
1

Week 5 Convex Hulls in 2D

2

Week 5 Convex Hulls in 2D

 Applications

 Collision avoidance

 Fitting ranges with a line

 Smallest box

 Shape Analysis

3

Convexity

 A set S is convex,

 if x,y in S implies that

 the segment xy is a subset of S

 Works in any dimensions

 A polygon with a reflex vertex is not convex

x
y

4

Formal Segment Definition

 The segment xy is the set of all points of the

form αx+βy with α≥0, β≥0 and α+β = 1

 αx+βy = αx+(1-α)y = α(x-y) + y = x + β(y-x)

x

y

v = αx+βy

∣xv∣
∣xy∣

=

∣vy∣
∣xy∣

=

5

Convex Combination

 A convex combination of points x
1
, x

2
, … , x

k
 is

 a sum of the form α
1
x

1
+ α

2
x

2
 + … + α

k
x

k

 α
i
 ≥ 0 for all I

 α
1
 + α

2
 + … + α

k
 = 1

x
1

x
2

x
3

α
1
x

1
+ α

2
x

2
 + α

3
x

3

6

Convex Hull

 Definition I

 The convex hull of a set of points S is

 the set of all convex combinations of points of S

7

Convex Hull

 Definition II

 The convex hull of a set of points S

 in d dimensions is

 the set of all convex combinations of d+1 (or fewer)

points of S

 For d=2, convex hull is the combination of all

triangles

8

Convex Hull

 Definition III

 The convex hull of a set of points S is

 the intersection of all convex sets that contain S

9

Convex Hull

 Definition IV

 The convex hull of a set of points S is

 the intersection of all halfspaces that contain S

10

Convex Hull

 Definition V

 The convex hull of a set of points S is

 the smallest convex polygon that encloses S

11

Convex Hull

 Definition VI

 The convex hull of a set of points S is

 the enclosing convex polygon with smallest area

12

Convex Hull

 Definition VII

 The convex hull of a set of points S in the plane is

 the union of all the triangles determined by points in S

13

Output

 A convex hull algorithm may have the following

outputs:

 all the points on the hull, in arbitrary order

 extreme points, in arbitrary order

 all the points on the hull, in BTO*

 extreme points, in BTO

* BTO: Boundary Traversal Order

14

Extreme Points

 Extreme points

 are the vertices of the convex hull at which the

interior angle is strictly convex

15

Naive Algorithms

 Nonextreme Points

 A point is nonextreme iff it is inside some triangle

whose vertices are points of the set and is not itself

a corner of that triangle

16

Naive Algorithms

 Algorithm: INTERIOR POINTS

 for each i do

 for each j ≠ i do

 for each k ≠ j ≠ i do

 for each l ≠ k ≠ j ≠ i do

 if p
l
 in triangle p

i
p

j
p

k
 then p

l
 is nonextreme

 O(n4) !!!

17

Extreme Edges

 Algorithm: EXTREME EDGES

 for each i do

 for each j ≠ i do

 for each k ≠ j ≠ i do

 if p
k
 is not (left or on) (p

i
,p

j
) then (p

i
,p

j
) is not extreme

O(n3), still very slow

18

Gift Wrapping

 All edges of the convex hull are connected

 Find one, then search for the next

 Use the lowest vertex to start with

 Works much faster: O(nh)

19

Gift Wrapping

x

e Ө

y

20

Gift Wrapping

 For each edge

 Compute theta with O(n) vertices

 Choose the vertex with the smallest theta

 There are only h edges on the boundary

 O(n) time for each edge

 Overall running time O(nh)

21

Quickhull

 Similar to Quicksort

 It is easy to discard many points

 But may not work always

 Running time:

 Best case: O(n log n)

 Worst case: O(n2)

22

Quickhull

 Algorithm: QUICKHULL(a, b, S)

 If S = Ø then return

 else

 c ← index of point with max distance from ab

 A ← points strictly right of (a, c)

