
October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Assoc. Prof. Dr. Burkay Genç

LECTURE 7
Hashing I
• Direct-access tables
• Resolving collisions by

chaining
• Choosing hash functions
• Open addressing

Algorithm Analysis
BBM408

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

Symbol-table problem

Symbol table S holding n records:

key[x]
record

x

Other fields
containing
satellite data

Operations on S:
• INSERT(S, x)
• DELETE(S, x)
• SEARCH(S, k)

How should the data structure S be organized?

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Direct-access table

IDEA: Suppose that the keys are drawn from
the set U ⊆ {0, 1, …, m–1}, and keys are
distinct. Set up an array T[0 . . m–1]:

T[k] = x if k ∈ K and key[x] = k,
NIL otherwise.

Then, operations take Θ(1) time.
Problem: The range of keys can be large:
• 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

As each key is inserted, h maps it to a slot of T.

Hash functions
Solution: Use a hash function h to map the
universe U of all keys into
{0, 1, …, m–1}:

U

S
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in T, a collision occurs.

T

 = h(k5)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Resolving collisions by
chaining

• Link records in the same slot into a list.

h(49) = h(86) = h(52) = i

T

i
49 86 52

Worst case:
• Every key

hashes to the
same slot.

• Access time =
Θ(n) if |S| = n

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Average-case analysis of chaining

We make the assumption of simple uniform
hashing:
• Each key k ∈ S is equally likely to be hashed

to any slot of table T, independent of where
other keys are hashed.

Let n be the number of keys in the table, and
let m be the number of slots.
Define the load factor of T to be

α = n/m
 = average number of keys per slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).
A successful search has same asymptotic
bound, but a rigorous argument is a little
more complicated. (See textbook.)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Choosing a hash function

The assumption of simple uniform hashing
is hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desiderata:
• A good hash function should distribute the

keys uniformly into the slots of the table.
• Regularity in the key distribution should

not affect this uniformity.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m = 2r, then the hash
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then

h(k) = 0110102 .

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.
Annoyance:
• Sometimes, making the table size a prime is

inconvenient.
But, this method is popular, although the next
method we’ll see is usually superior.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Multiplication method

Assume that all keys are integers, m = 2r, and our
computer has w-bit words. Define

h(k) = (A·k mod 2w) rsh (w – r),
where rsh is the “bitwise right-shift” operator and
A is an odd integer in the range 2w–1 < A < 2w.
• Don’t pick A too close to 2w–1 or 2w.
• Multiplication modulo 2w is fast compared to

division.
• The rsh operator is fast.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

4

0

3 5
2 6

1 7

Modular wheel

Multiplication method
example

h(k) = (A·k mod 2w) rsh (w – r)
Suppose that m = 8 = 23 and that our computer
has w = 7-bit words:

1 0 1 1 0 0 1
× 1 1 0 1 0 1 1

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A
= k

h(k) A .
2A

.

3A .

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Resolving collisions by open
addressing

No storage is used outside of the hash table itself.
• Insertion systematically probes the table until an

empty slot is found.
• The hash function depends on both the key and

probe number:
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}.

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉
should be a permutation of {0, 1, …, m–1}.

• The table may fill up, and deletion is difficult (but
not impossible).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

204 204

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

481

T
0

m–1

collision

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1) collision 586

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

insertion 496

2. Probe h(496,2)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Example of open addressing

Search for key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

496

2. Probe h(496,2)

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Probing strategies

Linear probing:
Given an ordinary hash function h′(k), linear
probing uses the hash function

h(k,i) = (h′(k) + i) mod m.
This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k),
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅ h2(k)) mod m.
This method generally produces excellent results,
but h2(k) must be relatively prime to m. One way
is to make m a power of 2 and design h2(k) to
produce only odd numbers.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Analysis of open addressing

We make the assumption of uniform hashing:
• Each key is equally likely to have any one of

the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful
search is at most 1/(1–α).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Proof of the theorem
Proof.
• At least one probe is always necessary.
• With probability n/m, the first probe hits an

occupied slot, and a second probe is necessary.
• With probability (n–1)/(m–1), the second probe

hits an occupied slot, and a third probe is
necessary.

• With probability (n–2)/(m–2), the third probe
hits an occupied slot, etc.

