# Algorithm Analysis BBM408 



Lecture 11
Dynamic Programming

- Longest common subsequence
- Optimal substructure
- Overlapping subproblems


## Assoc. Prof. Dr. Burkay Genç

## ALGORITHMS <br> Dynamic programming

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m$ ] and $y[1 \ldots n]$, find a longest subsequence common to them both.


## Dynamic programming

Design technique, like divide-and-conquer. Example: Longest Common Subsequence (LCS) - Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

## Dynamic programming

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS) - Given two sequences $x[1 \ldots m$ ] and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"
$x: A$
$y: ~ B$

B

B

C

A

## Dynamic programming

## Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m$ ] and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"



## Brute-force LCS algorithm

## Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

## Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

## Analysis

- Checking $=O(n)$ time per subsequence.
- $2^{m}$ subsequences of $x$ (each bit-vector of length $m$ determines a distinct subsequence of $x$ ).
Worst-case running time $=O\left(n 2^{m}\right)$
$=$ exponential time.


## Towards a better algorithm

## Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

## Towards a better algorithm

## Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence $s$ by $|s|$.

## Towards a better algorithm

## Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence $s$ by $|s|$.

Strategy: Consider prefixes of $x$ and $y$.

- Define $c[i, j]=|\operatorname{LCS}(x[1 . . i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.


## Recursive formulation

## Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

## Recursive formulation

## Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof. Case $x[i]=y[j]$ :


## Recursive formulation

## Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof. Case $x[i]=y[j]$ :


Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]$
$=k$. Then, $z[k]=x[i]$, or else $z$ could be extended. Thus, $z[1 \ldots k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.

## Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose $w$ is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k]$ ( $w$ concatenated with $z[k]$ ) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \| z[k]|>k$. Contradiction, proving the claim.

## Proof (continued)

Claim: $z[1 . . k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose $w$ is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k]$ ( $w$ concatenated with $z[k]$ ) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w||z[k]|>k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]$ $=c[i-1, j-1]+1$.
Other cases are similar. $\square$

## Dynamic-programming hallmark \#1



## Dynamic-programming hallmark \#1

## 9 Optimal substructure <br> An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of $z$ is an LCS of a prefix of $x$ and a prefix of $y$.

## Recursive algorithm for LCS

## $\operatorname{LCS}(x, y, i, j)$ // ignoring base cases if $x[i]=y[j]$

then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$ else $c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$, $\operatorname{LCS}(x, y, i, j-1)\}$ return $c[i, j]$

## Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$ // ignoring base cases if $x[i]=y[j]$
then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$ else $c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$, $\operatorname{LCS}(x, y, i, j-1)\}$ return $C[i, j]$

Worse case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree


Recursion tree


Height $=m+n \Rightarrow$ work potentially exponential.

## Recursion tree



> Height $=m+n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

# Dynamic-programming hallmark \#2 



# Dynamic-programming hallmark \#2 

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths $m$ and $n$ is only $m n$.

## Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

## Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$
if $c[i, j]=$ NIL
then if $x[i]=y[j]$

$$
\text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1
$$

else $c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$, $\operatorname{LCS}(x, y, i, j-1)\}$
return $c[i, j]$

## Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$
if $c[i, j]=$ NIL
then if $x[i]=y[j]$
then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$
else $c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$,$\} as$

$$
\operatorname{LCS}(x, y, i, j-1)\}
$$

return $C[i, j]$
Time $=\Theta(m n)=$ constant work per table entry. Space $=\Theta(m n)$.

## Dynamic-programming algorithm

## IDEA:

Compute the
table bottom-up.


## Dynamic-programming algorithm

## IDEA:

Compute the table bottom-up.

Time $=\Theta(m n)$.


## Dynamic-programming algorithm

## IDEA:

Compute the table bottom-up.

Time $=\Theta(m n)$.
Reconstruct
LCS by tracing backwards.


## Dynamic-programming algorithm

## IDEA:

Compute the table bottom-up.

Time $=\Theta(m n)$.
Reconstruct
LCS by tracing backwards.

Space $=\Theta(m n)$.
Exercise:
$O(\min \{m, n\})$.

