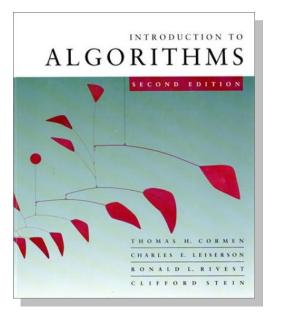
Algorithm Analysis BBM408

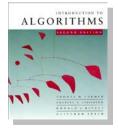


LECTURE 2 Asymptotic Notation • O-, Ω -, and Θ -notation Recurrences

- Substitution method
- Iterating the recurrence
- Recursion tree
- Master method

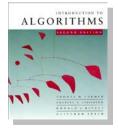
Assoc. Prof. Dr. Burkay Genç

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson



O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.



O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE: $2n^2 = O(n^3)$ ($c = 1, n_0 = 2$)

L2.3

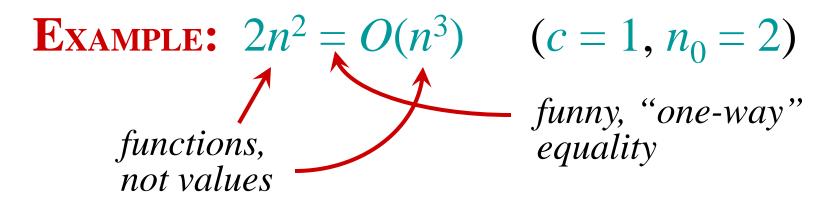
O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE: $2n^2 = O(n^3)$ ($c = 1, n_0 = 2$) functions, not values

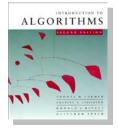
O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.



Set definition of O-notation

 $O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$

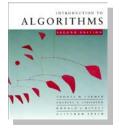


Set definition of O-notation

 $O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$

EXAMPLE: $2n^2 \in O(n^3)$

L2.7

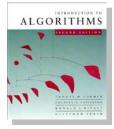


Set definition of O-notation

 $O(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) \le cg(n) \\ \text{for all } n \ge n_0 \}$

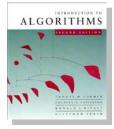
EXAMPLE: $2n^2 \in O(n^3)$

(*Logicians:* $\lambda n.2n^2 \in O(\lambda n.n^3)$, but it's convenient to be sloppy, as long as we understand what's *really* going on.)



Macro substitution

Convention: A set in a formula represents an anonymous function in the set.



Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

EXAMPLE: $f(n) = n^3 + O(n^2)$ means $f(n) = n^3 + h(n)$ for some $h(n) \in O(n^2)$.



Macro substitution

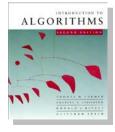
Convention: A set in a formula represents an anonymous function in the set.

EXAMPLE:

$$n^2 + O(n) = O(n^2)$$

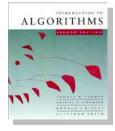
means

for any $f(n) \in O(n)$: $n^2 + f(n) = h(n)$ for some $h(n) \in O(n^2)$.



Ω -notation (lower bounds)

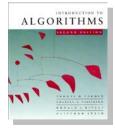
O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.



Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

 $\Omega(g(n)) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}$



Ω-notation (lower bounds)

