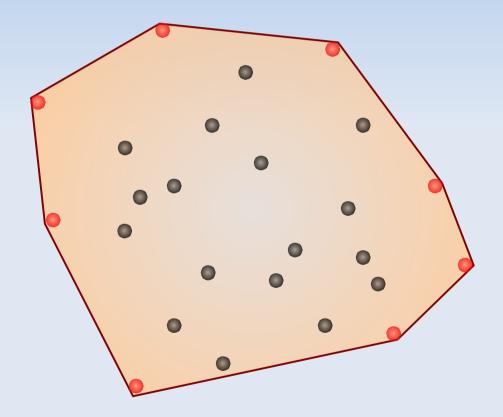
Week 5 Convex Hulls in 2D



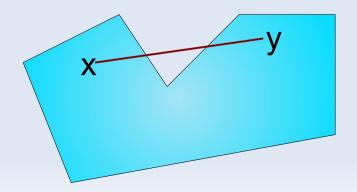
Week 5 Convex Hulls in 2D

Applications

- Collision avoidance
- Fitting ranges with a line
- Smallest box
- Shape Analysis

Convexity

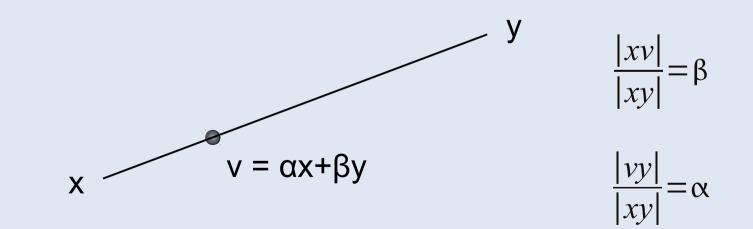
- A set S is convex,
 - if x,y in S implies that
 - the segment xy is a subset of S
- Works in any dimensions
- A polygon with a reflex vertex is not convex



Formal Segment Definition

• The segment xy is the set of all points of the form $\alpha x+\beta y$ with $\alpha \ge 0$, $\beta \ge 0$ and $\alpha+\beta = 1$

•
$$\alpha x + \beta y = \alpha x + (1 - \alpha)y = \alpha(x - y) + y = x + \beta(y - x)$$

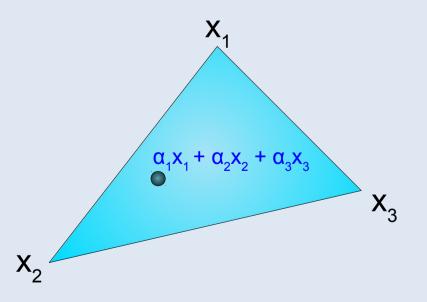


A convex combination of points x₁, x₂, ..., x_k is

- a sum of the form $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k$
- $\alpha_i \ge 0$ for all I

5

• $\alpha_1 + \alpha_2 + ... + \alpha_k = 1$

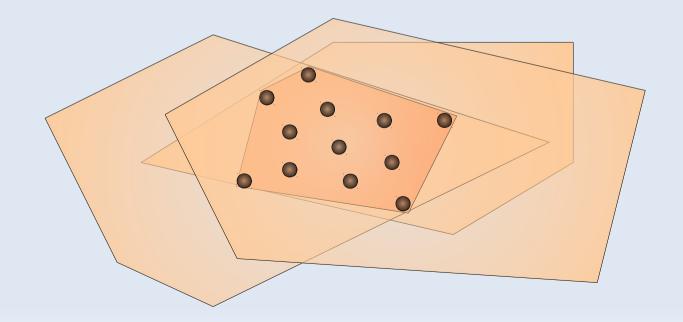


- Definition I
 - The convex hull of a set of points S is
 - the set of all convex combinations of points of S

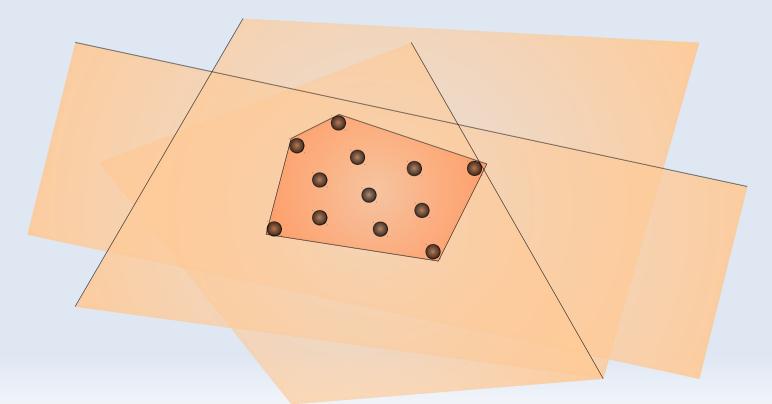
Definition II

- The convex hull of a set of points S
 - in d dimensions is
 - the set of all convex combinations of d+1 (or fewer) points of S
- For d=2, convex hull is the combination of all triangles

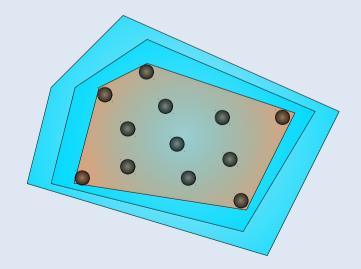
- Definition III
 - The convex hull of a set of points S is
 - the intersection of all convex sets that contain S



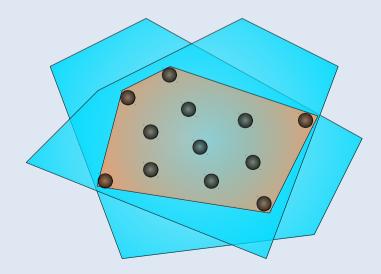
- Definition IV
 - The convex hull of a set of points S is
 - the intersection of all halfspaces that contain S



