Lecture 5

Solving Recursions using Generating Functions

Generating Functions

What is a generating function?

A *generating function* is a "function" that stores the numbers in a sequence in its coefficients.

For example, the sequence

 $A = 1, 1, 1, 1, 1, 1, \dots$

can be stored as coefficients of the function

 $f(x) = 1 + 1x + 1x^2 + 1x^3 + \dots$

So, a_n the n^{th} term in sequence A, is the coefficient of x^n in f(x).

What is a generating function?

 $egin{aligned} f(x) &= 1 + 1x + 1x^2 + 1x^3 + \dots \ f(x) &= 1 + x + x^2 + x^3 + \dots \ xf(x) &= x + x^2 + x^3 + x^4 \dots \ f(x) - xf(x) &= 1 \ f(x) &= rac{1}{1-x} \end{aligned}$

Why use generating functions?

- Generating functions are easier to use and remember
- You don't have to remember all numbers in a sequence
- **More importantly** you can use certain operators on them to obtain other generating functions for other sequences
- Even more importantly They can be used to solve recurrences

The most important generating function

 $S=1,1,1,1,1,1,\dots$ $f(x)=1+x+x^2+x^3+x^4+\dots$ $f(x)=rac{1}{1-x}$

Consider,

 $S = 2, 2, 2, 2, 2, 2, 2, \dots$

Consider,

 $S=2,2,2,2,2,2,2,\dots$

This can be represented by,

 $f(x) = 2 + 2x + 2x^2 + 2x^3 + \dots$

then, a similar trick,

 $xf(x)=2x+2x^2+2x^3+2x^4+\ldots$ f(x)-xf(x)=2

therefore:

$$f(x) = \frac{2}{1-x}$$

Generalize

Consider,

 $S=k,k,k,k,k,\ldots$

This can be represented by,

 $f(x) = k + kx + kx^2 + kx^3 + \dots$

then, a similar trick,

 $xf(x)=kx+kx^2+kx^3+kx^4+\dots$ f(x)-xf(x)=k

therefore:

$$f(x) = \frac{k}{1-x}$$

Consider,

 $S = 1, 2, 4, 8, 16, \dots$

Consider,

 $S = 1, 2, 4, 8, 16, \dots$

Then,

 $f(x) = 1 + 2x + 4x^2 + 8x^3 + \dots$

then, a similar trick,

 $xf(x) = x + 2x^2 + 4x^3 + 8x^4 + \dots$ $2xf(x) = 2x + 4x^2 + 8x^3 + 16x^4 + \dots$ f(x) - 2xf(x) = 1

therefore:

$$f(x) = \frac{1}{1 - 2x}$$

Consider,

 $S = 1, 3, 9, 27, 81, \dots$

Consider,

 $S = 1, 3, 9, 27, 81, \dots$

Then,

 $f(x) = 1 + 3x + 9x^2 + 27x^3 + 81x^4...$

then, a similar trick,

 $xf(x) = x + 3x^2 + 9x^3 + 27x^4 + \dots$ $3xf(x) = 3x + 9x^2 + 27x^3 + 81x^4 + \dots$ f(x) - 3xf(x) = 1

therefore:

$$f(x) = \frac{1}{1 - 3x}$$

Generalize

$$S=1,k,k^2,k^3,k^4,\ldots$$
 $f(X)=rac{1}{1-kx}$

Derive another

$$S = 1, -1, 1, -1, 1, -1, \dots$$

Simply use k=-1

$$f(x) = \frac{1}{1+x}$$

Derive another

 $S=k,k^2,k^3,k^4,\ldots$

Start with

 $S=1,k,k^2,k^3,k^4,\dots$

Summations

What about the sequence

 $2, 4, 10, 28, 82, \ldots$

Notice that each term is 1 more than a power of 3.

