Week 5 Convex Hulls in 2D

 C

 C Me大n

.
\square $+$
 \qquad
\qquad
\qquad
\square

 --

\square

\qquad
\qquad
\qquad
\qquad
\qquad
I

-

[^0]
-

\square
\square
N_{N}

Week 5 Convex Hulls in 2D

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis
路
 ．

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
－Shape Analysis
\square

Applications

$$
0
$$

\qquad

帾

\qquad

$$
D
$$

$$
0
$$

$$
0
$$

■

$$
1
$$

$$
\mathrm{N}
$$

P
(教
F

$$
4
$$

$$
\mathrm{N}
$$

\qquad

AR PR
AR PR
\qquad

Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box
Applications
－Collision avoidance
－Fitting ranges with a line
－Smallest box

AR PR
AR PR
AR PR

\qquad


```
B
\(\square\)
\(\square\)
```


\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad震

－

\qquad促 \qquad

$$
\begin{aligned}
& \text { Applications } \\
& \text { - Collision avoidance } \\
& \text { - Fitting ranges with a line }
\end{aligned}
$$

```
        O
```

```
        O
```


\qquad Formal Segment Definition - The segment $x y$ is the set of all points of the

- $\alpha x+\beta y=\alpha x+(1-\alpha) y=\alpha(x-y)+y=x+\beta(y-x)$

form $\alpha x+\beta y$ with $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta=1$

$$
\begin{aligned}
& \frac{|x v|}{|x y|}=\beta \\
& \frac{|v y|}{|x y|}=\alpha
\end{aligned}
$$

 The segment xy is the set of all points of the

"

位

 $-$ -

$$
\underline{"}
$$

$$
\bar{I}
$$

$$
\alpha x+\beta y=\alpha x+(1-\alpha) y=\alpha(x-y)+y=x+\beta(y-x)
$$

[^1]■
■
E
$$
2
$$
를

Convex Combination
 \qquad

$$
\begin{align*}
& \text { Convex Comb } \\
& \text { - A convex combination of poi } \tag{eㅡㄹ}\\
& \text {. a sum of the form } \alpha_{1} x_{1}+\alpha_{2} x_{2} \\
& \text { - } a_{i} \geq 0 \text { for all I } \\
& \text { - } a_{1}+\alpha_{2}+\ldots+\alpha_{k}=1
\end{align*}
$$

- A convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$ is
- a sum of the form $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{k} x_{k}$

$$
x_{2} \underbrace{a_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}_{x_{3}}
$$

$0^{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}$
$0^{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}$
$0^{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}}$
[$+$
 -

\qquad
.
a for
3

\square
 -

$=$

 $x_{1}^{x_{1}}$
 $-$

\square

```
    *
```


ㄹ

-

Abstract

\qquad

I

$\rightarrow 1$－

 \section*{．

 \section*{．

 }

 }

 ．

隹
7
－The convex hull of a set of points S
－in d dime set of all convex combinations of d
points of S
For d＝2，convex hull is the combing
triangles
Definition ll
The convex hull of a set of points S
：in die set of all convex combinations of d－
points of S
For d＝2，convex hull is the combing
triangles
－Definition II
－Definition II
－Definition II
－Definition II \square

－Definition II

\qquad
，

震

f \square

\qquad

\qquad

$$
0
$$

\square

\square
位

- Definition II
 clIO
d
o in
$=2$
．

0

Definition ll sen set of points S is
Definition ll sen set of points S is
Definition ll sen set of points S is

Definition ll sen set of points S is

\qquad

$$
\square
$$

$+$

Definition Ill sen in of set of points S is
\qquad
\qquad \square

-
都

(

Convex Hull

- Definition IV
- The convex hull of a set of points S is
- the intersection of all halfspaces that contain S

Definition IV
Definition IV

- Definition V
- Definition IV -
- Definition IV
- Definition IV -
 -

-

Definition IV

- the intersection of all halfspaces that contain

 $+$

Definition IV

- The convex hull of a set of points S is

-

intersection of all halfspaces that contain S =
20

正
 -

 \title{
he convex hull of a set of points S is
}
 \title{
he convex hull of a set of points S is
}