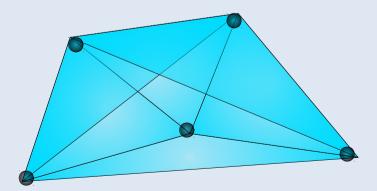
- Definition V
 - The convex hull of a set of points S is
 - the smallest convex polygon that encloses S



- Definition VI
 - The convex hull of a set of points S is
 - the enclosing convex polygon with smallest area



- Definition VII
 - The convex hull of a set of points S in the plane is
 - the union of all the triangles determined by points in S

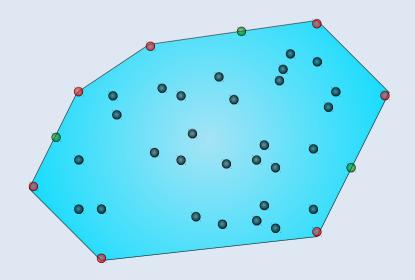


- A convex hull algorithm may have the following outputs:
 - all the points on the hull, in arbitrary order
 - extreme points, in arbitrary order
 - all the points on the hull, in BTO*
 - extreme points, in BTO

* BTO: Boundary Traversal Order

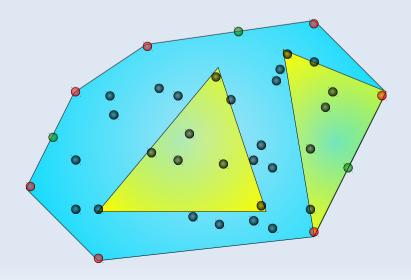
Extreme Points

- Extreme points
 - are the vertices of the convex hull at which the interior angle is strictly convex



Naive Algorithms

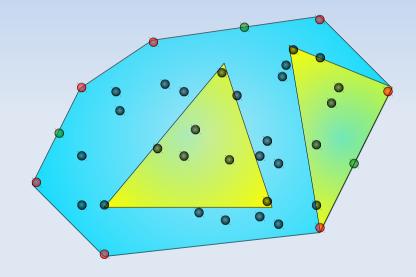
- Nonextreme Points
 - A point is nonextreme iff it is inside some triangle whose vertices are points of the set and is not itself a corner of that triangle



Naive Algorithms

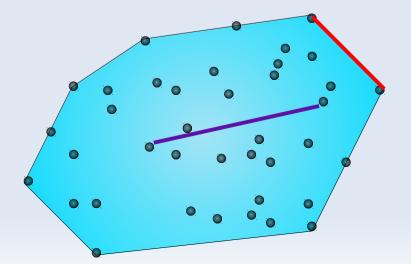
- Algorithm: INTERIOR POINTS
 - for each i do
 - **for** each j ≠ i **do**
 - **for** each k ≠ j ≠ i **do**
 - for each $l \neq k \neq j \neq i$ do

O(n⁴) !!!



Extreme Edges

- Algorithm: EXTREME EDGES
 - for each i do
 - **for** each j ≠ i **do**
 - **for** each k ≠ j ≠ i **do**
 - if p_k is not (left or on) (p_i, p_i) then (p_i, p_i) is not extreme

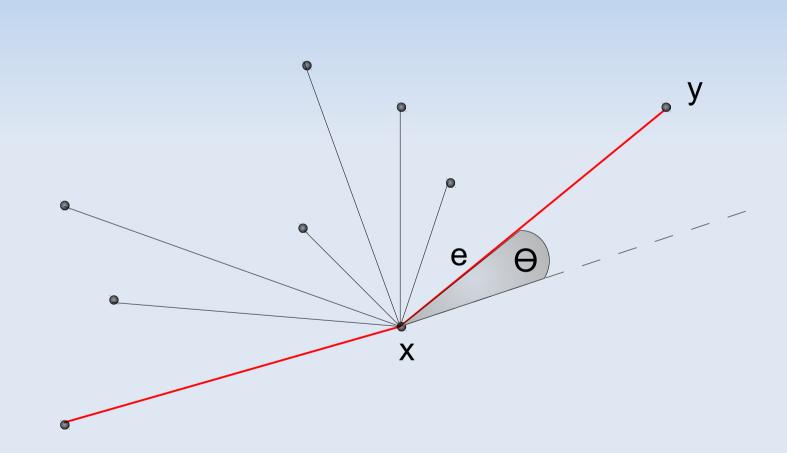


O(n³), still very slow

Gift Wrapping

- All edges of the convex hull are connected
- Find one, then search for the next
 - Use the lowest vertex to start with
- Works much faster: O(nh)

Gift Wrapping



Gift Wrapping

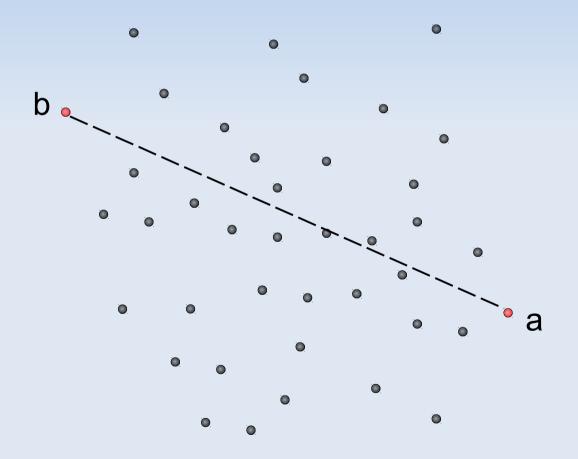
For each edge

- Compute theta with O(n) vertices
- Choose the vertex with the smallest theta
- There are only h edges on the boundary
 - O(n) time for each edge
 - Overall running time O(nh)

