
Lecture 8
Game Programming Patterns

Assoc. Prof. Dr. Burkay Genç

02 May, 2024



Observer Pattern



Observer Pattern

Consider an achievement system·

Many badges to earn

Each achievement has its own requirements to be completed

-

-

Score 100 points

Collect 500 gold

Kill 10 enemies

Play for 2 hours

-

-

-

-

3/40



Bad Way To Do This

We could simply check for these requirements where they happened

This is a terrible way to do this

·

And then we could call the achievement functions to open achievements-

·

Achievement related code will be spread to all over the game code

It will make reading other parts of the code difficult

It will make it difficult to detect where each achievement code is “hidden”

It will make it difficult to alter the achievement code

-

-

-

-

Other parts of the code may depend on it-

4/40



Good Way To Do This

The better way to do this is to use the observer pattern

When an interesting thing happens

·

·

Raise a notification to let anybody interested about this event be notified-

void Physics::updateEntity(Entity& entity)
{
  bool wasOnSurface = entity.isOnSurface();
  entity.accelerate(GRAVITY);
  entity.update();
  if (wasOnSurface && !entity.isOnSurface())
  {
    notify(entity, EVENT_START_FALL);
  }
}

With this code, you can simply remove the achievement code·

And nobody is hurt-

5/40



How It Works

The Observer pattern has two sides·

The Observer

The Subject

-

Listens for interesting events

Receives notifications

-

-

-

Produces interesting events

Produces notifications

-

-

6/40



Code - Observer

class Observer
{
public:
  virtual ~Observer() {}
  virtual void onNotify(const Entity& entity, Event event) = 0;
};

class Achievements : public Observer
{
public:
  virtual void onNotify(const Entity& entity, Event event) {
    switch (event)
    {
    case EVENT_ENTITY_FELL:
      if (entity.isHero() && heroIsOnBridge_)
      {
        unlock(ACHIEVEMENT_FELL_OFF_BRIDGE);
      }
      break;

      // Handle other events, and update heroIsOnBridge_...
    }
  }

private:
  void unlock(Achievement achievement)   {
    // Unlock if not already unlocked...
  }

  bool heroIsOnBridge_;
};

7/40



Code - Subject

class Subject
{

private:
  Observer* observers_[MAX_OBSERVERS];
  int numObservers_;

public:
  void addObserver(Observer* observer)
  {
    // Add to array...
  }

  void removeObserver(Observer* observer)
  {
    // Remove from array...
  }

protected:
  void notify(const Entity& entity, Event event)
  {
    for (int i = 0; i < numObservers_; i++)
    {
      observers_[i]->onNotify(entity, event);
    }
  }
};

8/40



Problems?

Slow observers can block subjects

Too much dynamic allocation

Deleting subjects or observers

·

The observer must be quick to return control to the subject

Or simply move on to another thread

This is especially critical for the UI subjects

-

-

-

·

Observer list can be dynamically allocated

But that usually only changes at the start of the game

If you are going to change it much, you can use a linked list

-

-

-

·

Be careful deleting observers

Deleting subjects is less harmful

The observers now listen to a non-existing subject

Best remedy: give a dying breath notification

-

You must also delete the corresponding list entry in the subject-

-

-

-

9/40



Prototype Pattern



Prototype Pattern

Pretend we’re making a game in the style of Crimson Land.

Let’s say we have different classes for each kind of monster in the game

·

We’ve got creatures and fiends swarming around the hero,

They enter the arena through “spawners”,

There is a different spawner for each kind of enemy.

-

-

-

·

Ghost, Demon, Sorcerer, etc.-

class Monster
{
  // Stuff...
};

class Ghost : public Monster {};
class Demon : public Monster {};
class Sorcerer : public Monster {};

11/40



Prototype Pattern

A spawner constructs instances of one particular monster type.

To support every monster in the game, we could have a spawner class for each monster class

·

·

leading to a parallel class hierarchy:-

12/40



Spawners

class Spawner
{
public:
  virtual ~Spawner() {}
  virtual Monster* spawnMonster() = 0;
};

class GhostSpawner : public Spawner
{
public:
  virtual Monster* spawnMonster()
  {
    return new Ghost();
  }
};

class DemonSpawner : public Spawner
{
public:
  virtual Monster* spawnMonster()
  {
    return new Demon();
  }
};

// You get the idea...

This is obviously not a good way to do
this

·

Lots of classes,

lots of boilerplate,

lots of redundancy,

lots of duplication,

lots of repeatiton

-

-

-

-

-

13/40



Solution

The Prototype pattern offers a solution.·

The key idea is that an object can spawn other objects similar to itself.