The convex
The convex

\qquad
\qquad
\square
\qquad

?
\square
 \section*{\section*{Convex Hull}}
 \section*{\section*{Convex Hull}}
\square \square $+$ (
\qquad \longrightarrow

- Definition V
- The convex hull of a set of points S is
. the smallest convex polygon that encloses S

Definition V
Definition V

- the smallest convex polygon that encloses S

 r

.

$$
1
$$

Definition V

- the smallest convex polygon that encloses S

- Definition V
- The convex hull of a set of points S is
- the smallest convex polygon that encloses S

Definition V

[^2]
\qquad

E

Abstract

En

\qquad

를
E
\qquad
\qquad
\qquad
\qquad
\qquad

Definition V

- the smallest convex polygon that encloses S
\qquad
 ($+$正

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
                                    #
```

\qquad

Abstract

\qquad

Convex Hull

- Definition VI
- The convex hull of a set of points S is
- the enclosing convex polygon with smallest area
+

Definion VI

-
\square
 \square

\square I ---, , .
號
"

\square --
\qquad
\qquad

"

$$
1
$$

■

-

 － －
I-

Output

- A convex hull algorithm may have the following outputs:
- all the points on the hull, in arbitrary order
- extreme points, in arbitrary order
- all the points on the hull, in BTO*
- extreme points, in BTO
* BTO: Boundary Traversal Order

Extreme Points

- Extreme points
- are the vertices of the convex hull at which the
interior angle is strictly convex
- Extreme points
- are the vertices of the convex hull at which the
interior angle is strictly convex
- Extreme points
- are the vertices of the convex hull at which the
interior angle is strictly convex

-

Extreme points
\quad are the vertices of the convex hull at which the
\quad interior angle is strictly convex
Extreme points
\quad are the vertices of the convex hull at which the
\quad interior angle is strictly convex

- Extreme points
- are the vertices of the convex hull at which the
interior angle is strictly convex

Extreme points
\quad are the vertices of the convex hull at which the
\quad interior angle is strictly convex
Extreme points
\quad are the vertices of the convex hull at which the
\quad interior angle is strictly convex $+$ 1

Extreme points
are the vertices of the convex hull at which the
interior angle is strictly convex
\square

Extreme points
are the vertices of the convex hull at which the
interior angle is strictly convex

\square
\qquad

\qquad

\square
-2
\qquad
.
E
\qquad
F

[
\square

.
x_{2}
\square
or angle is strictly convex interior angle is strictly

$$
-
$$

\qquad

$$
-
$$

1

Naive Algorithms

- Nonextreme Points
- A point is nonextreme iff it is inside some triangle whose vertices are points of the set and is not itself a corner of that triangle
a comer ot that triangle

Naive Algorithms

- Algorithm: INTERIOR POINTS
- for each ido
- for each $\mathrm{j} \neq \mathrm{i}$ do
- for each $\mathrm{k} \neq \mathrm{j} \neq \mathrm{i}$ do
- if p_{I} in triangle $p_{i} p_{j} p_{k}$ then p_{I} is nonextreme

$$
\text { - for each } I \neq k \neq j \neq i \text { do }
$$

Naive Algorithms .

$$
p_{1} \text { is nonextreme }
$$

$$
\text { - } \mathrm{O}\left(\mathrm{n}^{4}\right)!!!
$$

Extreme Edges

- for each i do
- for each $\mathrm{j} \neq \mathrm{i}$ do
- for each $k \neq j \neq i$ do

- Algorithm: EXTREME EDGES

Gift Wrapping

- All edges of the convex hull are connected
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)
- All edges of the convex hull are connected
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)
- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: $O(n h)$
- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)
- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)

d

\square

- All edges of the convex hull are connected
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)

All edges of the convex hull are conn

- Find one, then search for the next
- Use the lowest vertex to start with
Works much faster: $O(n h)$
- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: $O(n h)$
- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)

18
- All edges of the convex hull are conne
- Use the lowest vertex to start with
- Works much faster: $O(n h)$
18
18 All edges of the convex hull are conned
Gift Wrapping
- All edges of the convex hull are conne
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh) ,
18
- All edges of the convex hull are conne
- Use the lowest vertex to start with
. Works much faster: $O(n h)$
18 All edges of the convex hull are conned ∇ \square \square
 \square

 \square
?

- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)
 .

T

- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: O(nh)

O
0
-
-
\square都
\qquad
\qquad
\qquad

 \square

- All edges of the convex hull are conn
- Find one, then search for the next
- Use the lowest vertex to start with
- Works much faster: $\mathrm{O}(\mathrm{nh})$
-

\square

\qquad

\qquad
\qquad

O
,
\qquad
\qquad
\qquad
\qquad

 .}

\section*{－

－

 }
Abstract

$\operatorname{lol}^{2}+\frac{2}{2}$

 ．
 －

號

Abstract

．

（one

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

．
\qquad
\square
\square
\square

[^3]

都

－

．

$$
\begin{align*}
& \text { Gift Wrapping } \\
& \text { - For each edge } \\
& \text { - Compute theta with } \mathrm{O}(\mathrm{n}) \text { vertices } \\
& \text { - Choose the vertex with the smallest theta } \tag{2}\\
& \text { - There are only } \mathrm{h} \text { edges on the boundary } \\
& \text { - O(n) time for each edge } \\
& \text { - Overall running time } \mathrm{O}(\mathrm{nh})
\end{align*}
$$

a

保
F