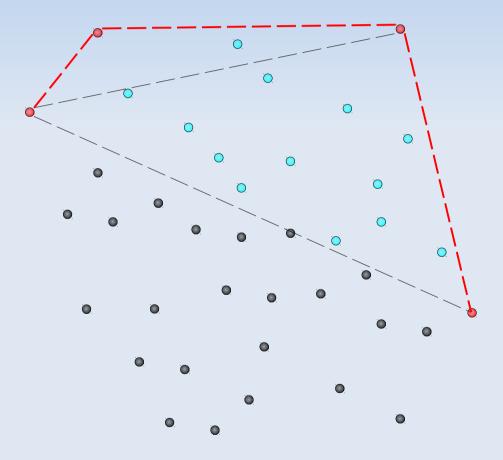
- Similar to Quicksort
- It is easy to discard many points
 - But may not work always
- Running time:
 - Best case: O(n log n)
 - Worst case: O(n²)

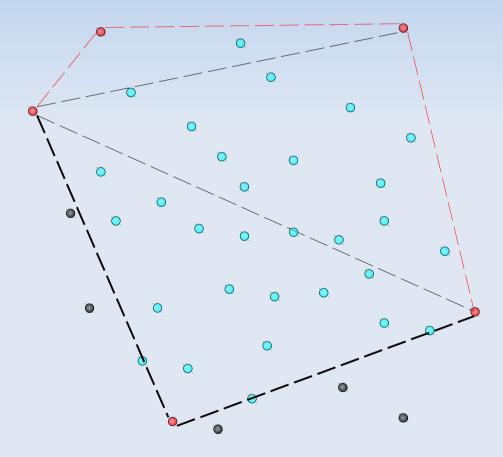
- Algorithm: QUICKHULL(a, b, S)
 - If S = Ø then return
 - else
 - $\mathbf{c} \leftarrow \text{index of point with max distance from ab}$
 - A ← points strictly right of (a, c)
 - B ← points strictly right of (c, b)
 - return QUICKHULL(a, c, A) + (c) + QUICKHULL(c, b, B)

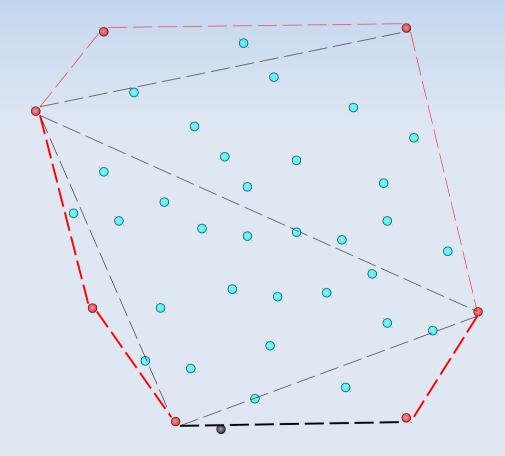
Start with the leftmost and rightmost vertices

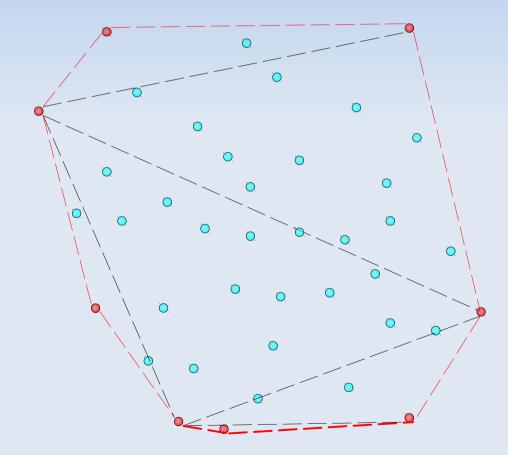


Points in the triangle acb are interior to the hull furthest away from ab С $\overline{\mathbf{O}}$ b Ю. $\overline{\mathbf{O}}$ а









- Running Time:
 - Initial extremes a,b and separating S: O(n)
 - Finding extreme point c and eliminating points in triangle acb: O(n)
 - Recursive steps: $T(n) = O(n) + T(\alpha) + T(\beta)$
 - Best case: $T(n) = 2T(n/2) + O(n) = O(n \log n)$
 - Worst case: $T(n) = O(n) + T(n-1) = O(n^2)$

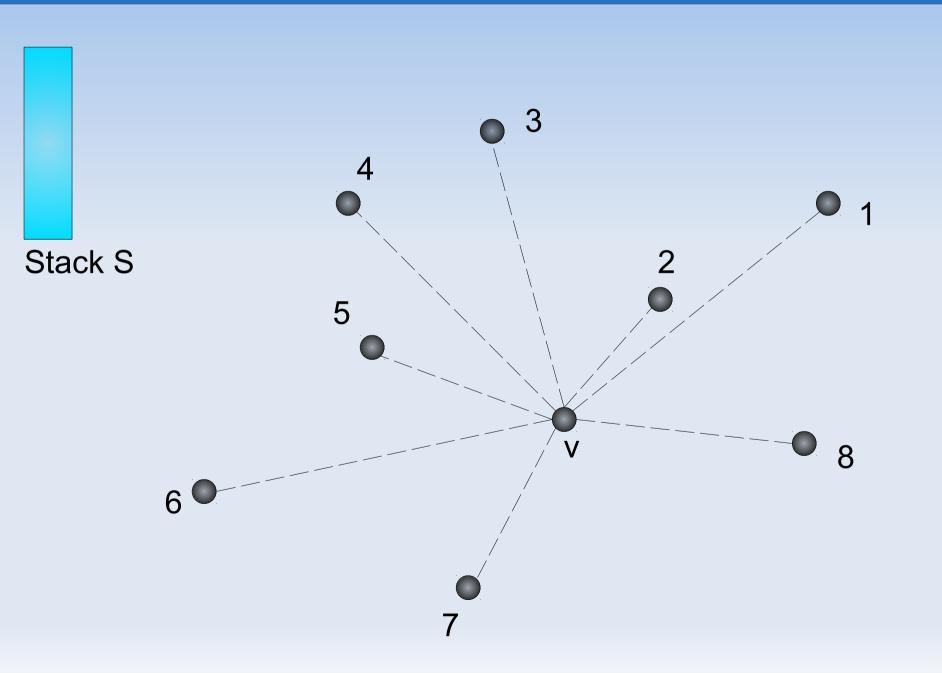
- Probably the first scientific paper in the history of Computational Geometry (1972)
- Bell laboratories required the hull of ~= 10,000 vertices
 - The O(n2) algorithm took too much time

