
Lecture 7
Game Programming Patterns

Assoc. Prof. Dr. Burkay Genç

25 Nis, 2024

Game Programming Patterns

Main Resource

These slides are based on the excellent book on Game Programming Patterns by Robert Nystrom.

3/44

https://gameprogrammingpatterns.com/contents.html

Architecture, Performance and Games

Patterns are about organizing code, not about writing code.·

4/44

Software Architecture

The measure of a design is how easily it accommodates changes.

Good design is about changes to the code

If your code will never be changed, then its design is irrelevant

·

·

If it works, it works-

5/44

How do you make a change?

Define roblem

Understand what the existing code is doing

Come up with a solution

Clean up your mess

Repeat

·

·

·

·

·

6/44

Decoupling

If two pieces of code are coupled, it means you can’t understand one without understanding the other.

So, decoupling is to make sure that code pieces are as independent from each other as possible.

Decoupling requires good architecture

Good architecture requires discipline and effort

Patterns provide the required discipline

·

Allows you to learn less before you come up with a solution to your problem.

Also allows you to change a piece of code without necessitating a change to other pieces.

-

-

·

·

·

7/44

YAGNI

You Aren’t Gonna Need It

Constructing a good architecture is very nice

But, don’t overdo it!

Do not fill your code with unnecessary abstractions, inheritance structures, virtual methods, patterns etc.

·

·

·

It takes you forever to trace through all of that scaffolding to find some real code that does
something

-

8/44

Performance and Speed

There’s no easy answer here. Making your program more flexible so you can prototype faster will have
some performance cost. Likewise, optimizing your code will make it less flexible.

It’s easier to make a fun game fast than it is to make a fast game fun.

Performance is about optimization

Good architecture is about flexibility

So, is it possible to write code that has good architecture and performance at the same time?

·

Optimization is about knowing your limits-

·

Flexibility is about removing your limits-

·

9/44

Prototyping

Boss: “Hey, we’ve got this idea that we want to try out. Just a prototype, so don’t feel you need to do it
right. How quickly can you slap something together?”
Dev: “Well, if I cut lots of corners, don’t test it, don’t document it, and it has tons of bugs, I can give you
some temp code in a few days.”
Boss: “Great!”

A few days later…

Boss: “Hey, that prototype is great. Can you just spend a few hours cleaning it up a bit now and we’ll call
it the real thing?”

Prototyping — slapping together code that’s just barely functional enough to answer a design question

Big caveat

·

·

10/44

We have a few forces in play:

Striking a balance

1. We want nice architecture so the code is easier to understand
over the lifetime of the project.

2. We want fast runtime performance.

3. We want to get today’s features done quickly.

11/44

Blaise Pascal

Antoine de Saint-Exupery

Simplicity

“I would have written a shorter letter, but I did not have the time.”

“Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take
away.”

Simplicity is the perfect way to balance architecture and performance

Simple code is easier to learn and modify

Simple code is usually faster to run as there is less overhead

However, simple code is not easy to come up with

·

·

·

·

It requires a lot of knowledge, practice, and effort-

12/44

Command Pattern

Command Pattern

Encapsulate a request as an object, thereby letting users parameterize clients with different requests,
queue or log requests, and support undoable operations.

A command is a reified method call.

One of the more useful patterns.

GoF defines it as

·

·

Nystrom’s definition:·

reify -> make something real, thingify, objectify

wrapping a function call in an object

·

·

14/44

Example : Configuring input

Somewhere in every game is a chunk of code that reads in raw user input

It takes each input and translates it to a meaningful action in the game

·

button presses,

keyboard events,

mouse clicks

-

-

-

·

15/44

Example : Configuring input

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) jump();
 else if (isPressed(BUTTON_Y)) fireGun();
 else if (isPressed(BUTTON_A)) swapWeapon();
 else if (isPressed(BUTTON_B)) lurchIneffectively();
}

hardwired user inputs

no chance to reconfigure input

·

·

16/44

Command Class

class Command
{
 public:
 virtual ~Command() {}
 virtual void execute() = 0;
};

We need to turn those direct calls to jump() and fireGun() into something that we can swap out

We need an object that we can use to represent a game action.