```
者
```都

 \(\square\) To
 ． \(\square\)

```

                                    *
    ```
```

                                    *
    ```
```

                                    *
    ```
\(\qquad\)
```

                                    #
    ```
```

                                    #
    ```
```

                                    #
    ```
```

                                    #
    ```
```

                                    #
    ```
```

                                    #
    ```


．

,
-
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Quickhull}

\section*{-}
 \(=\)

\(\square\)

\section*{}

 ,
\(\square\)

\(\square\)

\(\square\)

\(\square\)

\(\square\)

N

\author{
\[
+2+2
\]
}

\(=\)

\(\square\)
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
 -
 -
\(\qquad\)

\[
\sigma
\]

 O
 O
\(\qquad\)

\section*{Quickhull}

\begin{abstract}
(
\end{abstract}-
 \(+\) er


```

- $\mathrm{c} \leftarrow$ index of point with max distance from ab
index of point with max distance from ab









$\square$震

- $B \leftarrow$ points strictly right of $(c, b)$
return Quick hull (a, c, A) + (c) +QURKHULL(, b, B)
- 
- return QUICKHULL(a, c, A) + ( c ) + QUICKHULL(c, b, B)
- A $\leftarrow$ points strictly right of ( $\mathrm{a}, \mathrm{c}$ )

$\qquad$



$\qquad$




$c$ index of point with max dis from ab $+$ 0

$$
\begin{array}{r}
22 \\
\text { - Algorith } \\
\text { - If } S= \\
=\text { else } \\
=\text { c } \leftarrow \\
=A \leftarrow \\
=B \\
~-~ r e t u ~ \tag{0}
\end{array}
$$

- If $S=\varnothing$ then return

\section*{- else

## - else <br> <br> ,

 <br> <br> ,} <br> <br> ,}- $\varnothing$ then return