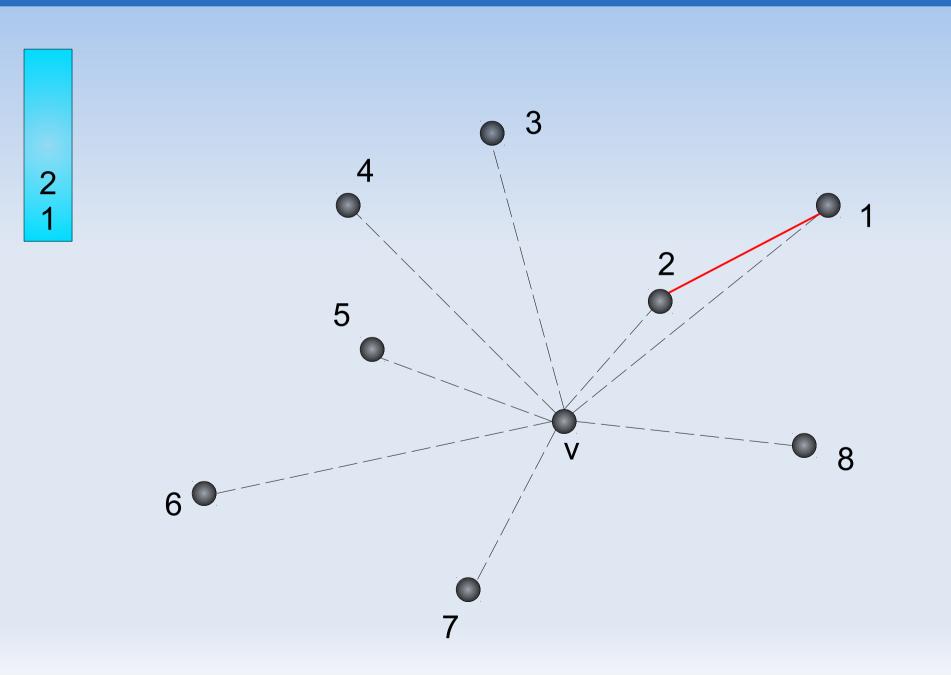
• n2 = 100,000,000

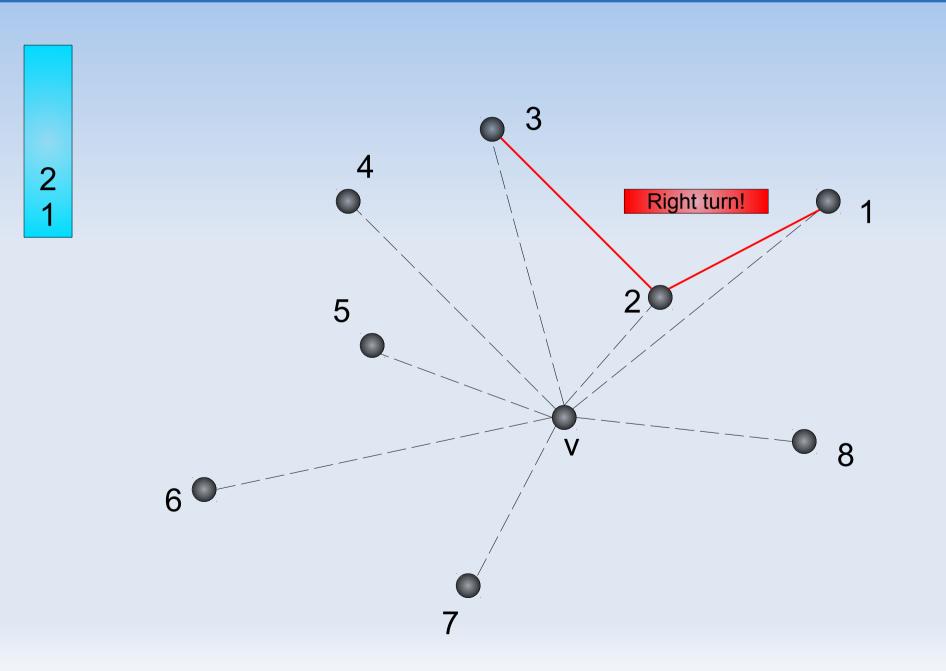
- Graham invented this O(n log n) algorithm
 - n log n = 133,000