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

Proof (continued)

Therefore, the expected number of probes is














 





 







+−
+

−
−+

−
−++ 

1
11

2
21

1
111

nmm
n

m
n

m
n

()()()()

α

α

ααα
αααα

−
=

=

++++≤
++++≤

∑
∞

=

1
1

1
1111

0

32

i

i





.

The textbook has a
more rigorous proof
and an analysis of
successful searches.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Implications of the theorem

• If α is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected
number of probes is 1/(1–0.9) = 10.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

A weakness of hashing
Problem: For any hash function h, a set
of keys exists that can cause the average
access time of a hash table to skyrocket.

IDEA: Choose the hash function at random,
independently of the keys.
• Even if an adversary can see your code,

he or she cannot find a bad set of keys,
since he or she doesn’t know exactly
which hash function will be chosen.

• An adversary can pick all keys from
{k ∈ U : h(k) = i} for some slot i.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Universal hashing
Definition. Let U be a universe of keys, and
let H be a finite collection of hash functions,
each mapping U to {0, 1, …, m–1}. We say
H is universal if for all x, y ∈ U, where x ≠ y,
we have |{h ∈ H : h(x) = h(y)}| ≤ |H | / m.

That is, the chance
of a collision
between x and y is
≤ 1/m if we choose h
randomly from H.

H {h : h(x) = h(y)}

|H |
m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Universality is good

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H
of hash functions. Suppose h is used to hash
n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Proof of theorem

Proof. Let Cx be the random variable denoting
the total number of collisions of keys in T with
x, and let

cxy = 1 if h(x) = h(y),
0 otherwise.

Note: E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Proof (continued)












= ∑

−∈ }{
][

xTy
xyx cECE • Take expectation

of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Proof (continued)

∑

∑

−∈

−∈

=












=

}{

}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of
expectation.

• Take expectation
of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Proof (continued)

∑

∑

∑

−∈

−∈

−∈

=

=












=

}{

}{

}{

/1

][

][

xTy

xTy
xy

xTy
xyx

m

cE

cECE

• E[cxy] = 1/m.

• Linearity of
expectation.

• Take expectation
of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Proof (continued)

m
n

m

cE

cECE

xTy

xTy
xy

xTy
xyx

1

/1

][

][

}{

}{

}{

−=

=

=












=

∑

∑

∑

−∈

−∈

−∈
• Take expectation

of both sides.

• Linearity of
expectation.

• E[cxy] = 1/m.

• Algebra. .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

REMEMBER
THIS!

Constructing a set of
universal hash functions

Let m be prime. Decompose key k into r + 1
digits, each with value in the set {0, 1, …, m–1}.
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m.
Randomized strategy:
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

How big is H = {ha}? |H | = mr + 1.

Dot product,
modulo m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Universality of dot-product
hash functions

Theorem. The set H = {ha} is universal.

Proof. Suppose that x = 〈x0, x1, …, xr〉 and y =
〈y0, y1, …, yr〉 be distinct keys. Thus, they differ
in at least one digit position, wlog position 0.
For how many ha ∈ H do x and y collide?

)(mod
00

myaxa
r

i
ii

r

i
ii ∑∑

==
≡ .

We must have ha(x) = ha(y), which implies that

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Proof (continued)
Equivalently, we have

)(mod0)(
0

myxa
r

i
iii ≡−∑

=

or
)(mod0)()(

1
000 myxayxa

r

i
iii ≡−+− ∑

=

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

which implies that

,

.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Fact from number theory

Theorem. Let m be prime. For any z ∈ Zm
such that z ≠ 0, there exists a unique z–1 ∈ Zm
such that

z · z–1 ≡ 1 (mod m).

Example: m = 7.

z

z–1

1 2 3 4 5 6

1 4 5 2 3 6

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Back to the proof

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

We have

and since x0 ≠ y0 , an inverse (x0 – y0)–1 must exist,
which implies that

,

)(mod)()(1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅








−−≡ ∑ .

Thus, for any choices of a1, a2, …, ar, exactly
one choice of a0 causes x and y to collide.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Proof (completed)

Q. How many ha’s cause x and y to collide?

A. There are m choices for each of a1, a2, …, ar ,
but once these are chosen, exactly one choice
for a0 causes x and y to collide, namely

myxyxaa
r

i
iii mod)()(1

00
1

0 







−⋅








−−= −

=
∑ .

