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Symbol-table problem 

Symbol table S holding n records: 

key[x] 
record 

x 

Other fields 
containing 
satellite data 

Operations on S: 
• INSERT(S, x) 
• DELETE(S, x) 
• SEARCH(S, k) 

How should the data structure S be organized? 



October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3 

Direct-access table 

IDEA: Suppose that the keys are drawn from 
the set U ⊆ {0, 1, …, m–1}, and keys are 
distinct.  Set up an array T[0 . . m–1]:  

T[k] = x  if k ∈ K and key[x] = k, 
NIL  otherwise. 

Then, operations take Θ(1) time. 
Problem: The range of keys can be large: 
• 64-bit numbers (which represent 

18,446,744,073,709,551,616 different keys), 
• character strings (even larger!). 
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As each key is inserted, h maps it to a slot of T. 

Hash functions 
Solution: Use a hash function h to map the 
universe U of all keys into 
{0, 1, …, m–1}: 

U 

S 
k1 

k2 k3 

k4 

k5 

0 

m–1 

h(k1) 
h(k4) 

h(k2) 

h(k3) 

When a record to be inserted maps to an already 
occupied slot in T, a collision occurs. 

T 

 = h(k5) 
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Resolving collisions by 
chaining 

• Link records in the same slot into a list. 

h(49) = h(86) = h(52) = i 

T 

i 
49 86 52 

Worst case: 
• Every key 

hashes to the 
same slot. 

• Access time = 
Θ(n) if |S| = n  
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Average-case analysis of chaining 

We make the assumption of simple uniform 
hashing: 
• Each key k ∈ S  is equally likely to be hashed 

to any slot of table T, independent of where 
other keys are hashed. 

Let n be the number of keys in the table, and 
let m be the number of slots. 
Define the load factor of T to be 

α = n/m 
 = average number of keys per slot. 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m). 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m). 
A successful search has same asymptotic 
bound, but a rigorous argument is a little 
more complicated.  (See textbook.) 
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Choosing a hash function 

The assumption of simple uniform hashing 
is hard to guarantee, but several common 
techniques tend to work well in practice as 
long as their deficiencies can be avoided. 

Desiderata: 
• A good hash function should distribute the 

keys uniformly into the slots of the table. 
• Regularity in the key distribution should 

not affect this uniformity. 
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h(k) 

Division method 
Assume all keys are integers, and define 

h(k) = k mod m. 

Extreme deficiency:  If m = 2r, then the hash 
doesn’t even depend on all the bits of k: 
• If k = 10110001110110102 and r = 6, then 

h(k) = 0110102 . 

Deficiency:  Don’t pick an m that has a small 
divisor d.  A preponderance of keys that are 
congruent modulo d can adversely affect 
uniformity.  
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Division method (continued) 

h(k) = k mod m. 

Pick m to be a prime not too close to a power 
of 2 or 10 and not otherwise used prominently 
in the computing environment. 
Annoyance: 
• Sometimes, making the table size a prime is 

inconvenient. 
But, this method is popular, although the next 
method we’ll see is usually superior. 
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Multiplication method 

Assume that all keys are integers, m = 2r, and our 
computer has w-bit words.  Define  

h(k) = (A·k mod 2w) rsh (w – r), 
where rsh is the “bitwise right-shift” operator and 
A is an odd integer in the range 2w–1 < A < 2w. 
• Don’t pick A too close to 2w–1 or 2w. 
• Multiplication modulo 2w is fast compared to 

division. 
• The rsh operator is fast. 
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4 

0 

3 5 
2 6 

1 7 

Modular wheel 

Multiplication method 
example 

h(k) = (A·k mod 2w) rsh (w – r) 
Suppose that m = 8 = 23 and that our computer 
has w = 7-bit words: 

1 0 1 1 0 0 1 
×                     1 1 0 1 0 1 1 

1 0 0 1 0 1 0 0 1 1 0 0 1 1 

= A 
= k 

h(k) A . 
2A 

. 

3A . 
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Resolving collisions by open 
addressing 

No storage is used outside of the hash table itself. 
• Insertion systematically probes the table until an 

empty slot is found. 
• The hash function depends on both the key and 

probe number: 
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}. 

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉 
should be a permutation of {0, 1, …, m–1}. 