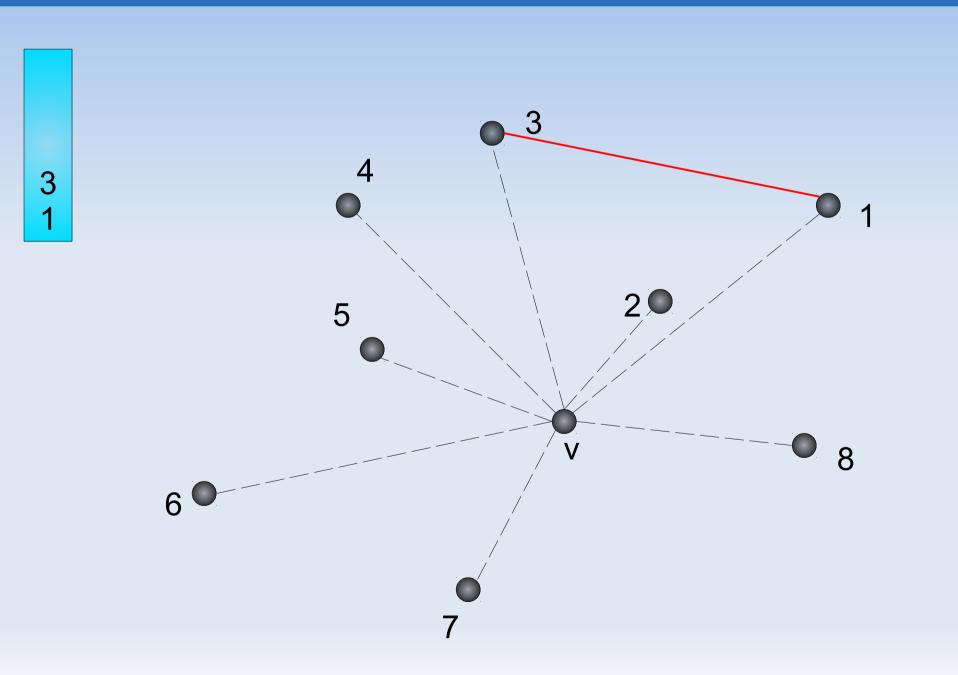
Outline

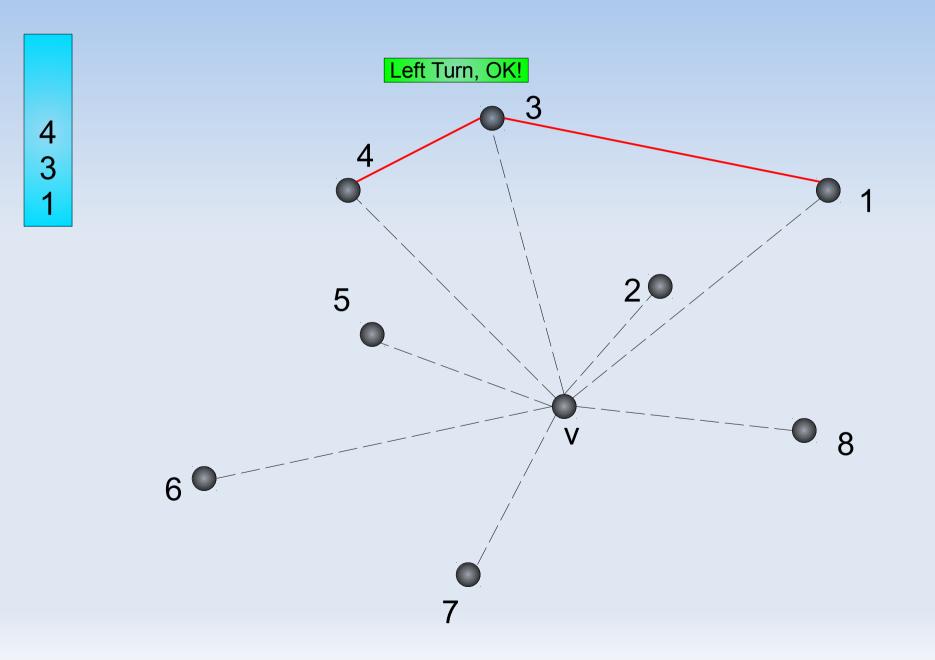
- Choose a vertex v inside the hull
- Sort the rest of the vertices in counter clockwise angular order around v
- Build the hull via left turns at each hull vertex
 - All turns on the convex hull are left turns during a boundary traversal