 Thus, the number of ha’s that cause x and y
to collide is mr · 1 = mr = |H |/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Perfect hashing
Given a set of n keys, construct a static hash
table of size m = O(n) such that SEARCH takes
Θ(1) time in the worst case.

IDEA: Two-
level scheme
with universal
hashing at
both levels.
No collisions
at level 2! 40 37 22

0
1
2
3
4
5
6

26

m a 0 1 2 3 4 5 6 7 8

14 27

S4

S6

S1

4 31

1 00

9 86

T

h31(14) = h31(27) = 1

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Collisions at level 2
Theorem. Let H be a class of universal hash
functions for a table of size m = n2. Then, if we
use a random h ∈ H to hash n keys into the table,
the expected number of collisions is at most 1/2.
Proof. By the definition of universality, the
probability that 2 given keys in the table collide
under h is 1/m = 1/n2. Since there are pairs
of keys that can possibly collide, the expected
number of collisions is

()2
n

2
11

2
)1(1

2 22 <⋅−=⋅







n

nn
n

n .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

No collisions at level 2
Corollary. The probability of no collisions
is at least 1/2.

Thus, just by testing random hash functions
in H , we’ll quickly find one that works.

Proof. Markov’s inequality says that for any
nonnegative random variable X, we have

Pr{X ≥ t} ≤ E[X]/t.
Applying this inequality with t = 1, we find
that the probability of 1 or more collisions is
at most 1/2.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Analysis of storage
For the level-1 hash table T, choose m = n, and
let ni be random variable for the number of keys
that hash to slot i in T. By using ni

2 slots for the
level-2 hash table Si, the expected total storage
required for the two-level scheme is therefore

())(
1

0

2 nnE
m

i
i Θ=








Θ∑

−

=
,

since the analysis is identical to the analysis from
recitation of the expected running time of bucket
sort. (For a probability bound, apply Markov.)

	01-Analysis-of-Algorithms
	Introduction to Algorithms 6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

	02-Asymptotic-Notation-and-Recurrences
	Introduction to Algorithms 6.046J/18.401J
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Set definition of O-notation
	Set definition of O-notation
	Set definition of O-notation
	Macro substitution
	Macro substitution
	Macro substitution
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (tight bounds)
	-notation (tight bounds)
	o-notation and -notation
	o-notation and -notation
	Solving recurrences
	Substitution method
	Substitution method
	Example of substitution
	Example (continued)
	Example (continued)
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound!
	A tighter upper bound!
	A tighter upper bound!
	Recursion-tree method
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	The master method
	Three common cases
	Three common cases
	Three common cases (cont.)
	Examples
	Examples
	Examples
	Examples
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem

	03-Divide-and-Conquer
	Introduction to Algorithms 6.046J/18.401J
	The divide-and-conquer design paradigm
	Merge sort
	Merge sort
	Master theorem (reprise)
	Master theorem (reprise)
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Recurrence for binary search
	Recurrence for binary search
	Powering a number
	Powering a number
	Powering a number
	Fibonacci numbers
	Fibonacci numbers
	Computing Fibonacci numbers
	Computing Fibonacci numbers
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Matrix multiplication
	Standard algorithm
	Standard algorithm
	Divide-and-conquer algorithm
	Divide-and-conquer algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s algorithm
	Strassen’s algorithm
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	H-tree embedding
	H-tree embedding
	H-tree embedding
	Conclusion

	04-Quicksort
	Introduction to Algorithms 6.046J/18.401J
	Quicksort
	Divide and conquer
	Partitioning subroutine
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Pseudocode for quicksort
	Analysis of quicksort
	Worst-case of quicksort
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Best-case analysis
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	More intuition
	Randomized quicksort
	Randomized quicksort analysis
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Quicksort in practice

	05-Linear-Time-Sorting
	Introduction to Algorithms 6.046J/18.401J
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions
	Appendix: Punched-card technology
	Herman Hollerith (1860-1929)
	Punched cards
	Hollerith’s tabulating system
	Operation of the sorter
	Origin of radix sort
	“Modern” IBM card
	Web resources on punched-card technology

	06-Order-Statistics
	Introduction to Algorithms 6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