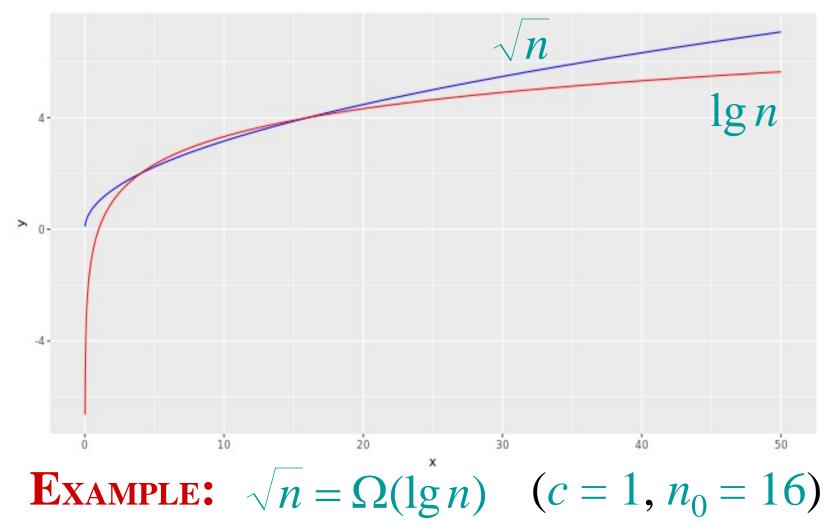
O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

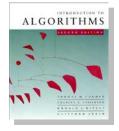
 $(\Omega(g(n))) = \{ f(n) : \text{there exist constants} \\ c > 0, n_0 > 0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \\ \text{for all } n \ge n_0 \}$

EXAMPLE: $\sqrt{n} = \Omega(\lg n)$ (*c* = 1, *n*₀ = 16)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

Ω -notation (lower bounds)





O-notation (tight bounds)

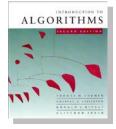
 $\Theta(g(n)) = \Theta(g(n)) \cap \Omega(g(n))$



O-notation (tight bounds)

 $\Theta(g(n)) = \Theta(g(n)) \cap \Omega(g(n))$

EXAMPLE: $\frac{1}{2}n^2 - 2n = \Theta(n^2)$



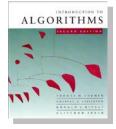
o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like < and >.

 $O(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le f(n) < cg(n) \\ \text{ for all } n \ge n_0 \}$

EXAMPLE: $2n^2 = o(n^3)$ $(n_0 = 2/c)$

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson



o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like < and >.

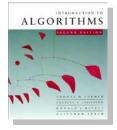
 $\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le cg(n) < f(n) \\ \text{ for all } n \ge n_0 \}$

EXAMPLE: $\sqrt{n} = \omega(\lg n)$ $(n_0 = 1 + 1/c)$

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

Solving recurrences

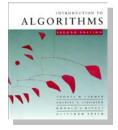
- The analysis of merge sort from *Lecture 1* required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
 - Learn a few tricks.
- *Lecture 3*: Applications of recurrences to divide-and-conquer algorithms.



Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. *Verify* by induction.
- 3. Solve for constants.



Substitution method

The most general method:

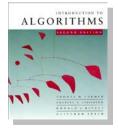
- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

EXAMPLE: T(n) = 4T(n/2) + n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)

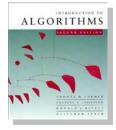
L2.21

- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.



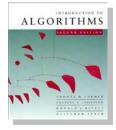
Example of substitution

T(n) = 4T(n/2) + n $\leq 4c(n/2)^3 + n$ $= (c/2)n^3 + n$ $= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$ $< cn^3 \leftarrow desired$ whenever $(c/2)n^3 - n \ge 0$, for example, if $c \ge 2$ and $n \ge 1$. residual



Example (continued)

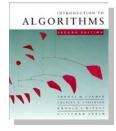
- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.



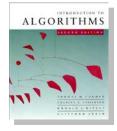
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick *c* big enough.

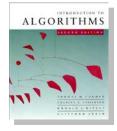
This bound is not tight!



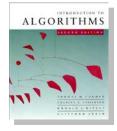
We shall prove that $T(n) = O(n^2)$.



We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\le 4c(n/2)^2 + n$ $= cn^2 + n$ $= O(n^2)$



We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\le 4c(n/2)^2 + n$ $= cn^2 + n$ = O(2) Wrong! We must prove the I.H.