```
 -
```

```
 -
```

```
 -
```

```
 -
```

```
 -
```

```
 -
```

        Conc on
    

$\qquad$

.
$\square$


## Quickhull <br> <br> $2-2 \rightarrow+\square$

 <br> <br> $2-2 \rightarrow+\square$}Start with the leftmost
and rightmost vertices

$\square$
 $\square$
Start with the leftmost $\begin{aligned} & \text { and rightmost vertices }\end{aligned}$
Start with the leftmost
and rightmost vertices
Start with the leftmost
and rightmost vertices

$\square$
$\square$
$\square$
$\square$
$\square$


$\square$
$\square$



$\qquad$
Start with the leftmost
and rightmost vertices



號

[^4]正

都


Start with the leftmost $\begin{aligned} & \text { and rightmost vertices }\end{aligned}$



Start with the leftmost
and rightmost vertices

## Quickhull

 24

Points in the triangle act
are interior to the hull
Points in the triangle act
are interior to the hull
Points in the triangle act
are interior to the hull
Points in the triangle acb
are interior to the hull
Points in the triangle acb
are interior to the hull
Points in the triangle arb
are interior to the hull
Points in the triangle acb
are interior to the hull



Points in the triangle acb
are interior to the hull
Points in the triangle act
are interior to the hull


$\qquad$


Points in the triangle act
are interior to the hull
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
re interior to the hull




$\qquad$



furthest away from ab
理Points in the triangle acb
are interior to the hull

[^5]QUNCNUUN
ins in the triangle act
re interior to the hull
are interior to the hull
$\qquad$



