Lecture 8

Outlier Detection and Predictive Analysis

Assoc. Prof. Dr. Burkay Genç 2024-04-30

Seed used in these slides

set.seed(1024)

Libraries used in these slides

library(fpc)
library(dplyr)
library(ggplot2)
library(DMwR2)

Anomaly Detection

Anomaly Detection

- Has clear ties with clustering
 - Clustering: find and group similar items
 - Anomaly Detection: find items which do not belong to any groups
- Types of outliers
 - Point outliers: a point out of the normal
 - Contextual outliers: a point out of the specific context
 - It is normal to have a heart rate of 80bpm
 - ...unless you are dead.
 - Collective outliers: multiple points where only a few is ok
 - Multiple failed login attempts

Univariate Outlier Detection

 \cdot the boxplot rule

 $[Q_1-1.5 imes IQR,Q_3+1.5 imes IQR]$

• Grubb's test

$$z=rac{|x-ar{x}|}{s_x}$$

$$au = t^2_{lpha/(2N),N-2}$$

$$z \geq rac{N-1}{\sqrt{N}} \sqrt{rac{ au}{N-2+ au}}$$

case is an outlier if this inequality holds.

implemented in package outliers as grubbs.test()

Univariate Outlier Detection

- For categorical variables there is no simple formula
- We need expert knowledge to compare the distribution of values
 - Then, we can label anomalies

Multi-Variate Outlier Detection

- \cdot Types of detection
 - Supervised
 - Unsupervised
 - Semi-supervised

Multi-Variate Outlier Detection

- Unsupervised
 - DBSCAN (we had covered last week)

```
dbscan.outliers <- function(data, ...) {
  require(fpc, quietly=TRUE)
  cl <- dbscan(data, ...)
  posOuts <- which(cl$cluster == 0)
  list(positions = posOuts,
        outliers = data[posOuts,],
        dbscanResults = cl)
  }</pre>
```

Unsupervised

house.data

load("house.data") # loads houseData from file
names(houseData)

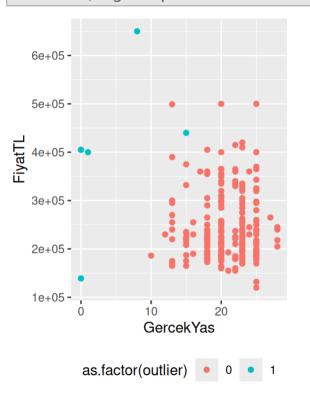
[1] "MustakilMi" "OrijinalAlan"
"BanyoSayisi" "OdaSayisi" "SalonSayisi"
[6] "ToplamKat" "GercekYas" "FiyatTL"

outs\$positions

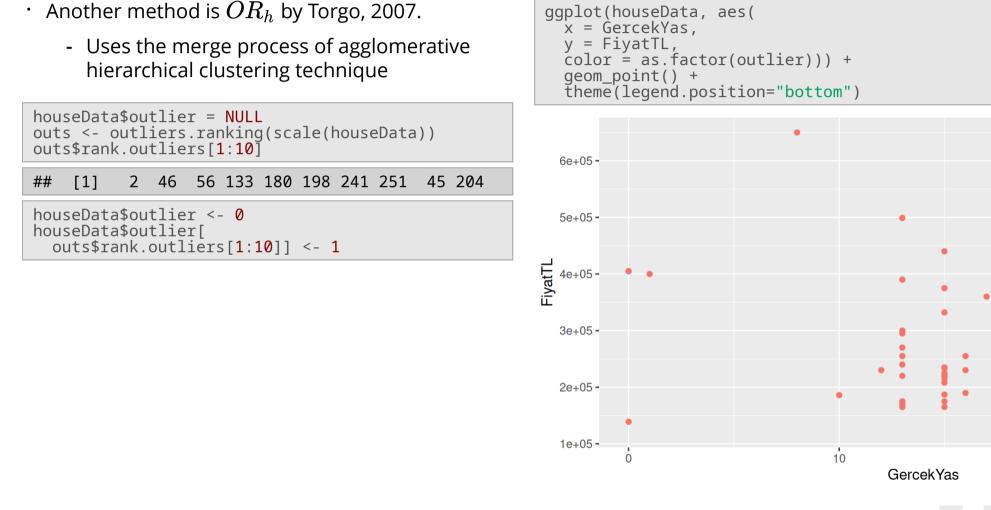
[1] 24 65 100 174 190 271

houseData\$outlier = 0
houseData\$outlier[outs\$positions] = 1

ggplot(houseData, aes(x = GercekYas, y = FiyatTL, color = as.factor(outlier))) + geom_point() + theme(legend.position="bottom")



Unsupervised



as.factor(outlier) • 0 • 1

20

Unsupervised

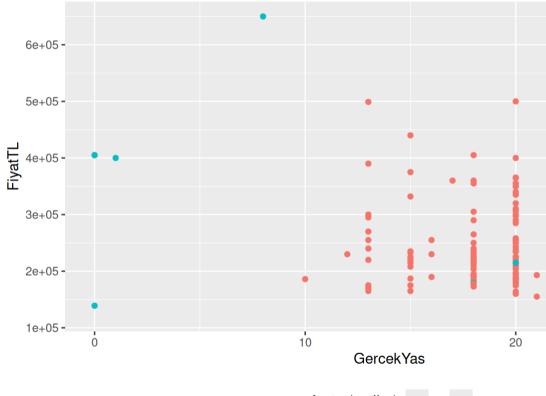
- Another method is LOF by Breunig et al., 2000
- It is implemented as lofactor in the book package

```
houseData$outlier = NULL
out.scores <- lofactor(scale(houseData), 15)
top_outliers <- order(out.scores, decreasing =
T)[1:10]
top_outliers</pre>
```

```
## [1] 243 24 100 132 266 174 190 65 248 57
```

houseData\$outlier <- 0
houseData\$outlier[top_outliers] <- 1</pre>

```
ggplot(houseData, aes(
  x = GercekYas,
  y = FiyatTL,
  color = as.factor(outlier))) +
  geom_point() +
  theme(legend.position="bottom")
```



as.factor(outlier) • 0 • 1

Supervised

- Training data with manually labeled outliers is required
- · Train a classification model with outliers being the target variable
- Use the model for detecting outliers in *new* training data

Major problem : Imbalance!

- Outliers are **outliers**, so they will be **out numbered**
- This imbalance creates problems for learning algorithms
 - If outliers are 2% in the set, labeling everything as normal has an accuracy of 98% !
 - Models usually ignore outliers: they are designed to detect regularities, not irregularities

Supervised

- To fix imbalance
 - over sample outliers
 - under sample regulars
 - if supported by the ML method, use biased cost matrices

Predictive Analysis

Using the data at hand, build a model which can be used to predict the value of a response variable based on the values of input variables.

- Almost all ML models are basically curve fitting algorithms
- If you fit a curve to the existing data points, you can use this curve to compute unknown/unobserved points

Mainly two types:

- Classification: nominal target variable
- Regression: numeric target variable

Ordinals may go into one of these categories.

Predictive Analysis

Mostly, predictive analysis is **curve fitting**.

 $f(X_1,X_2,\ldots,X_k) o Y$

Overall approach:

- 1. First assume the shape of f (the type of model)
 - linear, logical, probabilistic, complex, ensemble
- 2. Based on the data, optimize f

3. Evaluate results

Predictive Analysis

Why choose one model over another?

- Understandability / Readability
- Speed / Complexity
- Accuracy / Success of prediction

Evaluation Metrics

Confusion matrix

•

- A matrix displaying frequencies of observations for an interaction of predictions and *ground truth*
- The predictions are the columns and the actual values are the rows

	c_1	c_2	c_3
c_1	a	b	c
c_2	d	e	f
c_3	g	h	i

- \cdot a: the actual value is c_1 and the prediction is c_1
- \cdot b: the actual value is c_1 but the prediction is c_2
- \cdot d: the actual value is c_2 but the prediction is c_1

