Lecture 5

Solving Recursions using Generating Functions

Generating Functions

What is a generating function?

A generating function is a "function" that stores the numbers in a sequence in its coefficients.

For example, the sequence
$A=1,1,1,1,1,1, \ldots$
can be stored as coefficients of the function
$f(x)=1+1 x+1 x^{2}+1 x^{3}+\ldots$
So, a_{n} the $n^{\text {th }}$ term in sequence A, is the coefficient of x^{n} in $f(x)$.

What is a generating function?

$$
\begin{aligned}
& f(x)=1+1 x+1 x^{2}+1 x^{3}+\ldots \\
& f(x)=1+x+x^{2}+x^{3}+\ldots \\
& x f(x)=x+x^{2}+x^{3}+x^{4} \ldots \\
& f(x)-x f(x)=1 \\
& f(x)=\frac{1}{1-x}
\end{aligned}
$$

Why use generating functions?

- Generating functions are easier to use and remember
- You don't have to remember all numbers in a sequence
- More importantly you can use certain operators on them to obtain other generating functions for other sequences
- Even more importantly They can be used to solve recurrences

The most important generating function

$$
S=1,1,1,1,1,1, \ldots
$$

$$
f(x)=1+x+x^{2}+x^{3}+x^{4}+\ldots
$$

$$
f(x)=\frac{1}{1-x}
$$

Derive another one

Consider,
$S=2,2,2,2,2,2,2, \ldots$

Derive another one

Consider,
$S=2,2,2,2,2,2,2, \ldots$
This can be represented by,
$f(x)=2+2 x+2 x^{2}+2 x^{3}+\ldots$
then, a similar trick,
$x f(x)=2 x+2 x^{2}+2 x^{3}+2 x^{4}+\ldots$
$f(x)-x f(x)=2$
therefore:
$f(x)=\frac{2}{1-x}$

Generalize

Consider,
$S=k, k, k, k, k, \ldots$
This can be represented by,
$f(x)=k+k x+k x^{2}+k x^{3}+\ldots$
then, a similar trick,
$x f(x)=k x+k x^{2}+k x^{3}+k x^{4}+\ldots$
$f(x)-x f(x)=k$
therefore:
$f(x)=\frac{k}{1-x}$

Derive another one

Consider,

$$
S=1,2,4,8,16, \ldots
$$

Derive another one

Consider,
$S=1,2,4,8,16, \ldots$
Then,
$f(x)=1+2 x+4 x^{2}+8 x^{3}+\ldots$
then, a similar trick,
$x f(x)=x+2 x^{2}+4 x^{3}+8 x^{4}+\ldots$
$2 x f(x)=2 x+4 x^{2}+8 x^{3}+16 x^{4}+\ldots$
$f(x)-2 x f(x)=1$
therefore:
$f(x)=\frac{1}{1-2 x}$

Derive another one

Consider,

$$
S=1,3,9,27,81, \ldots
$$

Derive another one

Consider,
$S=1,3,9,27,81, \ldots$
Then,
$f(x)=1+3 x+9 x^{2}+27 x^{3}+81 x^{4} \ldots$
then, a similar trick,
$x f(x)=x+3 x^{2}+9 x^{3}+27 x^{4}+\ldots$
$3 x f(x)=3 x+9 x^{2}+27 x^{3}+81 x^{4}+\ldots$
$f(x)-3 x f(x)=1$
therefore:
$f(x)=\frac{1}{1-3 x}$

Generalize

$S=1, k, k^{2}, k^{3}, k^{4}, \ldots$
$f(X)=\frac{1}{1-k x}$

Derive another

$$
S=1,-1,1,-1,1,-1, \ldots
$$

Simply use $k=-1$

$$
f(x)=\frac{1}{1+x}
$$

Derive another

$$
S=k, k^{2}, k^{3}, k^{4}, \ldots
$$

Start with

$$
S=1, k, k^{2}, k^{3}, k^{4}, \ldots
$$

Summations

What about the sequence
$2,4,10,28,82, \ldots$
Notice that each term is 1 more than a power of 3 .
$3^{0}+1,3^{1}+1,3^{2}+1,3^{3}+1, \ldots$

Summations

So, the sequence is actually sum of two sequences:

$$
\begin{aligned}
S & =(1,1,1,1,1, \ldots)+(1,3,9,27,81, \ldots) \\
S & =\frac{1}{1-x}+\frac{1}{1-3 x}
\end{aligned}
$$

Alternating sequences

What if we replace x by x^{2} in $\frac{1}{1-x}$?