We define a base class that represents a triggerable game command:

·

·

·

17/44

Command Pattern

Then we create subclasses for each of the different game actions:

class JumpCommand : public Command
{
 public:
 virtual void execute() { jump(); }
};

class FireCommand : public Command
{
 public:
 virtual void execute() { fireGun(); }
};

// You get the idea...

18/44

Input handler

In our input handler, we store a pointer to a command for each button:

class InputHandler
{
 public:
 void handleInput();

 // Methods to bind commands...

 private:
 Command* buttonX_;
 Command* buttonY_;
 Command* buttonA_;
 Command* buttonB_;
};

19/44

Input handling

Now the input handling just delegates to those:

Where each input used to directly call a function, now there’s a layer of indirection:

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) buttonX_->execute();
 else if (isPressed(BUTTON_Y)) buttonY_->execute();
 else if (isPressed(BUTTON_A)) buttonA_->execute();
 else if (isPressed(BUTTON_B)) buttonB_->execute();
}

20/44

Actors and Commands

Why restrict ourselves to a single actor?·

class Command
{
 public:
 virtual ~Command() {}
 virtual void execute(GameActor& actor) = 0;
};

Now we can send an actor to the command

GameActor is our “game object” class that represents a character in the game world

We rewrite the commands:

·

·

·

class JumpCommand : public Command
{
 public:
 virtual void execute(GameActor& actor)
 {
 actor.jump();
 }
};

21/44

HandleInput, again…

We change handleInput to return the appropriate command object, rather than execute the action·

Command* InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) return buttonX_;
 if (isPressed(BUTTON_Y)) return buttonY_;
 if (isPressed(BUTTON_A)) return buttonA_;
 if (isPressed(BUTTON_B)) return buttonB_;

 // Nothing pressed, so do nothing.
 return NULL;
}

We take advantage of the fact that the command is a reified call

Somewhere in the main loop:

·

We can delay the execution of the call-

·

Command* command = inputHandler.handleInput();
if (command)
{
 command->execute(actor);
}

22/44

So far…

We can let the player control any actor in the game now by changing the actor we execute the commands
on.

This also allows us a neat AI implementation

·

·

AI simply emits command objects for each NPC actor-

This is the decoupling we were talking about. The command stream separates AI and the Actor.

We can reassign actions to buttons if requested by the player

·

·

23/44

Undo and Redo

If a command object can do things, it can also undo them

Assume a move command for a unit:

·

·

class MoveUnitCommand : public Command
{
 public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit),
 x_(x),
 y_(y)
 {}

 virtual void execute()
 {
 unit_->moveTo(x_, y_);
 }

 private:
 Unit* unit_;
 int x_, y_;
};

Note that unlike the previous example, we now want to bind the actor to the action

This is not a generic move command

·

·

24/44

Input handling

Henceforth, our input handler must produce new commands for each new action-unit pair:·

Command* handleInput()
{
 Unit* unit = getSelectedUnit();

 if (isPressed(BUTTON_UP)) {
 // Move the unit up one.
 int destY = unit->y() - 1;
 return new MoveUnitCommand(unit, unit->x(), destY);
 }

 if (isPressed(BUTTON_DOWN)) {
 // Move the unit down one.
 int destY = unit->y() + 1;
 return new MoveUnitCommand(unit, unit->x(), destY);
 }

 // Other moves...

 return NULL;
}

Note that the commands are not executed at this stage·

25/44

Undoable commands

To make the commands undoable, we do the following modifications:·

class Command
{
 public:
 virtual ~Command() {}
 virtual void execute() = 0;
 virtual void undo() = 0;
};