 $3^0+1, 3^1+1, 3^2+1, 3^3+1, \ldots$

Summations

So, the sequence is actually sum of two sequences:

 $S = (1, 1, 1, 1, 1, 1, \dots) + (1, 3, 9, 27, 81, \dots)$ $S = rac{1}{1-x} + rac{1}{1-3x}$

What if we replace x by x^2 in $\frac{1}{1-x}$?

$$f(x) = \frac{1}{1 - x^2}$$

results in

 $1+x^2+x^4+x^6+\ldots$ which is the sequence $1,0,1,0,1,0\ldots$

$$f(x) = \frac{2}{1 - x^2}$$
?

$$f(x) = \frac{2}{1-x^2}?$$

$$2+2x^2+2x^4+2x^6+\dots$$

 $2, 0, 2, 0, 2, 0, \ldots$

What about 0, 1, 0, 1, 0, 1, ...?

How can we get it?

We know that $f(x) = rac{1}{1-x^2}$ produces $1,0,1,0,1,0,\ldots$

$$S=1,0,1,0,1,0,\ldots$$
 is $f(x)=rac{1}{1-x^2}$
 $f(x)=1+x^2+x^4+x^6+\ldots$
 $xf(x)=x+x^3+x^5+x^7+\ldots$ is $rac{x}{1-x^2}$

and this gives $S=0,1,0,1,0,1,\ldots$

Multiplying with \boldsymbol{x}

Note that multiplying with x is like shifting right.

1, 1, 1, 1, 1, ... is
$$\frac{1}{1-x}$$

0, 1, 1, 1, 1, ... is $\frac{x}{1-x}$
0, 0, 1, 1, 1, ... is $\frac{x^2}{1-x}$

${\rm Multiplying\ with\ } x$

Find the generating function for

 $0, 0, 1, 2, 4, 8, 16, \dots$

Multiplying with x

 $0, 0, 1, 2, 4, 8, 16, \ldots$

We know $1, 2, 4, 8, 16, \dots$ is $\frac{1}{1-2x}$.

Now shift right twice by multiplying by x twice:

$$x * x * rac{1}{1 - 2x} = rac{x^2}{1 - 2x}$$

What if?

What happens if we add 1, 0, 1, 0, 1, 0, ... and 0, 1, 0, 1, 0, 1, ...?

What if?

What happens if we add 1, 0, 1, 0, 1, 0, ... and 0, 1, 0, 1, 0, 1, ...?

$$\begin{aligned} &\frac{1}{1-x^2} + \frac{x}{1-x^2} \\ &= \frac{1+x}{1-x^2} \\ &= \frac{1+x}{(1-x)(1+x)} \\ &= \frac{1}{1-x} \end{aligned}$$

That is, 1, 1, 1, 1, 1, ...

Derivatives

Derivatives

Derivative of $\frac{1}{1-x}$ is $\frac{1}{(1-x)^2}$. If we take the derivative of the corresponding generating function:

 $f(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + \dots$ $f'(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots$

So, the corresponding sequence is $1, 2, 3, 4, 5, \ldots$!

Second derivative

What about the second derivative?

$$f''(x)=2+6x+12x^2+20x^3+\dots$$
 which is for $rac{2}{(1-x)^3}$ so, $rac{1}{(1-x)^3}=1+3x+6x^2+10x^3+\dots$

Note that, the sequence $1, 3, 6, 10, \ldots$ is the partial sum sequence (a.k.a. triangular numbers).

Differencing

Consider the sequence $1, 3, 5, 7, 9, \ldots$

What is the corresponding generating function?

Differencing

Consider the differences between consecutive items in $1, 3, 5, 7, 9, \ldots$: $2, 2, 2, 2, 2, \ldots$

So, right shift the original sequence and compute the difference:

 $f(x) = 1 + 3x + 5x^2 + 7x^3 + \dots$ $xf(x) = x + 3x^2 + 5x^3 + \dots$ $f(x) - xf(x) = 1 + 2x + 2x^2 + 2x^3 + \dots$ That is equivalent to $\frac{2}{1-x} - 1 = \frac{1+x}{1-x}$ So, $f(x) = \frac{1+x}{(1-x)^2}$

Multiplication and partial sums

What happens if you multiply two sequences?