Alternating sequences

$f(x)=\frac{1}{1-x^{2}}$
results in
$1+x^{2}+x^{4}+x^{6}+\ldots$ which is the sequence $1,0,1,0,1,0 \ldots$

Alternating sequences

$$
f(x)=\frac{2}{1-x^{2}} ?
$$

Alternating sequences

$f(x)=\frac{2}{1-x^{2}}$?
$2+2 x^{2}+2 x^{4}+2 x^{6}+\ldots$
$2,0,2,0,2,0, \ldots$

Alternating sequences

What about $0,1,0,1,0,1, \ldots$?
How can we get it?
We know that $f(x)=\frac{1}{1-x^{2}}$ produces $1,0,1,0,1,0, \ldots$

Alternating sequences

$S=1,0,1,0,1,0, \ldots$ is $f(x)=\frac{1}{1-x^{2}}$
$f(x)=1+x^{2}+x^{4}+x^{6}+\ldots$.
$x f(x)=x+x^{3}+x^{5}+x^{7}+\ldots$ is $\frac{x}{1-x^{2}}$
and this gives $S=0,1,0,1,0,1, \ldots$

Multiplying with x

Note that multiplying with x is like shifting right.
$1,1,1,1,1, \ldots$ is $\frac{1}{1-x}$
$0,1,1,1,1, \ldots$ is $\frac{x}{1-x}$
$0,0,1,1,1, \ldots$ is $\frac{x^{2}}{1-x}$

Multiplying with x

Find the generating function for
$0,0,1,2,4,8,16, \ldots$

Multiplying with x

$0,0,1,2,4,8,16, \ldots$
We know $1,2,4,8,16, \ldots$ is $\frac{1}{1-2 x}$.
Now shift right twice by multiplying by x twice:
$x * x * \frac{1}{1-2 x}=\frac{x^{2}}{1-2 x}$

What if?

What happens if we add $1,0,1,0,1,0, \ldots$ and $0,1,0,1,0,1, \ldots$?

What if?

What happens if we add $1,0,1,0,1,0, \ldots$ and $0,1,0,1,0,1, \ldots$?
$\frac{1}{1-x^{2}}+\frac{x}{1-x^{2}}$
$=\frac{1+x}{1-x^{2}}$
$=\frac{1+x}{(1-x)(1+x)}$
$=\frac{1}{1-x}$
That is, $1,1,1,1,1, \ldots$

Derivatives

What if we take the derivative of $\frac{1}{1-x}$?

Derivatives

Derivative of $\frac{1}{1-x}$ is $\frac{1}{(1-x)^{2}}$. If we take the derivative of the corresponding generating function:
$f(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots$
$f^{\prime}(x)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\ldots$
So, the corresponding sequence is $1,2,3,4,5, \ldots$!

Second derivative

What about the second derivative?
$f^{\prime \prime}(x)=2+6 x+12 x^{2}+20 x^{3}+\ldots$ which is for $\frac{2}{(1-x)^{3}}$
so, $\frac{1}{(1-x)^{3}}=1+3 x+6 x^{2}+10 x^{3}+\ldots$
Note that, the sequence $1,3,6,10, \ldots$ is the partial sum sequence (a.k.a. triangular numbers).

Differencing

Consider the sequence $1,3,5,7,9, \ldots$
What is the corresponding generating function?

Differencing

Consider the differences between consecutive items in $1,3,5,7,9, \ldots$: $2,2,2,2,2, \ldots$

So, right shift the original sequence and compute the difference:
$f(x)=1+3 x+5 x^{2}+7 x^{3}+\ldots$
$x f(x)=x+3 x^{2}+5 x^{3}+\ldots$
$f(x)-x f(x)=1+2 x+2 x^{2}+2 x^{3}+\ldots$
That is equivalent to $\frac{2}{1-x}-1=\frac{1+x}{1-x}$
So, $f(x)=\frac{1+x}{(1-x)^{2}}$

Multiplication and partial sums

What happens if you multiply two sequences?
Consider multiplying $1,1,1,1, \ldots$ and $1,1,1,1, \ldots$

Multiplication

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+\ldots\right) \times\left(1+x+x^{2}+x^{3}+x^{4}+\ldots\right) \\
& =1 \times 1,1 \times x+x \times 1,1 \times x^{2}+x \times x+x^{2} \times 1, \ldots \\
& =1+2 x+3 x^{2}+4 x^{3}+\ldots
\end{aligned}
$$

That is $\frac{1}{(1-x)^{2}}$, which is expected because $1,1,1,1, \ldots$ is $\frac{1}{1-x}$.