```
 *
```

```
 *
```

```
 *
```

```
 *
```

```
 *
```


 $\square$



$$
\begin{aligned}
& \text { Points in the triangle acb } \\
& \text { are interior to the hull }
\end{aligned}
$$




$\square$


- 


# the null 


furthest away from ab

Points in the triangle acb
are interior to the hull

## Quickhull <br> ?

 25都 a
$\qquad$




$\square$
. $+1+2$

# $=$ - 


$\operatorname{lic}_{2}+x_{0}$


## Quickhull <br> (2)

(1) <br> Quickhull <br> Quickhull




## $+$












(1) $\square$ $\square$


$\square$電












#### Abstract

$\qquad$


(1)





$$
2
$$ = _ $\qquad$







O



$\qquad$


$\square$

$$
\begin{aligned}
& \cos ^{(1)}
\end{aligned}
$$




271
$\overbrace{2}$




$\square$
$\qquad$

$\square$

）


#### Abstract





（
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\square$

##  -

Quickhull
.

- 

 .






$\qquad$
$\qquad$
$\qquad$


- $+2$ $+$


 ?
 $-$ $-$ $\square$

- 


$\square$
$\square$





 O

Quickhull
－Running Time：
Running Time：
－Initial extremes abb and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
$\quad$ ．Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
Running Time：
－Initial extremes a，b and separating $S: O(n)$
．Finding extreme point $c$ and eliminating points in
．Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
Running Time：
－Initial extremes a，b and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
$\quad$ Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$

Running Time：
－Initial extremes a，b and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
$\quad$ Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
Running Time：
－Initial extremes a，b and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
$\quad$ Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
－Running Time：
－Initial extremes a，b and separating $S: O(r$
－Finding extreme point c and eliminating $p$
triangle acb：$O(n)$
－Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
－Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
－Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$

$$
\text { Worst case: } \mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})+\mathrm{T}(\mathrm{n}-1)=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Running Time：
－Initial extremes abb and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
．Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
Running Time：
－Initial extremes abb and separating $S$ ：$O(n)$
．Finding extreme point $c$ and eliminating points in
．Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$
$\quad$ Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$
Running Time：
Running Time：



ne：
E

$$
>
$$

O
 Running Time：
－Initial extremes a，b and separating $S$ ：$O(n)$
－Finding extreme point c and eliminating points in
triangle acb：$O(n)$
$\quad$ Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
• Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$

電
  Running Time：
－Initial extremes $a, b$ and separating $S: O(n)$
$\quad$ Finding extreme point $c$ and eliminating points in
$\quad$ Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ Best case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$ Running Time：
－Initial extremes $a, b$ and separating $S: O(n)$
－Finding extreme point $c$ and eliminating points in
triangle acb：$O(n)$
－Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
－case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$ Running Time：
－Initial extremes $a, b$ and separating $S: O(n)$
－Finding extreme point $c$ and eliminating points in
triangle acb：$O(n)$
－Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
－case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$

 $\underline{\square}$
Running Time：
－Initial extremes abb and separating $S$ ：$O(n)$
$\quad$ Finding extreme point $c$ and eliminating points in acb：$O(n)$
$\quad$ ．Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
$\quad$ ．West case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$


Running Time：
Running Time：
Running Time：
$\qquad$

T

> [

 Running Time：
－Initial extremes $a, b$ and separating $S: O(n)$
－Finding extreme point $c$ and eliminating points in
triangle acb：$O(n)$
－Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
－case：$T(n)=2 T(n / 2)+O(n)=O(n \log n)$




$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\square$
$\square$
$\square$

ne： $\qquad$
 $\qquad$


Running Time：
－Initial extremes a，b and separating $S: O(n)$
．Finding extreme point $c$ and eliminating points in
－Recursive steps：$T(n)=O(n)+T(\alpha)+T(\beta)$
－Worst case：$T(n)=O(n)+T(n-1)=O\left(n^{2}\right)$

 ，


-

$\qquad$
$\qquad$
$\qquad$
$\square$
$\qquad$
$\square$
$\qquad$
$\qquad$
$\qquad$
E

$$
\underline{T}
$$

of Computational Geometry (1972)

- Bell laboratories required the hull of $\sim=10,000$ vertices
- The $\mathrm{O}(\mathrm{n} 2)$ algorithm took too much time
- n2 = 100,000,000
- Graham invented this $O(n \log n)$ algorithm
- $n \log n=133,000$

=
$\qquad$





$$
\begin{aligned}
& \text { Graham's Scan } \\
& \text { - Probably the first scientific paper in the history }
\end{aligned}
$$ vertices

The O(n2) algorithm took too much time
e

$$
110 y \text { i1-10v,000 }
$$

$\qquad$
$\square$
$\square$
$\square$

  $\square$
$\qquad$
$\square$
$\square$

er
$\square$

$$
\text { (-1. } 2
$$

## Outline

- Choose a vertex v inside the hull
- Sort the rest of the vertices in counter clockwise angular order around $v$
- All turns on the convex hull are left turns during a boundary traversal
 -

boundary traversal



## 

都

㕍
f




Stack S
Stack S


## 

$\square$
Stack S


Stack S

Stack S $\square$ $+$ ，
$\qquad$
Ctack
Ctack
Stack S
Stack S



## 

Stack S
Stack S
（ $\square$

\section*{

$$
5
$$



$$
2
$$

StaCk S —
$\qquad$ $-$


Stack S
Stack S
－

## Craham＇s Scan $0^{3}$ <br>  <br>  <br>  <br> （ <br> $\square$

 <br> $\square$}\section*{0

\section*{0

\section*{0 <br> 





34 $+2$

都


 3 3 3 3 3 3 3 3 3 3 3
3
3
3
7
I
$\square$

[^6]3
3
3


#### Abstract




3

## 



3
3
3
3
3
3
3
3

## Graham's Scan

## Graham's Scan

  . 4 4 4 4 4 4 4 4 4 4 4 4 <br>  <br> <br> \section*{<br> \section*{\section*{Graham＇s Scan
$\begin{aligned} & \text { Left Turn，ok！} \\ & 03\end{aligned}$ <br> <br> \section*{<br> \section*{\section*{Graham＇s Scan
$\begin{aligned} & \text { Left Turn，ok！} \\ & 03\end{aligned}$ <br> <br> \section*{<br> \section*{\section*{Graham＇s Scan

$\begin{aligned} & \text { Left Turn，ok！} \\ & 03\end{aligned}$ <br> <br> <br>  <br> <br> <br> <br> \section*{ <br> <br> <br> <br> <br>  <br> <br> <br> <br> <br> $$
1
$$} <br> <br> <br> <br>  <br> <br> <br>  <br> <br> <br>  <br> <br> <br> <br> <br> 4 <br> <br> <br> <br> Left Turn，OK！ <br> <br> <br> <br> <br> ．} <br> <br> <br> <br> <br> ．}

## Cores

 4 4A
 4 4 4 4 4 4

37
4
4
1
37
31
Left Turn, ok!
37
31








31
31
31

$\qquad$


31
5
4
1
> $-$

31
5
4
1






31
5
4
1
Left Turn, OK!


38
48
38

 <br> <br> <br> Right Turn! <br> <br> <br> Right Turn! <br> <br> \section*{<br> \section*{38 <br> <br> \section*{<br> \section*{38 <br> <br> \section*{<br> \section*{38 <br> <br> $$
+
$$} <br> <br> 4 <br> <br> 4 <br> <br> <br> 38

5
3
1 <br> <br> <br> 38
5
3
1 <br> <br> <br> 38
5
3
1 <br> <br> <br> 38 <br> <br> <br> 38 <br> <br> <br> 38 <br> <br> 4 <br> <br> 4 <br> <br> Right Turn!
4
3
1 <br> <br> Right Turn!
4
3
1 <br> <br> 4 <br> <br> 4 <br> <br> 4 <br> <br> 4 <br> <br> R
4
4
1 <br> <br> R
4
4
1 <br> <br> <br> 5
4
1
Right Turn! <br> <br> <br> 5
4
1
Right Turn! <br> <br> <br> 5
4
1
Right Turn! <br> <br>  <br> <br>  <br> <br> <br> 5
4
1 <br> <br> <br> 5
4
1 <br> <br> <br> 5
4
1 <br> <br> <br> 4
4
1
1 <br> <br> <br> 4
4
1
1 <br> <br> <br> 4
4
1
1 <br> <br> 4 <br> <br> 4 <br> <br> R
4
4
1 <br> <br> R
4
4
1 <br> <br> 4 <br> <br> 4 <br> <br> <br> 38
5
4
3
1 <br> <br> <br> 38
5
4
3
1 <br> <br> <br> 38
5
4
3
1 <br> <br> R
4
4
1 <br> <br> R
4
4
1 <br> <br> R
4
1
1 <br> <br> R
4
1
1 <br> <br>  <br> <br> 


 <br> <br> 4} <br> <br> 4}

38
38


48
38
$\underbrace{8001}$
$\underbrace{8001}$
$\underbrace{8001}$
$\underbrace{8001}$
$\underbrace{8001}$

$\qquad$


$\qquad$
48
$\underbrace{8081}$
48


$\qquad$

$\square$
$\qquad$都



## Graham's Scan

## Gra

##  <br> 9

39


$\sim$
$\sim$
$\sim$
$\sim$
$-$
$\sim$
$\sim$




4
 --





4

$$
\begin{align*}
& \text { - } \tag{2}
\end{align*}
$$






Nocas


$\qquad$
4
4
Vons

$\sim$
$\qquad$



都
$=$

Nocas
Nocas



$\square$

.
$\qquad$


> 都

## Graham's Scan

## 41 <br> 1 <br> $$
4
$$

,


 $\square$
 (



號
 Graham＇s Scan

| 8 |
| :--- |
| 7 |
| 6 |
| 4 |
| 3 |
| 1 |



7
Left Turn，OK！
$\qquad$
$\qquad$

$$
-
$$

7
$\qquad$
－ 8


．
$=$


年

$$
\square
$$


$\square$  $-$



$\qquad$


## （

號


#### Abstract


$\square$

$+$



#### Abstract

\section*{}


D


## ！ing

Running Time
－Sorting the vertices：On log n）
－Each vertex is added to the stack once
－May be removed only once
－Overall running time：$O(n \log n)$
 2

nt


<br>$\qquad$

正

once


-

[^7] ．








 $\operatorname{lon}$

$\qquad$
$\qquad$
$\qquad$震
k once
k once $\square$
$\bigcirc \sim \square$
$\bigcirc \sim \square$
$\longrightarrow$ $\square$ $\square$ $+$
.
. $+$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\square$
$\qquad$

## Some Problems

- The algorithm so far is not perfect
- What happens at the end if the bottom vertex is not a hull vertex?
- What happens at the start if the second vertex is not a hull vertex?
- Which vertex to use as origin for sorting?
- How about collinear vertices?


## a

not a hull vertex?


震 Solutions
－Always a hull vertex
－After the sort，the first vertex is also a hull vertex <br> －Can be found in $O(n)$ time <br> －Can be found in $O(n)$ lime}



## －Origin of sorting：The rightmost vertex with smallest y－coordinate smallest y－coordinate <br> －

 1  － $=$ － － －
 －

 $\square$
－ vertex is also a hull vertex

$=$





- Always a hull vertex

－After tex
$\qquad$
（
，

$\qquad$
$\qquad$

<br>

a hull vert or $\square$