26/44

Undoable commands

An undo() method reverses the game state changed by the corresponding execute() method.

class MoveUnitCommand : public Command
{
 public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit),
 xBefore_(0),
 yBefore_(0),
 x_(x),
 y_(y)
 {}

 virtual void execute() {
 // Remember the unit's position before the move, so we can restore it.
 xBefore_ = unit_->x();
 yBefore_ = unit_->y();
 unit_->moveTo(x_, y_);
 }

 virtual void undo() {
 unit_->moveTo(xBefore_, yBefore_);
 }

 private:
 Unit* unit_;
 int xBefore_, yBefore_;
 int x_, y_;
};

27/44

Undoable commands

Supporting multiple levels of undo isn’t much harder.

Instead of remembering the last command, we keep a list of commands and a reference to the “current”
one.

When the player executes a command, we append it to the list and point “current” at it.

·

·

·

28/44

Flyweight Pattern

The fog lifts, revealing a majestic old
growth forest. Ancient hemlocks,
countless in number, tower over you
forming a cathedral of greenery. The
stained glass canopy of leaves fragments
the sunlight into golden shafts of mist.
Between giant trunks, you can make out
the massive forest receding into the
distance.

Flyweight Pattern

30/44

Forests of Polygons

A sprawling woodland can be described with just a few sentences

But actually implementing it in a realtime game is another story.

When you’ve got an entire forest of individual trees filling the screen, all that a graphics programmer sees
is the millions of polygons they’ll have to somehow shovel onto the GPU every sixtieth of a second.

100 trees on screen

That must travel from the cpu to the gpu every second

·

·

·

·

1000 polygons each-

100000 polygons * 60 frames-

6000000 polygons to be rendered each second-

·

31/44

Tree

Each tree has a bunch of bits associated with it:

If you were to sketch it out in code, you’d have something like this:

A mesh of polygons that define the shape of the trunk, branches, and greenery.

Textures for the bark and leaves.

Its location and orientation in the forest.

Tuning parameters like size and tint so that each tree looks different.

·

·

·

·

class Tree
{
 private:
 Mesh mesh_; // large data
 Texture bark_; // large data
 Texture leaves_; // large data
 Vector position_;
 double height_;
 double thickness_;
 Color barkTint_;
 Color leafTint_;
};

32/44

Tree

Even though there may be thousands of trees in the forest, they mostly look similar.

They can use the same mesh and textures.

That means most of the fields in these objects are the same between all of those instances.

·

·

·

33/44

Skinny Trees

We can model that explicitly by splitting the object in half.

The game only needs a single one of these, since there’s no reason to have the same meshes and textures
in memory a thousand times.

class TreeModel
{
 private:
 Mesh mesh_;
 Texture bark_;
 Texture leaves_;
};

class Tree
{
 private:
 TreeModel* model_;

 Vector position_;
 double height_;
 double thickness_;
 Color barkTint_;
 Color leafTint_;
};

34/44

Skinny Trees

35/44

How to implement

Geometry Instancing

Starting in Direct3D version 9, Microsoft included support for geometry instancing. This method
improves the potential runtime performance of rendering instanced geometry by explicitly allowing
multiple copies of a mesh to be rendered sequentially by specifying the differentiating parameters for
each in a separate stream. The same functionality is available in Vulkan core, and the OpenGL core in
versions 3.1 and up but may be accessed in some earlier implementations using the
EXT_draw_instanced extension.

We have to send the shared data just once.

Then, we send every tree instance’s unique data

Finally, we tell the GPU, “Use that one model to render each of these instances.”

Today’s graphics APIs and cards support exactly that.

·

·

·

·

Both Direct3D and OpenGL can do something called instanced rendering.-

36/44

https://en.wikipedia.org/wiki/Geometry_instancing

A Place for Roots

We need to have ground for these trees in our game

The ground can be one of grass, dirt, hills, river, etc.