We shall prove that $T(n) = O(n^2)$. Assume that $T(k) \leq ck^2$ for k < n: T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ $= cn^2 + n$ *Wrong!* We must prove the I.H. $= cn^2 - (-n)$ [desired – residual] $\leq cn^2$ for *no* choice of c > 0. Lose!

IDEA: Strengthen the inductive hypothesis.

• *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

IDEA: Strengthen the inductive hypothesis.

• *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n. T(n) = 4T(n/2) + n $= 4(c_1(n/2)^2 - c_2(n/2)) + n$ $= c_1 n^2 - 2c_2 n + n$ $= c_1 n^2 - c_2 n - (c_2 n - n)$ $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$.

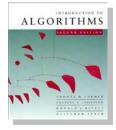
IDEA: Strengthen the inductive hypothesis.

• *Subtract* a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n. T(n) = 4T(n/2) + n $= 4(c_1(n/2)^2 - c_2(n/2)) + n$ $= c_1 n^2 - 2c_2 n + n$ $= c_1 n^2 - c_2 n - (c_2 n - n)$ $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$.

Pick c_1 big enough to handle the initial conditions.

September 12, 2005Copyright © 2001-5 Erik D. Demaine and Charles E. LeisersonL2.31



Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.



Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



Example of recursion tree

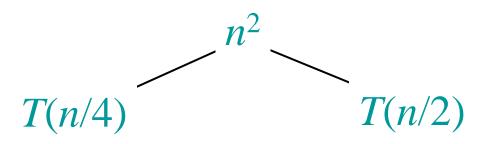
Solve $T(n) = T(n/4) + T(n/2) + n^2$:

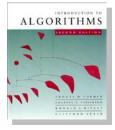
T(n)

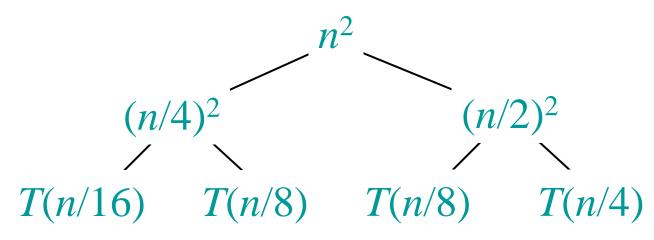


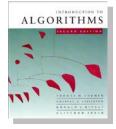
Example of recursion tree

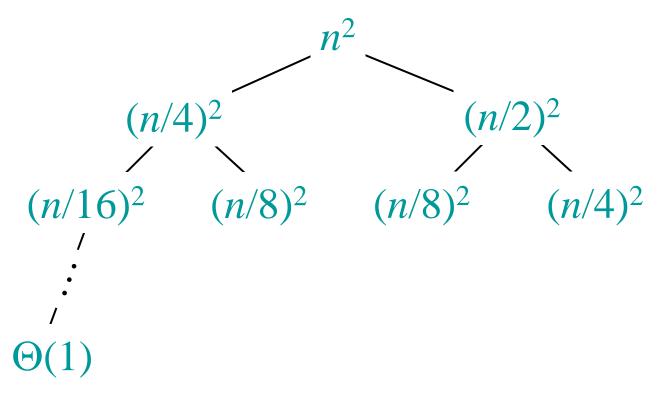
Solve $T(n) = T(n/4) + T(n/2) + n^2$:

