
• (2) 2 Exit: reverse([b, c], [c, b])
• (8) 2 Call: append([c, b], [a], _6)?
• (9) 3 Call: append([b], [a], _32)?
• (10) 4 Call: append([], [a], _39)?
• (10) 4 Exit: append([], [a], [a])
• (9) 3 Exit: append([b], [a], [b, a])
• (8) 2 Exit: append([c, b], [a], [c, b, a])
• (1) 1 Exit: reverse([a, b, c], [c, b, a])
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Backtracking
bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), large(X).

trace, ( ostrich(oscar) ).

Call:ostrich(oscar)
Call:bird(oscar)
Exit:bird(oscar)
Call:large(oscar)
Exit:large(oscar)
Exit:ostrich(oscar)

trace, ( ostrich(X) ).

Call:ostrich(_4470)
Call:bird(_4470)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Redo:bird(_4470)
Exit:bird(oscar)
Call:large(oscar)
Exit:large(oscar)
Exit:ostrich(oscar)
X = oscar
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Unwanted Backtracking & Cut
bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), large(X).

trace, ( ostrich(tweety) ).
Call:ostrich(tweety)
Call:bird(tweety)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Redo:bird(tweety)
Call:feathered(tweety)
Fail:feathered(tweety)
Fail:bird(tweety)
Fail:ostrich(tweety)
false

trace, ( ostrich(tweety) ).

Call:ostrich(tweety)
Call:bird(tweety)
Exit:bird(tweety)
Call:large(tweety)
Fail:large(tweety)
Fail:ostrich(tweety)
false

No need to 
try tweety 
again

bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), !, large(X).
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Fail : Forcing failure
bird(tweety).
bird(willy).
canary(tweety).
swims(willy).
penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).

trace, ( penguin(tweety) ).

Call:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)
false

trace, ( penguin(willy) ).
Call:penguin(willy)
Call:canary(willy)
Fail:canary(willy)
Redo:penguin(willy)
Call:bird(willy)
Exit:bird(willy)
Call:swims(willy)
Exit:swims(willy)
Exit:penguin(willy)
1true

If something 
is a canary it 
is not a 
penguin
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trace, (penguin(X)).
Call:penguin(_4902)
Call:canary(_4902)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(_4902)
false

Use cut when 
seeing if a ground 
atom is satisfied, 
not for generating 
satisfying 
instances



Rule order
penguin(X) :- bird(X), swims(X).
penguin(X) :- canary(X), !, fail.
bird(X) :- canary(X).
bird(willy).
canary(tweety).
swims(willy).

trace, (penguin(tweety)).

Call:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)

trace, (penguin(tweety)).
Call:penguin(tweety)
Call:bird(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Exit:bird(tweety)
Call:swims(tweety)
Fail:swims(tweety)
Redo:penguin(tweety)
Call:canary(tweety)
Exit:canary(tweety)
Call:fail
Fail:fail
Fail:penguin(tweety)
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penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).
bird(X) :- canary(X).
bird(willy).
canary(tweety).
swims(willy).

bad

good



Avoid left recursive rules
parent(a,b).
parent(b,c).
ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z), ancestor(Y,Z).
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Do not use the following:

ancestor(X,Y):- ancestor(X,Z), parent(Y,Z).

ancestor(X,Y):- ancestor(X,Z), ancestor(Y,Z).
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Deficiencies of Prolog

• Resolution order control
– In a pure logic programming environment, the order of 

attempted matches is nondeterministic and all matches would 
be attempted concurrently

• The closed-world assumption
– The only knowledge is what is in the database

• The negation problem
– Anything not stated in the database is assumed to be false

• Intrinsic limitations
– It is easy to state a sort process in logic, but difficult to actually 

do—it doesn’t know how to sort
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Applications of Logic Programming

• Relational database management systems
• Expert systems
• Natural language processing
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Summary

• Symbolic logic provides basis for logic 
programming

• Logic programs should be nonprocedural
• Prolog statements are facts, rules, or goals
• Resolution is the primary activity of a Prolog 

interpreter
• Although there are a number of drawbacks with 

the current state of logic programming it has 
been used in a number of areas