 B ← points strictly right of (c, b)

 return QUICKHULL(a, c, A) + (c) + QUICKHULL(c, b, B)

23

Quickhull

Start with the leftmost
and rightmost vertices

b

a

24

Quickhull

Points in the triangle acb
are interior to the hull

b

a

c furthest away from ab

25

Quickhull

26

Quickhull

27

Quickhull

28

Quickhull

29

Quickhull

 Running Time:

 Initial extremes a,b and separating S: O(n)

 Finding extreme point c and eliminating points in

triangle acb: O(n)

 Recursive steps: T(n) = O(n) + T(α) + T(β)

 Best case: T(n) = 2T(n/2) + O(n) = O(n log n)

 Worst case: T(n) = O(n) + T(n-1) = O(n2)

30

Graham's Scan

 Probably the first scientific paper in the history

of Computational Geometry (1972)

 Bell laboratories required the hull of ~= 10,000

vertices

 The O(n2) algorithm took too much time

 n2 = 100,000,000

 Graham invented this O(n log n) algorithm

 n log n = 133,000

31

Outline

 Choose a vertex v inside the hull

 Sort the rest of the vertices in counter clockwise

angular order around v

 Build the hull via left turns at each hull vertex

 All turns on the convex hull are left turns during a

boundary traversal

32

Graham's Scan

v

1

2

3

4

5

6

7

8

Stack S

33

Graham's Scan

v

1

2

3

4

5

6

7

8

2
1

34

Graham's Scan

v

1

2

3

4

5

6

7

8

2
1 Right turn!

35

Graham's Scan

v

1

2

3

4

5

6

7

8

3
1

36

Graham's Scan

v

1

2

3

4

5

6

7

8

4
3
1

Left Turn, OK!

37

Graham's Scan

v

1

2

3

4

5

6

7

8

5
4
3
1 Left Turn, OK!

38

Graham's Scan

v

1

2

3

4

5

6

7

8

5
4
3
1

Right Turn!

39

Graham's Scan

v

1

2

3

4

5

6

7

8

6
4
3
1

40

Graham's Scan

v

1

2

3

4

5

6

7

8

7
6
4
3
1

Left Turn, OK!

41

Graham's Scan

v

1

2

3

4

5

6

7

8

8
7
6
4
3
1

Left Turn, OK!

42

Graham's Scan

v

1

2

3

4

5

6

7

8

8
7
6
4
3
1

Left Turn, OK!

43

Running Time

 Sorting the vertices: O(n log n)

 Each vertex is added to the stack once

 May be removed only once

 Overall running time: O(n log n)

44

Some Problems

 The algorithm so far is not perfect

 What happens at the end if the bottom vertex is not

a hull vertex?

 What happens at the start if the second vertex is

not a hull vertex?

 Which vertex to use as origin for sorting?

 How about collinear vertices?

45

Some Problems

v

1

2

3

4

5

6

7

8

46

Solutions

 Origin of sorting: The rightmost vertex with

smallest y-coordinate

 Can be found in O(n) time

 Always a hull vertex

 After the sort, the first vertex is also a hull vertex

47

Solutions

v

1

2

3

4

5

6

7

8

48

Solutions

 Hull collinearities

 require a strict left turn

 Sorting collinearities

 Arbitrary solutions cause hull overlaps

 or bugs in the implementation

 Delete the vertices closer to the origin

49

Lower Bound

1 2 3 4 5

1

4

9

16

25

The convex hull of the
designed point set gives
a solution to the sorting

problem.

50

QUIZ TIME

Prepare for the quiz!

51

QUIZ 4

Consider the following pseudocode on a set S of n points:

i ← 1
S

1
 ← S

n
1
 ← n

while (n
i
 > 3)

compute the convex hull H(S
i
) of S

i

S
i+1

 ← S
i
 – H(S

i
)

n
i+1

 ← n
i
 – |H(S

i
)|

i ← i + 1

where |H(S
i
)| is the number of points on H(S

i
)

What is the maximum value i can obtain at the end?
Justify your answer.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