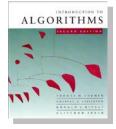


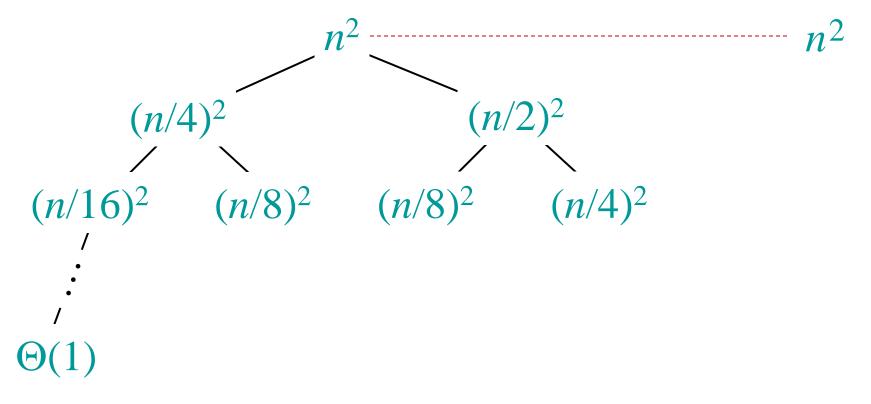


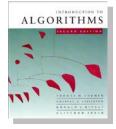


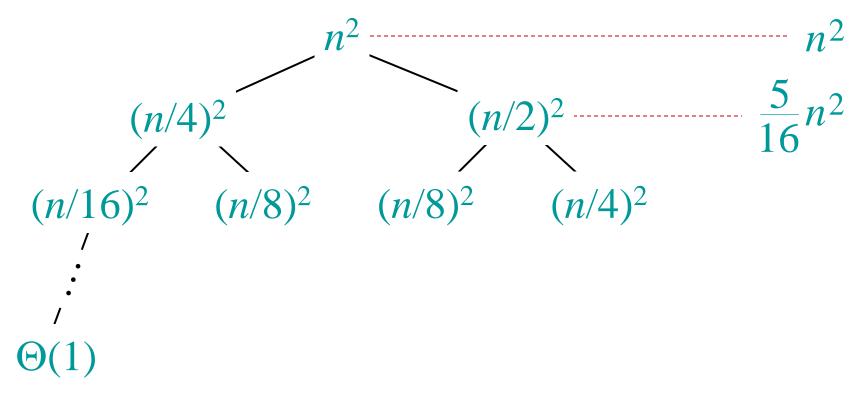


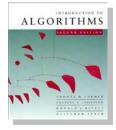


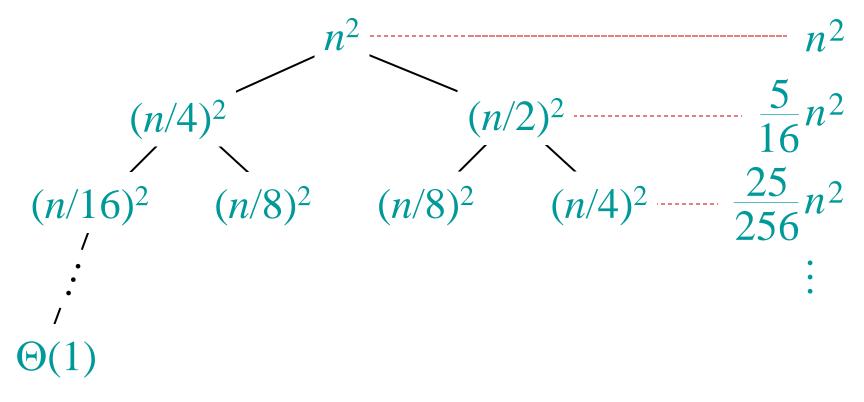


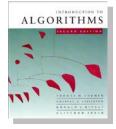




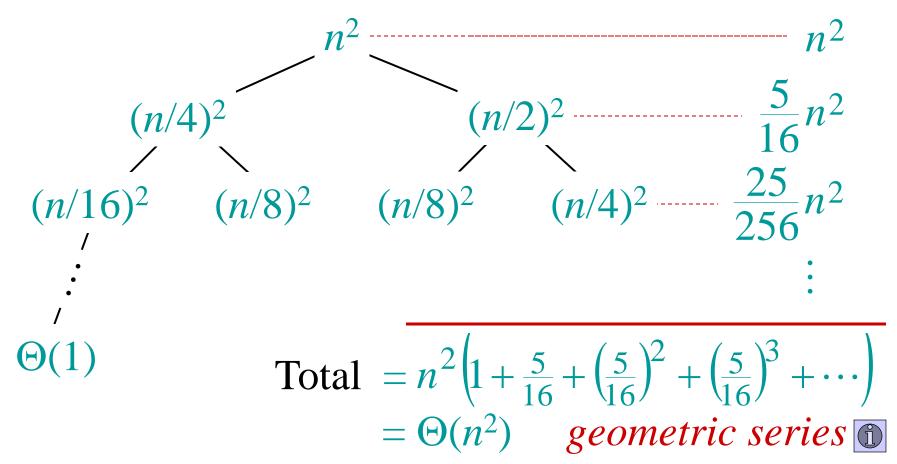








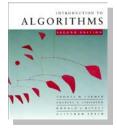
Solve $T(n) = T(n/4) + T(n/2) + n^2$:



September 12, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

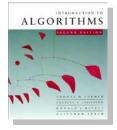
L2.41



The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1$, and f is asymptotically positive.



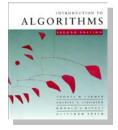
Three common cases

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.



Three common cases

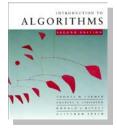
Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. f(n) = Θ(n^{logba} lg^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} lg^{k+1}n).



Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

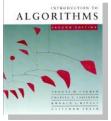
- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.



Ex. T(n) = 4T(n/2) + n $a = 4, b = 2 \Rightarrow n^{\log b a} = n^2; f(n) = n.$ **CASE 1**: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1$. $\therefore T(n) = \Theta(n^2).$

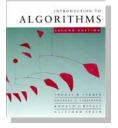


Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n).$



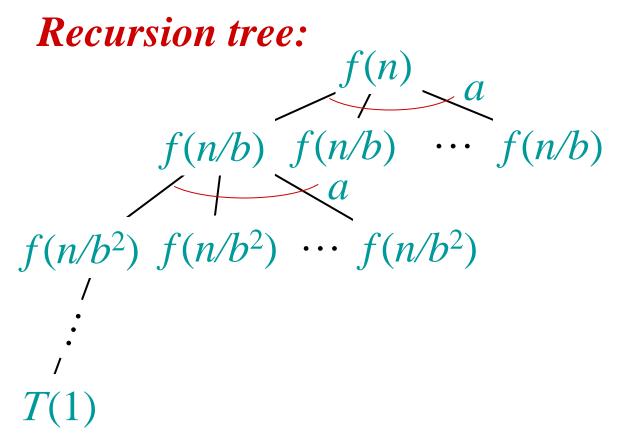
Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ **CASE 3**: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ *and* $4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$

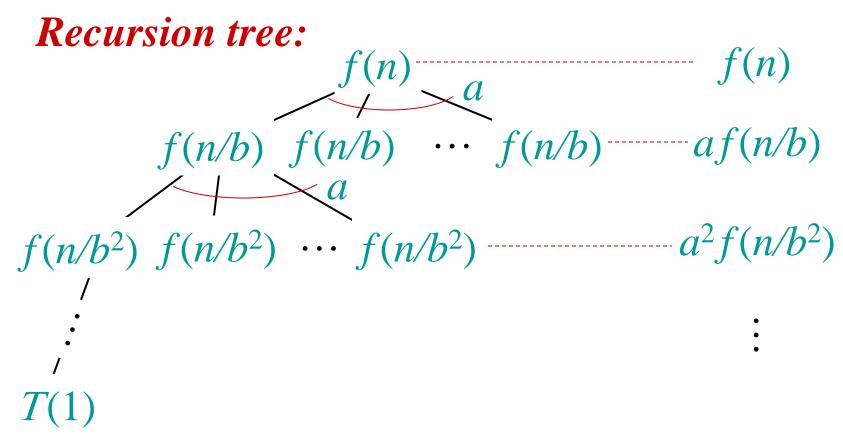
Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