Multiplication

Multiplying a sequence with $1,1,1,1, \ldots$ is like obtaining a sequence of partial sums.

Multiply $1,2,4,8,16,32, \ldots$ with $1,1,1,1, \ldots$

Multiplication

Multiply $1,2,4,8,16,32, \ldots$ with $1,1,1,1, \ldots$
$\frac{1}{1-2 x} \times \frac{1}{1-x}$
gives us the sequence
$1,3,7,15,31, \ldots$
That is the same as subtracting $1,1,1,1, \ldots$ from $2,4,8,16,32, \ldots$.
$\frac{2}{1-2 x}-\frac{1}{1-x}=\frac{1}{(1-2 x)(1-x)}$

Solving Recurrences

Example

Solve the recurrence $a_{n}=3 a_{n-1}-2 a_{n-2}$ with initial conditions $a_{0}=1$ and $a_{1}=3$.

Example

Solve the recurrence $a_{n}=3 a_{n-1}-2 a_{n-2}$ with initial conditions $a_{0}=1$ and $a_{1}=3$.

Start with writing the very first terms of the sequence $A: 1,3,7,15,31, \ldots$
Let's turn this into a generating function,

$$
A=1+3 x+7 x^{2}+15 x^{3}+31 x^{4}+\ldots
$$

Example

Given the recurrence $a_{n}=3 a_{n-1}-2 a_{n-2}$, we know that
$a_{n}-3 a_{n-1}+2 a_{n-2}=0$, except the initial conditions. Consider the following:

$$
\begin{aligned}
A & =1+3 x+7 x^{2}+15 x^{3}+31 x^{4}+\ldots \\
-3 x A & =0-3 x-9 x^{2}-21 x^{3}-45 x^{4}+\ldots \\
+2 x^{2} A & =0+0 x+2 x^{2}+6 x^{3}+14 x^{4}+\ldots
\end{aligned}
$$

Note that, each column after the initial 2 items, cancels out.

$$
A\left(1-3 x+2 x^{2}\right)=1
$$

Therefore,
$A=\frac{1}{(1-2 x)(1-x)}$

Example

Now that we have obtained a generating function, we need to solve for partial fraction decomposition:
$\frac{1}{(1-2 x)(1-x)}=\frac{a}{1-2 x}+\frac{b}{1-x}$
$a-a x+b-2 b x=1$
$a+b=1$ and $a+2 b=0$, Solve for a and b to get $a=2$ and $b=-1$
That is:
$\frac{2}{1-2 x}+\frac{-1}{1-x}$
The first is 2^{n+1} and the second is -1 , so the solution of the recurrence is $2^{n+1}-1$.

Another example

Solve the recurrence $a_{n}=2 a_{n-1}-3 a_{n-2}$ with $a_{0}=1$ and $a_{1}=0$.

Another example

Solve the recurrence $a_{n}=2 a_{n-1}-a_{n-2}$ with $a_{0}=1$ and $a_{1}=0$. $A=1,0,-1,-2,-3,-4, \ldots$

We know $a_{n}-2 a_{n-1}+a_{n-2}=0$
Hence,

$$
\begin{aligned}
& \quad A=1+0 x-1 x^{2}-2 x^{3}-3 x^{4}-4 x^{5}+\ldots \\
& -2 x A=0-2 x+0 x^{2}+2 x^{3}+4 x^{4}+6 x^{5}+\ldots \\
& +x^{2} A=0+0 x+1 x^{2}+0 x^{3}-1 x^{4}-2 x^{5}+\ldots \\
& A\left(1-2 x+x^{2}\right)=1-2 x \\
& A=\frac{1-2 x}{1-2 x+x^{2}}
\end{aligned}
$$

Another example

$$
\begin{aligned}
& A=\frac{1-2 x}{1-2 x+x^{2}} \\
& \frac{1-2 x}{1-2 x+x^{2}}=\frac{1-x}{(1-x)^{2}}-\frac{x}{(1-x)^{2}} \\
& \frac{1}{1-x}-\frac{x}{(1-x)^{2}}
\end{aligned}
$$

where, the first term is $1,1,1,1, \ldots$ and the second term is $0,1,2,3,4,5, \ldots$. Hence, the $n^{\text {th }}$ term is $a_{n}=1-n$.