We can simply use a grid to represent this variation

Each cell of the grid can be one of these ground types

Each terrain type has a number of properties that affect gameplay:

·

·

·

·

·

A movement cost that determines how quickly players can move through it.

A flag for whether it’s a watery terrain that can be crossed by boats.

A texture used to render it.

-

-

-

37/44

A Place for Roots

A common approach is to use an enum for terrain types:

Then the world maintains a huge grid of those:

enum Terrain
{
 TERRAIN_GRASS,
 TERRAIN_HILL,
 TERRAIN_RIVER
 // Other terrains...
};

class World
{
 private:
 Terrain tiles_[WIDTH][HEIGHT];
};

38/44

Terrain Types

To actually get the useful data about a tile, we do something like:

int World::getMovementCost(int x, int y)
{
 switch (tiles_[x][y])
 {
 case TERRAIN_GRASS: return 1;
 case TERRAIN_HILL: return 3;
 case TERRAIN_RIVER: return 2;
 // Other terrains...
 }
}

bool World::isWater(int x, int y)
{
 switch (tiles_[x][y])
 {
 case TERRAIN_GRASS: return false;
 case TERRAIN_HILL: return false;
 case TERRAIN_RIVER: return true;
 // Other terrains...
 }
}

This works, but it is ugly

This should be data not code

And the code is smeared across a bunch of functions

·

·

·

39/44

Terrain Class

A terrain class can do the job for us:

Notice that all of the methods here are const. Since the same object is used in multiple contexts, if you were
to modify it, the changes would appear in multiple places simultaneously. That’s probably not what you
want. Because of this, Flyweight objects are almost always immutable.

class Terrain
{
public:
 Terrain(int movementCost,
 bool isWater,
 Texture texture)
 : movementCost_(movementCost),
 isWater_(isWater),
 texture_(texture)
 {}

 int getMovementCost() const { return movementCost_; }
 bool isWater() const { return isWater_; }
 const Texture& getTexture() const { return texture_; }

private:
 int movementCost_;
 bool isWater_;
 Texture texture_;
};

40/44

Terrain class

We have no instance based information in the Terrain class

Having a separate Terrain object in each grid cell would be a huge waste

·

·

class World
{
 private:
 Terrain* tiles_[WIDTH][HEIGHT]; // pointers not objects

 // Other stuff...
};

41/44

World

Since the terrain instances are used in multiple places, their lifetimes would be a little more complex to
manage if you were to dynamically allocate them. Instead, we’ll just store them directly in the world:

class World
{
 public:
 World()
 : grassTerrain_(1, false, GRASS_TEXTURE),
 hillTerrain_(3, false, HILL_TEXTURE),
 riverTerrain_(2, true, RIVER_TEXTURE)
 {}

 private:
 Terrain grassTerrain_;
 Terrain hillTerrain_;
 Terrain riverTerrain_;

 // Other stuff...
};

42/44

Paint the world

Then we can use those to paint the ground like this:

void World::generateTerrain()
{
 // Fill the ground with grass.
 for (int x = 0; x < WIDTH; x++)
 {
 for (int y = 0; y < HEIGHT; y++)
 {
 // Sprinkle some hills.
 if (random(10) == 0)
 {
 tiles_[x][y] = &hillTerrain_;
 }
 else
 {
 tiles_[x][y] = &grassTerrain_;
 }
 }
 }

 // Lay a river.
 int x = random(WIDTH);
 for (int y = 0; y < HEIGHT; y++) {
 tiles_[x][y] = &riverTerrain_;
 }
}

43/44

Decoupling

Now instead of methods on World for accessing the terrain properties, we can expose the Terrain object
directly:

This way, World is no longer coupled to all sorts of details of terrains. If you want some property of the tile,
you can get it right from that object:

const Terrain& World::getTile(int x, int y) const
{
 return *tiles_[x][y];
}

int cost = world.getTile(2, 3).getMovementCost();

44/44