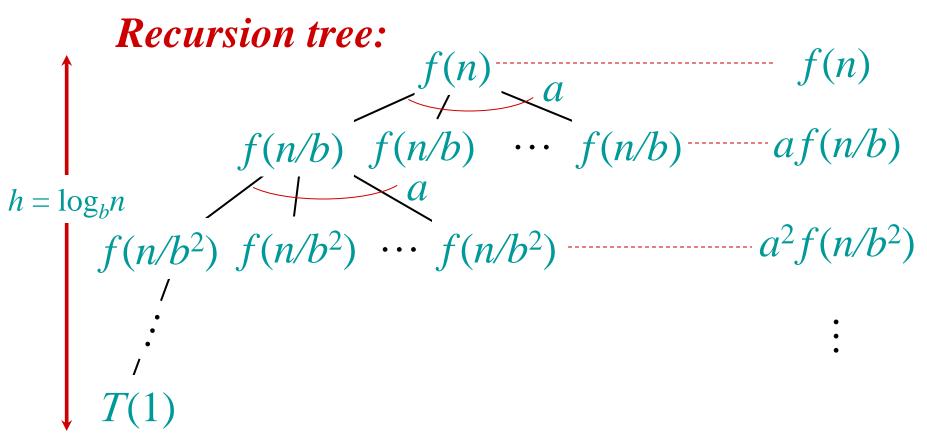
Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular,
for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