• The table may fill up, and deletion is difficult (but 
not impossible). 
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204 204 

Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

481 

T 
0 

m–1 

collision 
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Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) collision 586 
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Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) 

insertion 496 

2. Probe h(496,2) 
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Example of open addressing 

Search for key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) 

496 

2. Probe h(496,2) 

Search uses the same probe 
sequence, terminating suc- 
cessfully if it finds the key 
and unsuccessfully if it encounters an empty slot. 
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Probing strategies 

Linear probing:  
Given an ordinary hash function h′(k), linear 
probing uses the hash function 

h(k,i) = (h′(k) + i) mod m. 
This method, though simple, suffers from primary 
clustering, where long runs of occupied slots build 
up, increasing the average search time.  Moreover, 
the long runs of occupied slots tend to get longer. 
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Probing strategies 

Double hashing  
Given two ordinary hash functions h1(k) and h2(k), 
double hashing uses the hash function 

h(k,i) = (h1(k) + i⋅ h2(k)) mod m. 
This method generally produces excellent results, 
but h2(k) must be relatively prime to m.  One way 
is to make m a power of 2 and design h2(k) to 
produce only odd numbers. 
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Analysis of open addressing 

We make the assumption of uniform hashing: 
• Each key is equally likely to have any one of 

the m! permutations as its probe sequence. 

Theorem.  Given an open-addressed hash 
table with load factor α = n/m < 1, the 
expected number of probes in an unsuccessful 
search is at most 1/(1–α). 
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Proof of the theorem 
Proof. 
• At least one probe is always necessary. 
• With probability n/m, the first probe hits an 

occupied slot, and a second probe is necessary. 
• With probability (n–1)/(m–1), the second probe 

hits an occupied slot, and a third probe is 
necessary. 

• With probability (n–2)/(m–2), the third probe 
hits an occupied slot, etc. 

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n. 
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Proof (continued) 

Therefore, the expected number of probes is 
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. 

The textbook has a 
more rigorous proof 
and an analysis of 
successful searches. 
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Implications of the theorem 

• If α is constant, then accessing an open-
addressed hash table takes constant time. 

• If the table is half full, then the expected 
number of probes is 1/(1–0.5) = 2. 

• If the table is 90% full, then the expected 
number of probes is 1/(1–0.9) = 10. 
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A weakness of hashing 
Problem: For any hash function h, a set 
of keys exists that can cause the average 
access time of a hash table to skyrocket. 

IDEA: Choose the hash function at random, 
independently of the keys. 
• Even if an adversary can see your code, 

he or she cannot find a bad set of keys, 
since he or she doesn’t know exactly 
which hash function will be chosen. 

• An adversary can pick all keys from 
{k ∈ U : h(k) = i} for some slot i. 
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Universal hashing 
Definition.  Let U be a universe of keys, and 
let H   be a finite collection of hash functions, 
each mapping U to {0, 1, …, m–1}.  We say 
H   is universal if for all x, y ∈ U, where x ≠ y, 
we have |{h ∈ H  : h(x) = h(y)}| ≤ |H| / m. 

That is, the chance 
of a collision 
between x and y is 
≤ 1/m if we choose h 
randomly from H. 

H  {h : h(x) = h(y)} 

|H | 
m 
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Universality is good 

Theorem.  Let h be a hash function chosen 
(uniformly) at random from a universal set H  
of hash functions.  Suppose h is used to hash 
n arbitrary keys into the m slots of a table T.  
Then, for a given key x, we have 

E[#collisions with x] < n/m. 
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Proof of theorem 

Proof.  Let Cx be the random variable denoting 
the total number of collisions of keys in T with 
x, and let  

cxy = 1  if h(x) = h(y), 
0  otherwise. 

Note:  E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC . 
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Proof (continued) 












= ∑

−∈ }{
][

xTy
xyx cECE • Take expectation 

of both sides. 
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Proof (continued) 

∑

∑

−∈

−∈

=












=
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}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of 
expectation. 

• Take expectation 
of both sides. 
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Proof (continued) 

∑

∑

∑
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−∈
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xTy

xTy
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• E[cxy] = 1/m. 

• Linearity of 
expectation. 

• Take expectation 
of both sides. 
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Proof (continued) 

m
n

m

cE

cECE

xTy

xTy
xy

xTy
xyx

1
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• Take expectation 

of both sides. 

• Linearity of 
expectation. 