	07-Hashing-I
	Introduction to Algorithms 6.046J/18.401J
	Symbol-table problem
	Direct-access table
	Hash functions
	Resolving collisions by chaining
	Average-case analysis of chaining
	Search cost
	Search cost
	Search cost
	Search cost
	Choosing a hash function
	Division method
	Division method (continued)
	Multiplication method
	Multiplication method example
	Resolving collisions by open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Probing strategies
	Probing strategies
	Analysis of open addressing
	Proof of the theorem
	Proof (continued)
	Implications of the theorem

	08-Hashing-II
	Introduction to Algorithms 6.046J/18.401J
	A weakness of hashing
	Universal hashing
	Universality is good
	Proof of theorem
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Constructing a set of universal hash functions
	Universality of dot-product hash functions
	Proof (continued)
	Fact from number theory
	Back to the proof
	Proof (completed)
	Perfect hashing
	Collisions at level 2
	No collisions at level 2
	Analysis of storage

	09-Randomly-Built-BST
	Introduction to Algorithms 6.046J/18.401J
	Binary-search-tree sort
	Analysis of BST sort
	Node depth
	Expected tree height
	Height of a randomly built binary search tree
	Convex functions
	Convexity lemma
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Jensen’s inequality
	Jensen’s inequality
	Jensen’s inequality
	Analysis of BST height
	Analysis (continued)
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Post mortem
	Post mortem (continued)
	Thought exercises

	10-Balanced-Search-Trees
	Introduction to Algorithms 6.046J/18.401J
	Balanced search trees
	Red-black trees
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Proof (continued)
	Query operations
	Modifying operations
	Rotations
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Pseudocode
	Graphical notation
	Case 1
	Case 2
	Case 3
	Analysis

	11-Augmenting Data Structures
	Introduction to Algorithms 6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

	12-Skip-Lists
	Introduction to Algorithms 6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

	13-Amortized-Analysis
	Introduction to Algorithms 6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

	14-Competitive-Analysis
	Introduction to Algorithms 6.046J/18.401J
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	On-line and off-line problems
	Worst-case analysis of self-organizing lists
	Average-case analysis of self-organizing lists
	The move-to-front heuristic
	Competitive analysis
	MTF is O(1)-competitive
	MTF is O(1)-competitive
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	What happens on an access?
	What happens on an access?
	What happens on an access?
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Addendum
	Addendum

	15-Dynamic-Programming
	Introduction to Algorithms 6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

	16-Greedy-Algorithms
	Introduction to Algorithms 6.046J/18.401J
	Graphs (review)
	Adjacency-matrix representation
	Adjacency-matrix representation
	Adjacency-list representation
	Adjacency-list representation
	Adjacency-list representation
	Minimum spanning trees
	Minimum spanning trees
	Example of MST
	Example of MST
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Hallmark for “greedy” algorithms
	Hallmark for “greedy” algorithms
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	MST algorithms
	MST algorithms

	17-Shortest-Paths-I
	Introduction to Algorithms 6.046J/18.401J
	Paths in graphs
	Paths in graphs
	Shortest paths
	Well-definedness of shortest paths
	Well-definedness of shortest paths
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Triangle inequality
	Triangle inequality
	Single-source shortest paths (nonnegative edge weights)
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Correctness — Part I
	Correctness — Part I
	Correctness — Part II
	Correctness — Part II
	Correctness — Part III
	Correctness — Part III
	Correctness — Part III (continued)
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Correctness of BFS

	18-Shortest-Paths-II
	Introduction to Algorithms 6.046J/18.401J
	Negative-weight cycles
	Negative-weight cycles
	Bellman-Ford algorithm
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Correctness
	Correctness
	Correctness (continued)
	Detection of negative-weight cycles
	Linear programming
	Linear-programming algorithms
	Linear-programming algorithms
	Solving a system of difference constraints
	Solving a system of difference constraints
	Solving a system of difference constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Satisfying the constraints
	Satisfying the constraints
	Satisfying the constraints
	Proof (continued)
	Bellman-Ford and linear programming
	Application to VLSI layout compaction
	VLSI layout compaction

	19-Shortest-Paths-III
	Introduction to Algorithms 6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

	XX-Computational-Geometry
	Introduction to Algorithms 6.046J/18.401J/SMA5503
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1: Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d  2)
	Primitive operations: Crossproduct
	Primitive operations: Orientation test
	Primitive operations: Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness