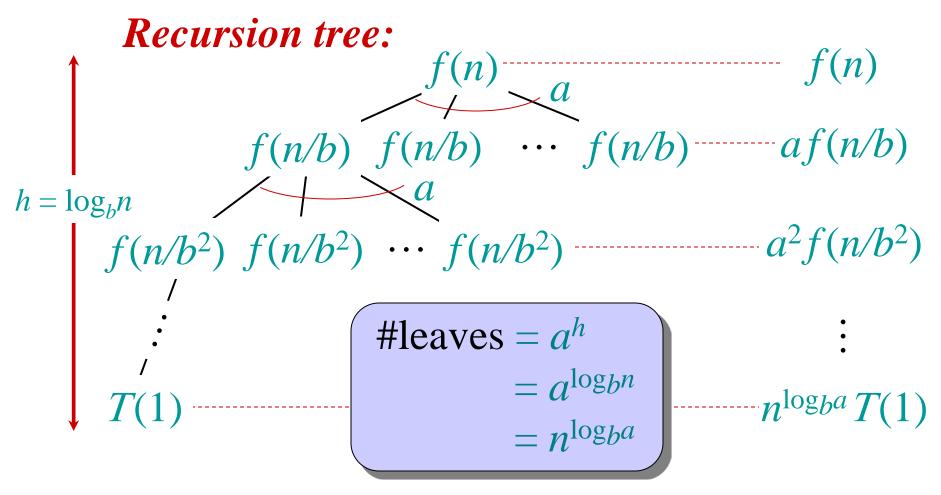




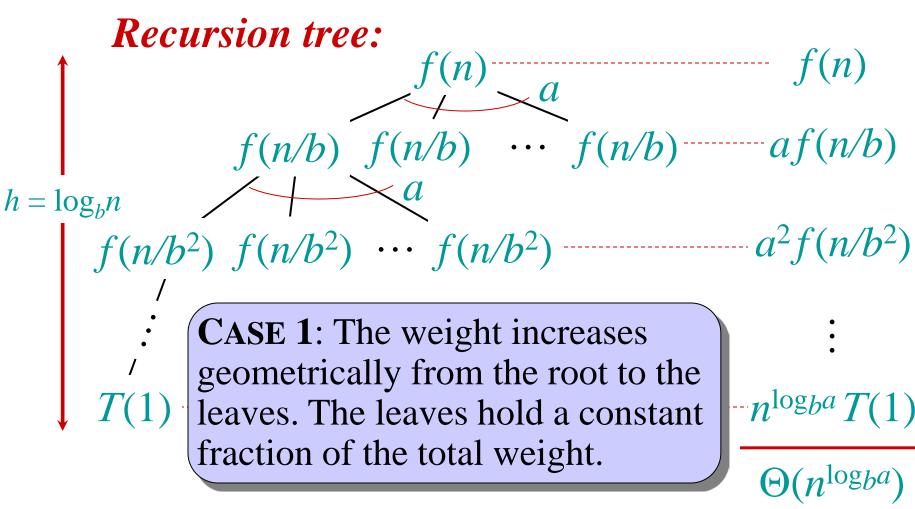




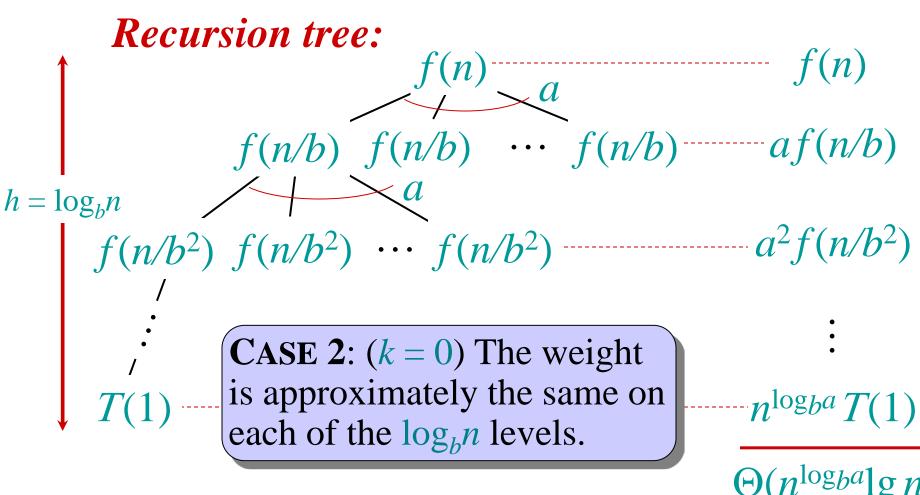






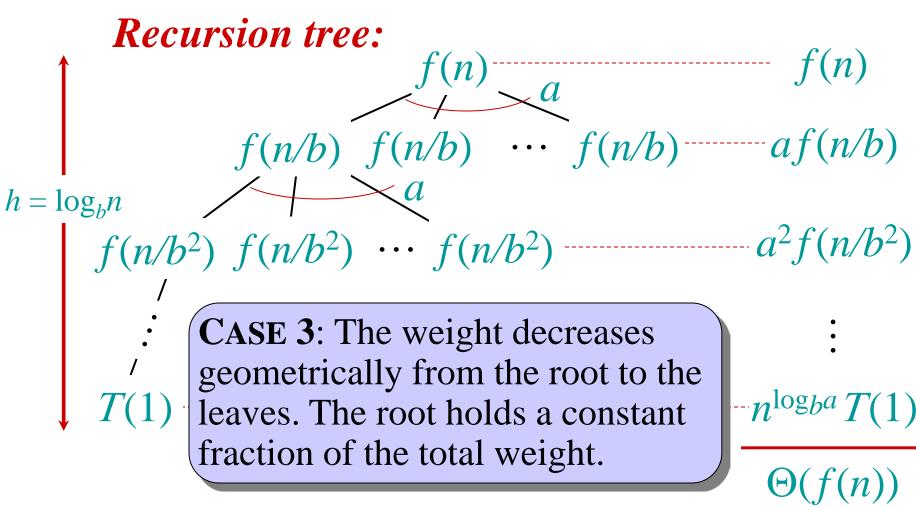






L2.55





L2.56