If you have one ghost,

If you have a demon,

Any monster can be treated as a prototypal monster used to generate other versions of itself.

-

-

you can make more ghosts from it.-

-

you can make other demons.-

-

14/40



Code

class Monster
{
public:
  virtual ~Monster() {}
  virtual Monster* clone() = 0;

  // Other stuff...
};

class Ghost : public Monster {
public:
  Ghost(int health, int speed)
  : health_(health),
    speed_(speed)
  {}

  virtual Monster* clone()
  {
    return new Ghost(health_, speed_);
  }

private:
  int health_;
  int speed_;
};

15/40



Code

Once all our monsters support that, we no longer need a spawner class for each monster class. Instead, we
define a single one:

To create a ghost spawner, we create a prototypal ghost instance and then create a spawner holding that
prototype:

class Spawner
{
public:
  Spawner(Monster* prototype)
  : prototype_(prototype)
  {}

  Monster* spawnMonster()
  {
    return prototype_->clone();
  }

private:
  Monster* prototype_;
};

Monster* ghostPrototype = new Ghost(15, 3);
Spawner* ghostSpawner = new Spawner(ghostPrototype);

16/40



Singleton Pattern



Singleton Pattern

Design Patterns summarizes Singleton like this:

Ensure a class has one instance, and provide a global point of access to it.

Sometimes a class works best if there is only one instance of it

The singleton pattern provides a way for a class to ensure at compile time that there is only a single
instance of the class.

It also provides a globally available method to reach this instance

·

Consider the file system

You don’t want multiple instances of the file system class trying to read and write to the hardware at
the same time

-

-

·

·

18/40



Example

class FileSystem
{
public:
  static FileSystem& instance()
  {
    // Lazy initialize.
    if (instance_ == NULL) instance_ = new FileSystem();
    return *instance_;
  }

private:
  FileSystem() {}

  static FileSystem* instance_;
};

Notice that the constructor is private

The only way to obtain an instance is through the method exposed to public

·

·

19/40



What is bad about it

Global access makes it difficult to trace code

Encourages coupling

Bad for concurrency

·

·

·

20/40



Ask for one, get two

Singleton provides two things at once:

Sometimes you just want one of them

·

Global access

Single instance

-

-

·

A logger must have global access, but you may have multiple instances

You want a single instance of a DB connection, but you don’t want it to be accessible by everybody

-

-

21/40



State Pattern



State Pattern

Consider a piece of code from a platformer:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    yVelocity_ = JUMP_VELOCITY;
    setGraphics(IMAGE_JUMP);
  }
}

What’s wrong here?·

23/40



State Pattern

Consider a piece of code from a platformer:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    yVelocity_ = JUMP_VELOCITY;
    setGraphics(IMAGE_JUMP);
  }
}

What’s wrong here?·

There’s nothing to prevent jumping in the air!-

24/40



State Pattern

Consider a piece of code from a platformer:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    if (!isJumping_)
    {
      isJumping_ = true;
      // Jump...
    }
  }
}

What’s wrong here?

It is fixed.

·

There’s nothing to prevent jumping in the air!-

·

25/40



State Pattern

Let’s add ducking code:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    // Jump if not jumping...
  }
  else if (input == PRESS_DOWN)
  {
    if (!isJumping_)
    {
      setGraphics(IMAGE_DUCK);
    }
  }
  else if (input == RELEASE_DOWN)
  {
    setGraphics(IMAGE_STAND);
  }
}

Spot the bug this time?·

26/40



State Pattern

Let’s add ducking code:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    // Jump if not jumping...
  }
  else if (input == PRESS_DOWN)
  {
    if (!isJumping_)
    {
      setGraphics(IMAGE_DUCK);
    }
  }
  else if (input == RELEASE_DOWN)
  {
    setGraphics(IMAGE_STAND);
  }
}

Spot the bug this time?·

Press down to duck.

Press B to jump from a ducking position.

Release down while still in the air.

-

-

-

27/40



State Pattern

Let’s fix it….again:·

void Heroine::handleInput(Input input)
{
  if (input == PRESS_B)
  {
    if (!isJumping_ && !isDucking_)
    {
      // Jump...
    }
  }
  else if (input == PRESS_DOWN)
  {
    if (!isJumping_)
    {
      isDucking_ = true;
      setGraphics(IMAGE_DUCK);
    }
  }
  else if (input == RELEASE_DOWN)
  {
    if (isDucking_)
    {
      isDucking_ = false;
      setGraphics(IMAGE_STAND);
    }
  }
}

28/40



More actions

Add walking, diving, shooting, etc. and you are buried deep under bugs.·

29/40



Finite State Machines

30/40



Rules of FSMs

You have a fixed set of states that the machine can be in.

The machine can only be in one state at a time.

A sequence of inputs or events is sent to the machine.

Each state has a set of transitions, each associated with an input and pointing to a state.

·

For our example, that’s standing, jumping, ducking, and diving.-

·

Our heroine can’t be jumping and standing simultaneously.-

·

·

When an input comes in, if it matches a transition for the current state, the machine changes to the
state that transition points to.

-

31/40



Implementation

Only one state can be active at once

We will use an enum to represent states:

·

·

enum State
{
  STATE_STANDING,
  STATE_JUMPING,
  STATE_DUCKING,
  STATE_DIVING
};

32/40



Implementation

void Heroine::handleInput(Input input)
{
  switch (state_)
  {
    case STATE_STANDING:
      if (input == PRESS_B)      {
        state_ = STATE_JUMPING;
        yVelocity_ = JUMP_VELOCITY;
        setGraphics(IMAGE_JUMP);
      }
      else if (input == PRESS_DOWN)      {
        state_ = STATE_DUCKING;
        setGraphics(IMAGE_DUCK);
      }
      break;

    case STATE_JUMPING:
      if (input == PRESS_DOWN)      {
        state_ = STATE_DIVING;
        setGraphics(IMAGE_DIVE);
      }
      break;

    case STATE_DUCKING:
      if (input == RELEASE_DOWN)      {
        state_ = STATE_STANDING;
        setGraphics(IMAGE_STAND);
      }
      break;
  }
}

33/40



More Problems

We want to add a move where our heroine can duck for a while to charge up and unleash a special attack.
While she’s ducking, we need to track the charge time.

We add a chargeTime_  field to Heroine  to store how long the attack has charged. Assume we already
have an update()  that gets called each frame. In there, we add:

void Heroine::update()
{
  if (state_ == STATE_DUCKING)
  {
    chargeTime_++;
    if (chargeTime_ > MAX_CHARGE)
    {
      superBomb();
    }
  }
}

34/40



More Problems

We need to reset the timer when she starts ducking, so we modify handleInput() :

We had to modify two methods and add a chargeTime_  field onto Heroine  even though it’s only
meaningful while in the ducking state. What we’d prefer is to have all of that code and data nicely wrapped
up in one place.

void Heroine::handleInput(Input input)
{
  switch (state_)
  {
    case STATE_STANDING:
      if (input == PRESS_DOWN)
      {
        state_ = STATE_DUCKING;
        chargeTime_ = 0;
        setGraphics(IMAGE_DUCK);
      }
      // Handle other inputs...
      break;

      // Other states...
  }
}

35/40



The State Pattern

In the words of the Gang of Four:

Allow an object to alter its behavior when its internal state changes. The object will appear to change its
class.

36/40



The State Pattern

First, we define an interface for the state.

Every bit of behavior that is state-dependent - every place we had a switch before - becomes a virtual
method in that interface.

·

·

For us, that’s handleInput()  and update() :-

class HeroineState
{
public:
  virtual ~HeroineState() {}
  virtual void handleInput(Heroine& heroine, Input input) {}
  virtual void update(Heroine& heroine) {}
};

37/40



State Classes

For each state, we define a class that implements the interface.

class DuckingState : public HeroineState
{
public:
  DuckingState()
  : chargeTime_(0)
  {}

  virtual void handleInput(Heroine& heroine, Input input) {
    if (input == RELEASE_DOWN) {
      // Change to standing state...
      heroine.setGraphics(IMAGE_STAND);
    }
  }

  virtual void update(Heroine& heroine) {
    chargeTime_++;
    if (chargeTime_ > MAX_CHARGE) {
      heroine.superBomb();
    }
  }

private:
  int chargeTime_;
};

We also moved chargeTime_  out of Heroine  and into the DuckingState  class.·

38/40



State Pattern

Next, we give the Heroine  a pointer to her current state, lose each big switch, and delegate to the state
instead:

class Heroine
{
public:
  virtual void handleInput(Input input)
  {
    state_->handleInput(*this, input);
  }

  virtual void update()
  {
    state_->update(*this);
  }

  // Other methods...
private:
  HeroineState* state_;
};

39/40



State Pattern

Keep the states in the base class and switch as follows:

Each of those static fields is the one instance of that state that the game uses. To make the heroine jump,
the standing state would do something like:

class HeroineState
{
public:
  static StandingState standing;
  static DuckingState ducking;
  static JumpingState jumping;
  static DivingState diving;

  // Other code...
};

if (input == PRESS_B)
{
  heroine.state_ = &HeroineState::jumping;
  heroine.setGraphics(IMAGE_JUMP);
}

40/40