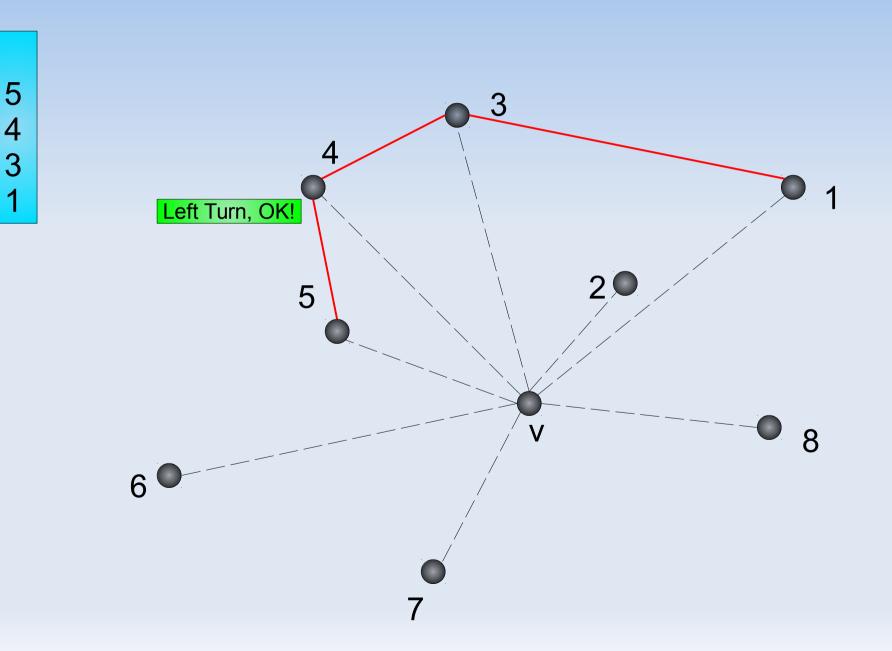


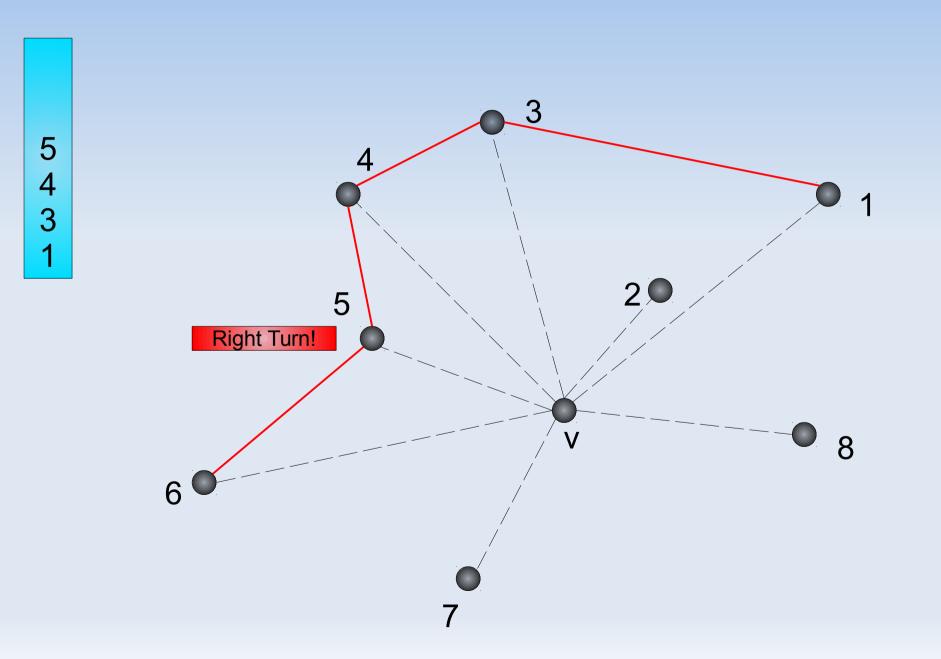


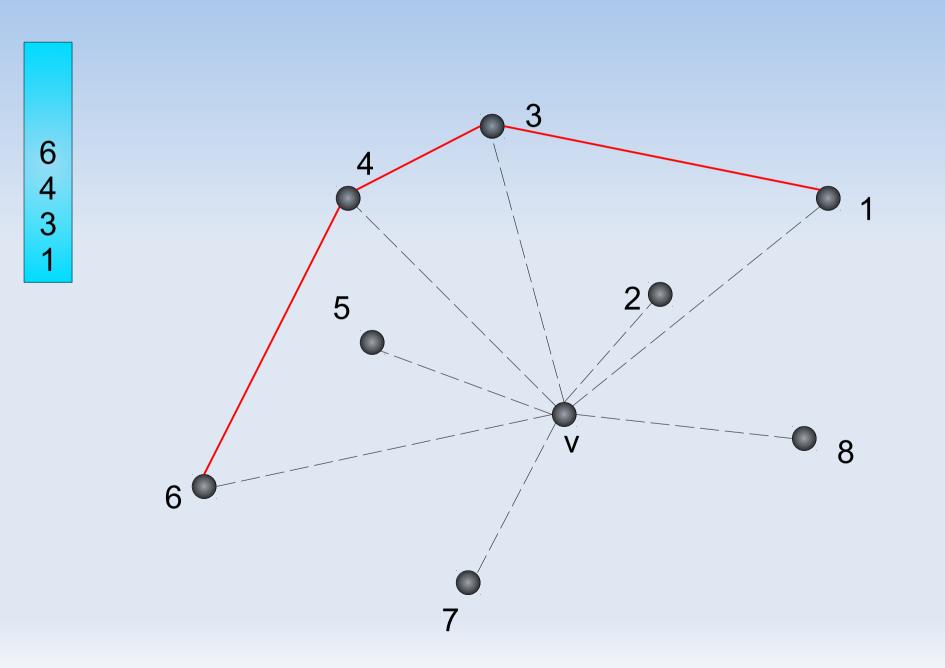


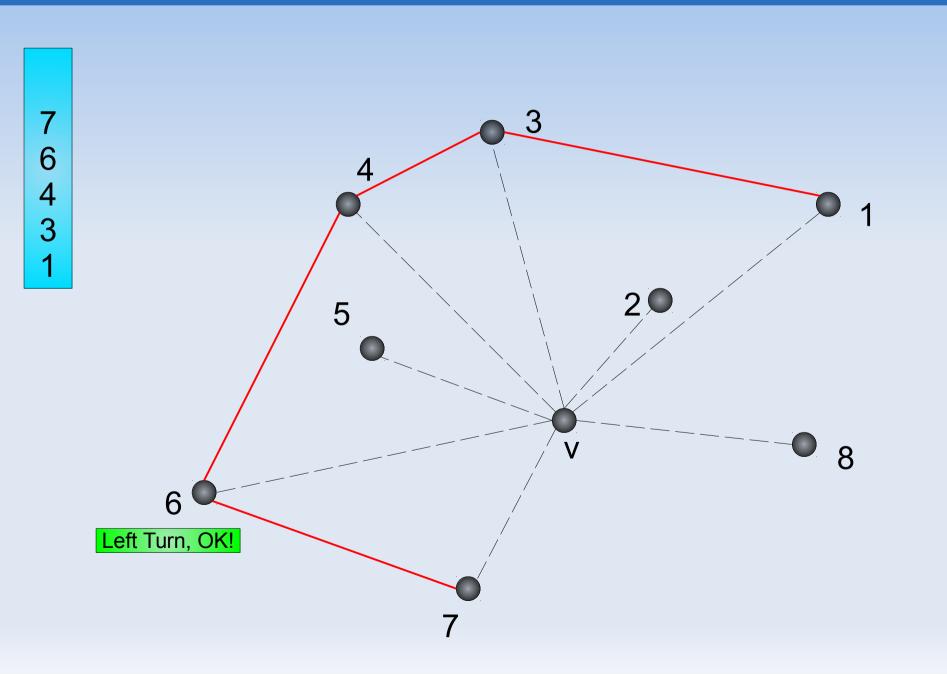


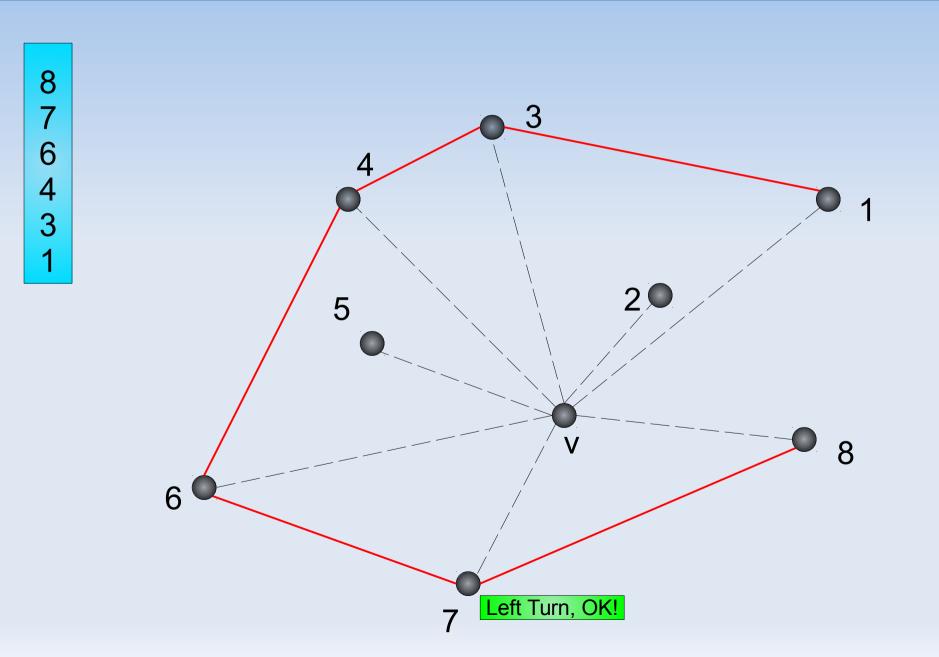