Consider multiplying $1, 1, 1, 1, \ldots$ and $1, 1, 1, 1, \ldots$

Multiplication

$$(1+x+x^2+x^3+x^4+\dots) imes (1+x+x^2+x^3+x^4+\dots)$$

 $x=1 imes 1, 1 imes x+x imes 1, 1 imes x^2+x imes x+x^2 imes 1, \ldots$

 $= 1 + 2x + 3x^2 + 4x^3 + \dots$

That is $rac{1}{(1-x)^2}$, which is expected because $1,1,1,1,\ldots$ is $rac{1}{1-x}$.

Multiplication

Multiplying a sequence with 1, 1, 1, 1, ... is like obtaining a sequence of partial sums.

Multiply $1, 2, 4, 8, 16, 32, \dots$ with $1, 1, 1, 1, \dots$

Multiplication

Multiply $1, 2, 4, 8, 16, 32, \dots$ with $1, 1, 1, 1, \dots$

 $rac{1}{1-2x} imesrac{1}{1-x}$

gives us the sequence

 $1, 3, 7, 15, 31, \ldots$

That is the same as subtracting $1, 1, 1, 1, \ldots$ from $2, 4, 8, 16, 32, \ldots$

$$\frac{2}{1-2x} - \frac{1}{1-x} = \frac{1}{(1-2x)(1-x)}$$

Solving Recurrences

Solve the recurrence $a_n = 3a_{n-1} - 2a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 3$.

Solve the recurrence $a_n = 3a_{n-1} - 2a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 3$.

Start with writing the very first terms of the sequence $A: 1, 3, 7, 15, 31, \ldots$

Let's turn this into a generating function,

 $A = 1 + 3x + 7x^2 + 15x^3 + 31x^4 + \dots$

Given the recurrence $a_n = 3a_{n-1} - 2a_{n-2}$, we know that $a_n - 3a_{n-1} + 2a_{n-2} = 0$, except the initial conditions. Consider the following:

$$A = 1 + 3x + 7x^2 + 15x^3 + 31x^4 + ...$$

$$-3xA = 0 - 3x - 9x^2 - 21x^3 - 45x^4 + \dots$$

$$+2x^{2}A = 0 + 0x + 2x^{2} + 6x^{3} + 14x^{4} + \dots$$

Note that, each column after the initial 2 items, cancels out.

$$A(1 - 3x + 2x^2) = 1$$

Therefore,

$$A=rac{1}{(1-2x)(1-x)}$$

Now that we have obtained a generating function, we need to solve for *partial fraction decomposition*:

$$rac{1}{(1-2x)(1-x)} = rac{a}{1-2x} + rac{b}{1-x}$$
 $a - ax + b - 2bx = 1$

a+b=1 and a+2b=0, Solve for a and b to get a=2 and b=-1

That is:

$$rac{2}{1-2x}+rac{-1}{1-x}$$

The first is 2^{n+1} and the second is -1, so the solution of the recurrence is $2^{n+1}-1$.

Another example

Solve the recurrence $a_n=2a_{n-1}-3a_{n-2}$ with $a_0=1$ and $a_1=0$.

Another example

Solve the recurrence $a_n = 2a_{n-1} - a_{n-2}$ with $a_0 = 1$ and $a_1 = 0$.

 $A = 1, 0, -1, -2, -3, -4, \dots$

We know $a_n-2a_{n-1}+a_{n-2}=0$

Hence,

$$A = 1 + 0x - 1x^2 - 2x^3 - 3x^4 - 4x^5 + \dots$$

 $- 2xA = 0 - 2x + 0x^2 + 2x^3 + 4x^4 + 6x^5 + \dots$
 $+ x^2A = 0 + 0x + 1x^2 + 0x^3 - 1x^4 - 2x^5 + \dots$
 $A(1 - 2x + x^2) = 1 - 2x$
 $A = \frac{1 - 2x}{1 - 2x + x^2}$

Another example

$$egin{aligned} A &= rac{1-2x}{1-2x+x^2} \ rac{1-2x}{1-2x+x^2} &= rac{1-x}{(1-x)^2} - rac{x}{(1-x)^2} \ rac{1}{1-x} - rac{x}{(1-x)^2} \end{aligned}$$

where, the first term is 1, 1, 1, 1, ... and the second term is 0, 1, 2, 3, 4, 5, ...Hence, the n^{th} term is $a_n = 1 - n$.