Classification

• Error rate (aka. the 0/1 loss)

$$L_{0/1} = rac{1}{N_{test}}\sum_{i=1}^{N_{test}} I(\hat{h}(x_i)
eq y_i)$$

where,

- $\cdot \,\, N_{test}$ is the number of test cases.
- · I(x) is an indicator function:
 - x is false ightarrow I(x)=0
 - x is true ightarrow I(x)=1
- $\hat{h}(x_i)$ is the prediction for x_i
- $\cdot \,\, y_i$ is the actual target value for observation i

• Accuracy

$$Acc = 1 - L_{0/1}$$

	c_1	c_2	c_3
c_1	a	b	c
c_2	d	е	f
c_3	g	h	i

$$Acc = rac{a+e+i}{N_{test}}$$

Cost/benefit matrix

	c_1	c_2	c_3
c_1	$B_{1,1}$	$C_{1,2}$	$C_{1,3}$
c_2	$C_{2,1}$	$B_{2,2}$	$C_{2,3}$
c_3	$C_{3,1}$	$C_{3,2}$	$B_{3,3}$

• Provides flexible cost and benefit values for each type of prediction

- Especially useful in **imbalanced** datasets
- Also, fraud detection, outlier detection, etc.

• Utility is computed as

$$U = \sum_{i=1}^{n_c} \sum_{k=1}^{n_c} CM_{i,k} imes CB_{i,k}$$

• CM: Confusion matrix

• CB: Cost/benefit matrix

Standard CB matrix:

	outlier	normal
outlier	1	0
normal	0	1

An example CB matrix for outlier detection:

	outlier	normal
outlier	5	-5
normal	-1	0.1

- Consider 98% regular, 2% outlier
 - If we mark everything as normal
 - standard utility : 98
 - modified utility : -10 + 9.8 = -0.2
- You can normalize by maximum utility possible
 - standard utility : 98 / 100 = 0.98
 - modified utility : -0.2 / 19.8 = -0.0101

Classification

• When you have a binary classification

	Т	F
Т	ТР	FN
F	FP	TN

• Precision: rate of correctly identified trues to all predicted as true.

 $\mathsf{Prec} = \frac{TP}{TP + FP}$

• Recall: rate of correctly identified trues to all actual trues.

 $\mathsf{Rec} = \frac{TP}{TP + FN}$

Classification

• You can aggregate precision and recall into one metric, the F-measure:

 $F_eta = rac{(eta^2+1) imes Prec imes Rec}{eta^2 imes Prec + Rec}$

• For numeric target variables, one frequently used metric is the *mean squared error*:

$$MSE = rac{1}{N_{test}} {\displaystyle\sum_{i=1}^{N_{test}} {({{\hat y}_i} - {y_i})^2}}$$

• Or for the sake of unit compliance, use *root mean squared error*:

 $RMSE = \sqrt{MSE}$

• Or, alternatively use *mean absolute error*:

$$MAE = rac{1}{N_{test}} {\displaystyle\sum_{i=1}^{N_{test}} \left| {{\hat y}_i} - {y_i}
ight|}$$

Regression

- You can use a baseline method to produce relative error metrics.
- \cdot A baseline method is something naive, such as the mean y value
- Normalized mean squared error:

$$NMSE = rac{\sum_{i=1}^{N_{test}} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{N_{test}} (ar{y}_i - y_i)^2}$$

- We expect NMSE to be close to 0. A value of 1 means a performance as bad as the baseline.
- Also, Normalized mean absolute error

$$NMAE = rac{\sum_{i=1}^{N_{test}} |\hat{y}_i - y_i|}{\sum_{i=1}^{N_{test}} |ar{y}_i - y_i|}$$

Implementations

- There are many implementations of these metrics
 - function mmetric in package rminer (Cortez, 2015)
 - functions classificationMetrics and regressionMetrics in package performanceEstimation (Torgo, 2014a)
 - function performance in package ROCR (Sing et al., 2009)
 - function performance in package mlr (Bischl et al., 2016)
- And, you can always compute them on the fly.

In-class At-home Activity

- Load house.data into R
- \cdot Apply clustering to the data
 - How many clusters seems to be the optimal?
- Apply anomaly detection to the data
 - Do you catch a few or many anomalies?