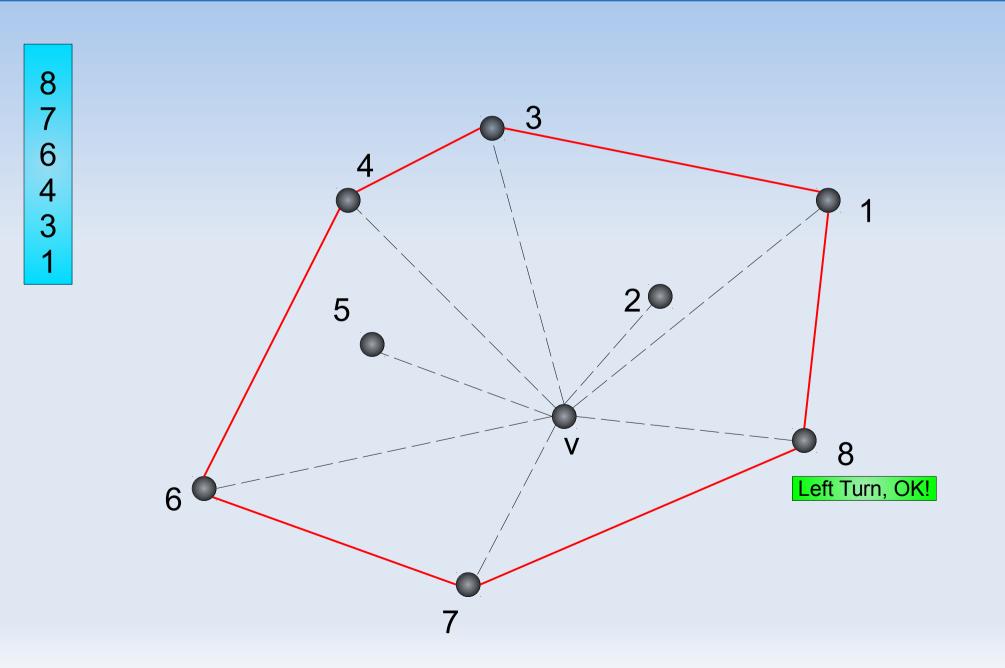












Running Time

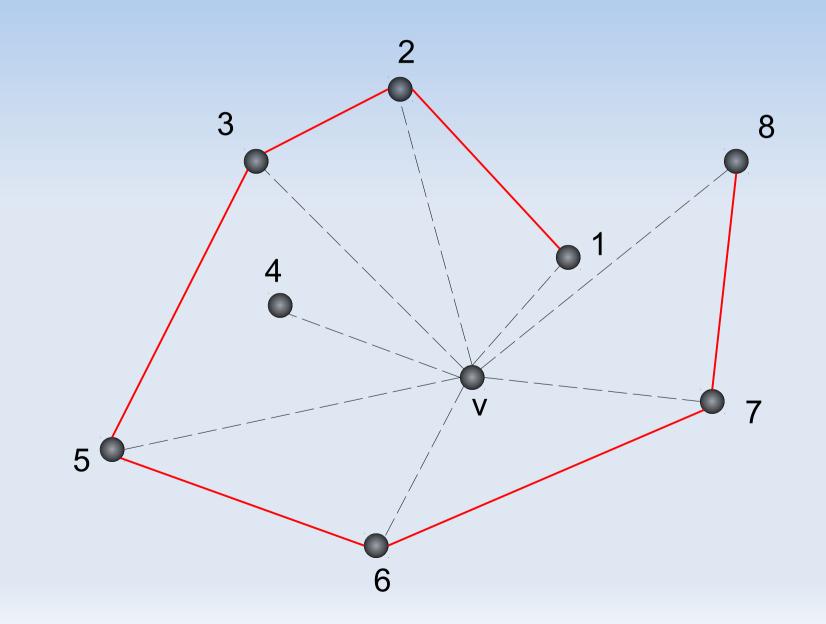
- Sorting the vertices: O(n log n)
- Each vertex is added to the stack once
 - May be removed only once
- Overall running time: O(n log n)