• E[cxy] = 1/m. 

• Algebra. . 
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REMEMBER 
THIS! 

Constructing a set of 
universal hash functions 

Let m be prime.  Decompose key k into r + 1 
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m. 
Randomized strategy: 
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen 
randomly from {0, 1, …, m–1}. 

mkakh
r

i
iia mod)(

0
∑
=

=Define . 

How big is H  = {ha}?   |H | = mr + 1. 

Dot product, 
modulo m 
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Universality of dot-product 
hash functions 

Theorem. The set H  = {ha} is universal. 

Proof.  Suppose that  x = 〈x0, x1, …, xr〉 and y = 
〈y0, y1, …, yr〉 be distinct keys.  Thus, they differ 
in at least one digit position, wlog position 0.  
For how many ha ∈ H  do x and y collide? 

)(mod
00

myaxa
r

i
ii

r

i
ii ∑∑

==
≡ . 

We must have ha(x) = ha(y), which implies that 
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Proof (continued) 
Equivalently, we have 

)(mod0)(
0

myxa
r

i
iii ≡−∑

=

or 
)(mod0)()(

1
000 myxayxa

r

i
iii ≡−+− ∑

=

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

which implies that 

, 

. 
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Fact from number theory 

Theorem.  Let m be prime.  For any z ∈ Zm 
such that z ≠ 0, there exists a unique z–1 ∈ Zm 
such that 

z · z–1 ≡ 1     (mod m). 

Example:  m = 7. 

z 

z–1 

1    2    3    4    5    6 

1    4    5    2    3    6 
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Back to the proof 

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

We have 

and since x0 ≠ y0 , an inverse (x0 – y0 )–1 must exist, 
which implies that 

, 

)(mod)()( 1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅








−−≡ ∑ . 

Thus, for any choices of a1, a2, …, ar, exactly 
one choice of a0 causes x and y to collide. 
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Proof (completed) 

Q. How many ha’s cause x and y to collide? 

A. There are m choices for each of a1, a2, …, ar , 
but once these are chosen, exactly one choice 
for a0 causes x and y to collide, namely 

myxyxaa
r

i
iii mod)()( 1

00
1

0 







−⋅








−−= −

=
∑ . 

 Thus, the number of ha’s that cause x and y 
to collide is mr · 1 = mr = |H |/m. 
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Perfect hashing 
Given a set of n keys, construct a static hash 
table of size m = O(n) such that SEARCH takes 
Θ(1) time in the worst case. 

IDEA: Two-
level scheme 
with universal 
hashing at 
both levels. 
No collisions 
at level 2! 40 37 22 

0 
1 
2 
3 
4 
5 
6 

26 

m a 0 1 2 3 4 5 6 7 8 

14 27 

S4 

S6 

S1 

4 31 

1 00 

9 86 

T 

h31(14) = h31(27) = 1 
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Collisions at level 2 
Theorem. Let H  be a class of universal hash 
functions for a table of size m = n2.  Then, if we 
use a random h ∈ H  to hash n keys into the table, 
the expected number of collisions is at most 1/2.   
Proof.  By the definition of universality, the 
probability that 2 given keys in the table collide 
under h is 1/m = 1/n2.  Since there are      pairs 
of keys that can possibly collide, the expected 
number of collisions is 

( )2
n

2
11

2
)1(1

2 22 <⋅−=⋅







n

nn
n

n . 
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No collisions at level 2 
Corollary.  The probability of no collisions 
is at least 1/2. 

Thus, just by testing random hash functions 
in H , we’ll quickly find one that works.   

Proof.  Markov’s inequality says that for any 
nonnegative random variable X, we have 

Pr{X ≥ t} ≤ E[X]/t. 
Applying this inequality with t = 1, we find 
that the probability of 1 or more collisions is 
at most 1/2.   



October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19 

Analysis of storage 
For the level-1 hash table T, choose m = n, and 
let ni be random variable for the number of keys 
that hash to slot i in T.  By using ni

2 slots for the 
level-2 hash table Si, the expected total storage 
required for the two-level scheme is therefore 

( ) )(
1

0

2 nnE
m

i
i Θ=








Θ∑

−

=
, 

since the analysis is identical to the analysis from 
recitation of the expected running time of bucket 
sort.  (For a probability bound, apply Markov.) 
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