Why Sort in Databases

- Data can be requested in sorted order
 - SELECT * FROM Foo ORDER BY bar
- Loading data to an index. Bulk Loading in B+ Tree
- De-duplication (for example DISTINCT keyword in SQL). Remove duplicates by first ordering the records.
- Other query related operations such as joining multiple tables
- So, we will need to sort the keys, records for different needs
In-memory sorting vs. External Sorting

- You have seen sorting algorithms in your previous courses
- Why is it different for databases?
- The data can be much larger than the memory. In this case we have to think about the number of disk accesses.
- Running a sorting algorithm on disk will result in many record swaps that must be performed as disk operations. Will not work!
- We must design an algorithm which uses the limited primary memory wisely, and minimizes the disk accesses.
- Problem: Sort 1GB data with 1MB memory
Merge of Merge Sort

- Merge Sort algorithm is characterized by the merge operation
- Given two sorted lists, merge them to produce a single sorted list
- You can visualize the algorithm as merging two sorted deck of cards.
- Pick the smallest card (on top) from both decks.
- Since we know that the smaller card is not in the other deck, we can add it to the output deck.
Merge Sort Illustration

9
10

1
2
3
4
5
6
7
8
General Idea

- Use the memory for sorting a part of the file
 - We will first consider sorting a page in memory

- Use the merge operation to merge runs until the whole file is sorted!

- The merge can be implemented for any two sublists of arbitrarily large sizes, as we only need the top of the decks
2-Way Sort

- Read a page, sort it, write it
 - Only one buffer page is used
 - Written sorted page is called as a run
- Pass 2, 3 … etc:
 - 3 page memory buffer: 2 for reading runs, Merge & Write in one page
2-Way Merge Example

- Assume that we have 7 pages in disk.
- Each page can store 2 keys

In Pass 3, these two runs are merged, and the file is sorted!
2-Way Merge Analysis

- The number of passes needed for sorting a file of 2^k is k
- At each step we are merging two runs. So $\text{ceil}(\log_2 N)$, where N is the number of pages in the file. If we add the initial Pass, $\text{ceil}(\log_2 N) + 1$
- In each pass we have to read and write each page. So, the cost for a pass is $2N$
- The total cost of this procedure is $2N \times \text{ceil}(\log_2 N + 1)$
- So for our example, with 7 pages. We have 4 passes. At each pass we have 2×7 disk accesses. The total cost is 56 disk accesses.
How to do better?

- The complexity increases as the number of passes increases.
- Instead of merging two runs at a time, we will merge as much runs as it is possible
 - Number of runs that can fit in the memory
- Instead of 2 we use B pages to read to memory (e.g. $B=4$ pages)
 - Pass 0: Sort $\lceil N/B \rceil$ pages, where each page is of size B
 - Pass 1…k: Merge $B-1$ runs (1 page is used for output)
After Pass 0
B-1 Way Merge

- After this step, we can merge B-1=3 different runs at the same time.
- Algorithm for B-1 Way Merge is similar to two-way case:
 - At each step choose the smallest key
 - Write to output
Cost of External Merge Sort

- Number of passes:
- Cost = \(2N \times (\text{# of passes}) = 1 + \left\lceil \log_{B-1} \left(\frac{N}{B} \right) \right\rceil\)
- E.g., with 5 buffer pages, to sort 108 page file:
 - Pass 0: \(\left\lceil \frac{108}{5} \right\rceil = 22\) sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: \(\left\lceil \frac{22}{4} \right\rceil = 6\) sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages
A note on complexity

- The asymptotic complexity of both algorithms is $O(N \log N)$
- The base of logarithm can be changed by the rule
 \[\log_a b = \frac{\log_c b}{\log_c a} \]
 So a different base changes only the constant of the cost!
- However, when the base is $(B-1)$ the number of passes will drastically decrease
Number of Passes of External Sort

<table>
<thead>
<tr>
<th>N</th>
<th>B=3</th>
<th>B=5</th>
<th>B=9</th>
<th>B=17</th>
<th>B=129</th>
<th>B=257</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10,000</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10,000,000</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100,000,000</td>
<td>26</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Cost of Disk Operations

► We have seen that performing a disk write or read for a continuous sequence of files is more efficient.

► So, for example writing the whole file a page at a time will take more time than writing F pages at a time.

► Use $B-F$ pages for sorting, reserve F blocks for writing.
Double Buffering

- While waiting to read or write a block, the CPU will be idle as we have no data to process.

- To reduce wait time for I/O request to complete, can **prefetch** into `shadow block`.
 - Potentially, more passes; in practice, most files **still** sorted in 2-3 passes.
Sorting has become a blood sport!
 - Parallel sorting is the name of the game ...

Datamation: Sort 1M records of size 100 bytes
 - Typical DBMS: 15 minutes
 - World record: 3.5 seconds
 - 12-CPU SGI machine, 96 disks, 2GB of RAM

New benchmarks proposed:
 - Minute Sort: How many can you sort in 1 minute?
 - Dollar Sort: How many can you sort for $1.00?
Example

Assuming that our most general external sorting algorithm is used. For a file with 2,000,000 pages and 17 available buffer pages, answer the following:

1. How many runs will you produce in the first pass?
2. How many passes will it take to sort the file completely?
3. What is the total I/O cost of sorting the file?
4. How many buffer pages do you need to sort the file completely in just two passes?
Answer

- **How many runs are produced in Pass 0**
 - \(\text{Ceil}(2000000/17) = 117648 \) sorted runs.

- **Number of passes required**
 - \(\text{Ceil}(\log_{16}117648) + 1 = 6 \) passes.

- **Total number of disk accesses**
 - \(2 \times 2000000 \times 6 = 24000000 \).

- **How many Buffer pages do we need, to complete sort in two passes**
 - We have to produce less than equal to \(B-1 \) runs after first pass. So \(\text{ceil}(N/B) \) must be less than equal to \(B-1 \). For \(2 \times 10^6 \) pages, if \(B=10^3 \) we have 2000 runs, \(B=1415 \) produces 1414 runs which can be merged in single pass.