Some Problems

The algorithm so far is not perfect

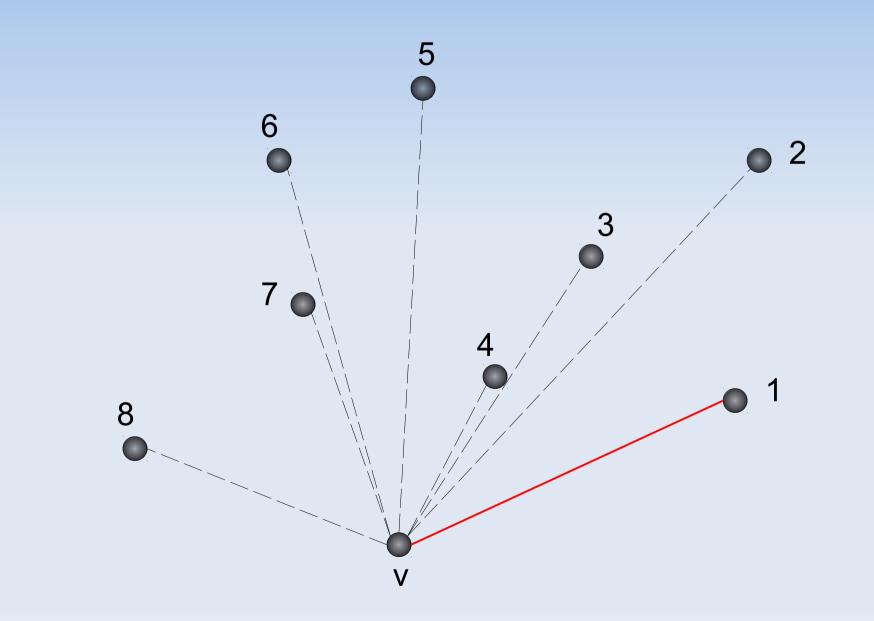
- What happens at the end if the bottom vertex is not a hull vertex?
- What happens at the start if the second vertex is not a hull vertex?
- Which vertex to use as origin for sorting?
- How about collinear vertices?

Some Problems



- Origin of sorting: The rightmost vertex with smallest y-coordinate
 - Can be found in O(n) time
 - Always a hull vertex
 - After the sort, the first vertex is also a hull vertex

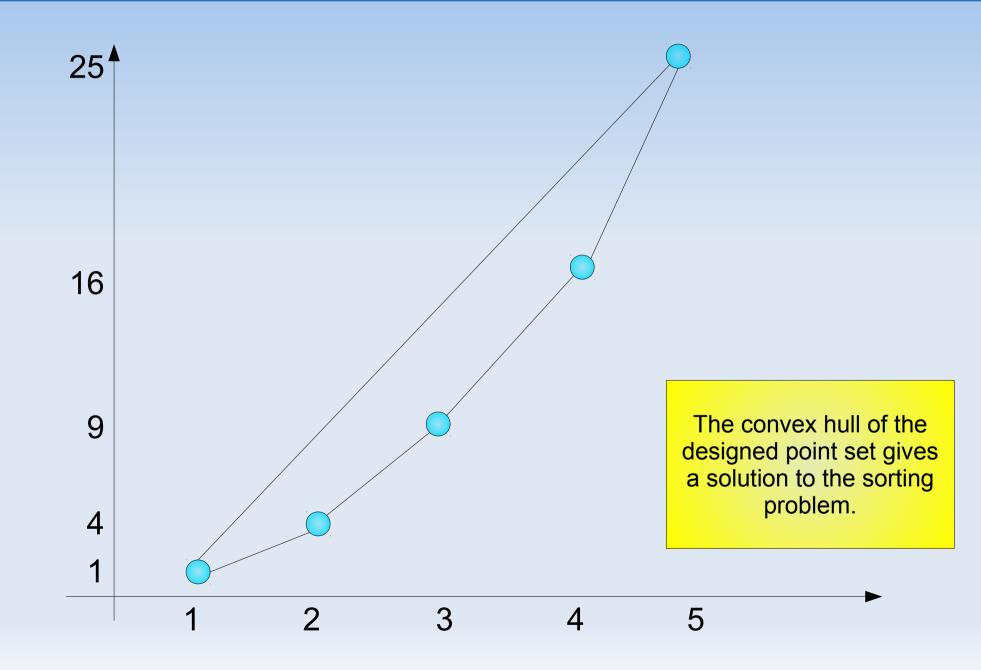
Solutions



Solutions

- Hull collinearities
 - require a strict left turn
- Sorting collinearities
 - Arbitrary solutions cause hull overlaps
 - or bugs in the implementation
 - Delete the vertices closer to the origin

Lower Bound



Prepare for the quiz!

QUIZ 4

Consider the following pseudocode on a set S of n points:

```
\begin{split} \mathbf{i} \leftarrow 1 \\ \mathbf{S}_{1} \leftarrow \mathbf{S} \\ \mathbf{n}_{1} \leftarrow \mathbf{n} \\ \mathbf{while} \ (\mathbf{n}_{i} > 3) \\ \mathbf{ompute} \ \mathbf{the} \ \mathbf{convex} \ \mathbf{hull} \ \mathbf{H}(\mathbf{S}_{i}) \ \mathbf{of} \ \mathbf{S}_{i} \\ \mathbf{S}_{i+1} \leftarrow \mathbf{S}_{i} - \mathbf{H}(\mathbf{S}_{i}) \\ \mathbf{n}_{i+1} \leftarrow \mathbf{n}_{i} - |\mathbf{H}(\mathbf{S}_{i})| \\ \mathbf{i} \leftarrow \mathbf{i} + 1 \end{split}
```

where $|H(S_i)|$ is the number of points on $H(S_i)$

What is the maximum value i can obtain at the end? Justify your answer.