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Week 5 Convex Hulls in 2D

 Applications

 Collision avoidance

 Fitting ranges with a line

 Smallest box

 Shape Analysis
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Convexity

 A set S is convex, 

 if x,y in S implies that 

 the segment xy is a subset of S

 Works in any dimensions

 A polygon with a reflex vertex is not convex

x
y
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Formal Segment Definition

 The segment xy is the set of all points of the 

form αx+βy with α≥0, β≥0 and α+β = 1

 αx+βy = αx+(1-α)y = α(x-y) + y = x + β(y-x)

x

y

v = αx+βy
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Convex Combination

 A convex combination of points x
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Convex Hull

 Definition I

 The convex hull of a set of points S is 

 the set of all convex combinations of points of S
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Convex Hull

 Definition II

 The convex hull of a set of points S 

 in d dimensions is

 the set of all convex combinations of d+1 (or fewer) 

points of S

 For d=2, convex hull is the combination of all 

triangles
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Convex Hull

 Definition III

 The convex hull of a set of points S is 

 the intersection of all convex sets that contain S
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Convex Hull

 Definition IV

 The convex hull of a set of points S is 

 the intersection of all halfspaces that contain S
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Convex Hull

 Definition V

 The convex hull of a set of points S is 

 the smallest convex polygon that encloses S
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Convex Hull

 Definition VI

 The convex hull of a set of points S is 

 the enclosing convex polygon with smallest area
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Convex Hull

 Definition VII

 The convex hull of a set of points S in the plane is 

 the union of all the triangles determined by points in S
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Output

 A convex hull algorithm may have the following 

outputs:

 all the points on the hull, in arbitrary order

 extreme points, in arbitrary order

 all the points on the hull, in BTO*

 extreme points, in BTO

* BTO: Boundary Traversal Order
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Extreme Points

 Extreme points

 are the vertices of the convex hull at which the 

interior angle is strictly convex
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Naive Algorithms

 Nonextreme Points

 A point is nonextreme iff it is inside some triangle 

whose vertices are points of the set and is not itself 

a corner of that triangle
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Naive Algorithms

 Algorithm: INTERIOR POINTS

 for each i do

 for each j ≠ i do

 for each k ≠ j ≠ i do

 for each l ≠ k ≠ j ≠ i do

 if p
l
 in triangle p

i
p

j
p

k
 then p

l
 is nonextreme

 O(n4) !!!
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Extreme Edges

 Algorithm: EXTREME EDGES

 for each i do

 for each j ≠ i do

 for each k ≠ j ≠ i do

 if p
k
 is not (left or on) (p

i
,p

j
) then (p

i
,p

j
) is not extreme

O(n3), still very slow
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Gift Wrapping

 All edges of the convex hull are connected

 Find one, then search for the next

 Use the lowest vertex to start with

 Works much faster: O(nh)
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Gift Wrapping

x

e Ө

y
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Gift Wrapping

 For each edge

 Compute theta with O(n) vertices

 Choose the vertex with the smallest theta

 There are only h edges on the boundary

 O(n) time for each edge

 Overall running time O(nh)
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Quickhull

 Similar to Quicksort

 It is easy to discard many points

 But may not work always

 Running time:

 Best case: O(n log n)

 Worst case: O(n2)
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Quickhull

 Algorithm: QUICKHULL(a, b, S)

 If S = Ø then return

 else

 c ← index of point with max distance from ab

 A ← points strictly right of (a, c)

 B ← points strictly right of (c, b)

 return QUICKHULL(a, c, A) + ( c ) + QUICKHULL(c, b, B)
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Quickhull

Start with the leftmost 
and rightmost vertices

b

a
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Quickhull

Points in the triangle acb
are interior to the hull

b

a

c furthest away from ab
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Quickhull



26

Quickhull
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Quickhull
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Quickhull
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Quickhull

 Running Time:

 Initial extremes a,b and separating S: O(n)

 Finding extreme point c and eliminating points in 

triangle acb: O(n)

 Recursive steps: T(n) = O(n) + T(α) + T(β)

 Best case: T(n) = 2T(n/2) + O(n) = O(n log n)

 Worst case: T(n) = O(n) + T(n-1) = O(n2)
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Graham's Scan

 Probably the first scientific paper in the history 

of Computational Geometry (1972)

 Bell laboratories required the hull of ~= 10,000 

vertices

 The O(n2) algorithm took too much time

 n2 = 100,000,000

 Graham invented this O(n log n) algorithm

 n log n = 133,000
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Outline

 Choose a vertex v inside the hull

 Sort the rest of the vertices in counter clockwise 

angular order around v

 Build the hull via left turns at each hull vertex

 All turns on the convex hull are left turns during a 

boundary traversal
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Graham's Scan
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Graham's Scan
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Graham's Scan
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Graham's Scan
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Graham's Scan
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Graham's Scan
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Graham's Scan

v

1

2

3

4

5

6

7

8

5
4
3
1

Right Turn!



39

Graham's Scan
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Graham's Scan
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Graham's Scan
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Graham's Scan
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Running Time

 Sorting the vertices: O(n log n)

 Each vertex is added to the stack once

 May be removed only once

 Overall running time: O(n log n)
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Some Problems

 The algorithm so far is not perfect

 What happens at the end if the bottom vertex is not 

a hull vertex?

 What happens at the start if the second vertex is 

not a hull vertex?

 Which vertex to use as origin for sorting?

 How about collinear vertices?
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Some Problems
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Solutions

 Origin of sorting: The rightmost vertex with 

smallest y-coordinate

 Can be found in O(n) time

 Always a hull vertex

 After the sort, the first vertex is also a hull vertex
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Solutions
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Solutions

 Hull collinearities

 require a strict left turn

 Sorting collinearities

 Arbitrary solutions cause hull overlaps

 or bugs in the implementation

 Delete the vertices closer to the origin
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Lower Bound

1 2 3 4 5

1

4

9

16

25

The convex hull of the
designed point set gives
a solution to the sorting

problem.
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QUIZ TIME

Prepare for the quiz!
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QUIZ 4

Consider the following pseudocode on a set S of n points:

i ← 1
S

1
 ← S

n
1
 ← n

while (n
i
 > 3)

compute the convex hull H(S
i
) of S

i

S
i+1

 ← S
i
 – H(S

i
)

n
i+1

 ← n
i
 – |H(S

i
)|

i ← i + 1

where |H(S
i
)| is the number of points on H(S

i
)

What is the maximum value i can obtain at the end? 
Justify your answer.
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