```
 *
```


路 $3-1+2$
 $\square$
 $\square$ ， －都號
－



#### Abstract

$\qquad$






#### Abstract


.


．

－
－
 ． －都


（

 ， （o） ． ． $-$







$\square$
隹
（
（



 －

## Solutions

 －Hull collinearities－require a strict left turn
－Arbitrary solutions cause hull overlaps
－or bugs in the implementation
－Delete the vertices closer to the origin
－ 5 ．     ， ，


 $+$

```
■
```正
\(\qquad\)






.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\begin{abstract}
\(\qquad\)
\end{abstract}
\(\qquad\)

\section*{}

QUIZ TIME
Prepare for the quiz!
Prepare for the quiz!
Prepare for the quiz!


俋

(PreParer for the


\(\qquad\)


 (Preparer for the (Preparer for the

\(\qquad\)



\(\qquad\)


 Prepare for the quiz!

 Prepare for the quiz! Prepare for the quiz! Prepare for the quiz!
 Prepare for the quiz!
 Prepare for the quiz! Prepare for the quiz!
\(\qquad\)
\(\qquad\) Prepare for the quiz! Prepare for the quiz! Prepare for the quiz!
 Prepare for the quiz! Prepare for the quiz! Prepare for the quiz! Prepare for the quiz!
( Prepare for the quiz! Prepare for the quiz!
 Prepare for the quiz!
 Prepare for the quiz!

\(\qquad\)
\(\qquad\)
號
 Prepare for the quiz!


T
\(\square\)

\(\qquad\)


 \(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)


 Prepare for the quiz!


\(\qquad\)

\begin{abstract}
\(\square\)
\end{abstract}

\begin{abstract}
\(\qquad\)
\end{abstract}


\(\square\)

Consider the following pseudocode on a set \(S\) of \(n\) points:
\[
\begin{array}{l}\mathrm{i}^{\mathrm{i}} \leftarrow 1 \\ \mathrm{~S}_{1} \leftarrow \mathrm{~S} \\ n_{1} \leftarrow \mathrm{n} \\ \text { while }\left(n_{i}>3\right) \\ \text { compute the convex hull } H\left(\mathrm{~S}_{\mathrm{i}}\right) \text { of } \mathrm{S}_{\mathrm{i}} \\ \mathrm{S}_{\mathrm{i}+1} \leftarrow \mathrm{~S}_{\mathrm{i}}-\mathrm{H}\left(\mathrm{S}_{\mathrm{i}}\right) \\ n_{i+1} \leftarrow \mathrm{n}_{\mathrm{i}}-\left|\mathrm{H}\left(\mathrm{S}_{\mathrm{i}}\right)\right| \\ \mathrm{i} \leftarrow \mathrm{i}+1\end{array}
\]
where \(\left|\mathrm{H}\left(\mathrm{S}_{\mathrm{i}}\right)\right|\) is the number of points on \(\mathrm{H}\left(\mathrm{S}_{\mathrm{i}}\right)\) What is the maximum value i can obtain at the end?


```

電

```


 \(\square\)
\(\qquad\)```


[^0]:    $\square$

[^1]:    $\qquad$

[^2]:    - the smallest convex polygon that encloses S

[^3]:    
    
    
    

[^4]:    $$
    =
    $$

    
    
    
    
    
    
    
    
    
    
    

[^5]:    

[^6]:    - 

[^7]:    保 ．

