Lecture 9

Tree Based Models, SVM

Assoc. Prof. Dr. Burkay Genç 2024-04-30

Seed used in these slides

set.seed(1024)

Libraries used in these slides

library(rpart)
library(rpart.plot)
library(mlbench)
library(DMwR2)
library(e1071)

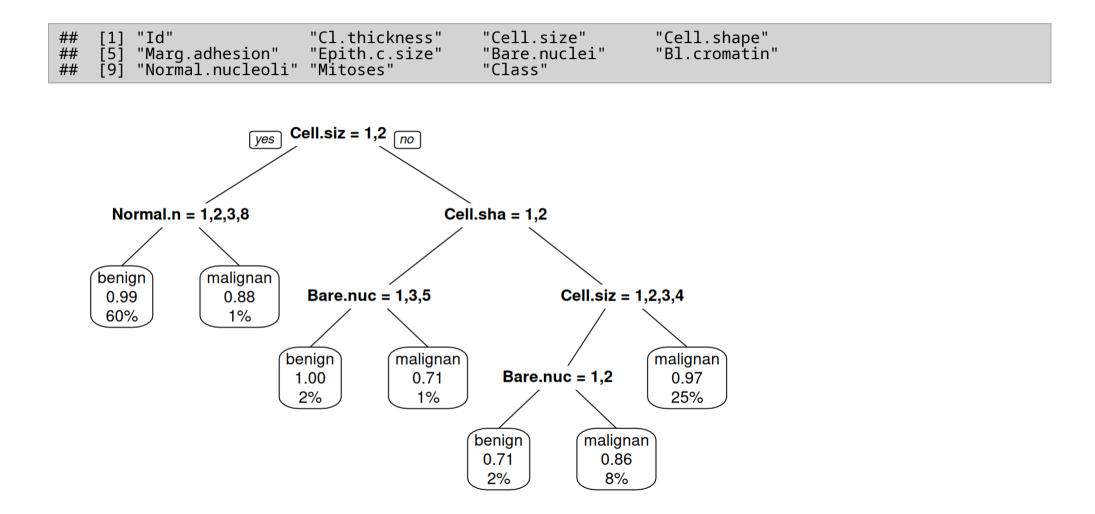
Tree Based Models

Properties

- Interpretable results
- Reasonable accuracy
- Applicable for both **classification and regression** tasks
- Works with both **numeric and categorical** variables
- Can handle NAs
- No assumption of the shape of the function
- Not top prediction performance
 - Ensembles of trees have much better performance

Shape

- A hierarchy of logical tests on variables
 - Is X > 5?
 - Is color = green?
 - Is birthplace in {Ankara, Istanbul, İzmir}?
- \cdot Each branch, including the root splits the data at hand into two
 - Decreasing the total error rate
- The leaves contain results / predictions
- The path to a leaf is a conjunction of logical tests



Algorithm

1: function RecursivePartitioning (D)
Input: D, a sample of cases, $\{\langle x_{i,1}, \cdots, x_{i,p}, y_i \rangle\}_{i=1}^{N_{train}}$
Output: t, a tree node
2: if $<$ TERMINATION CRITERION $>$ then
4: $else$
5: $t \leftarrow \text{new tree node}$
6: $t.split \leftarrow <$ FIND THE BEST PREDICTORS TEST>
7: $t.leftNode \leftarrow \text{RecursivePartitioning}(\mathbf{x} \in D : \mathbf{x} \to t.split)$
8: $t.rightNode \leftarrow \text{RecursivePartitioning}(\mathbf{x} \in D : \mathbf{x} \not\rightarrow t.split)$
9: Return the node t
10: end if
11: end function

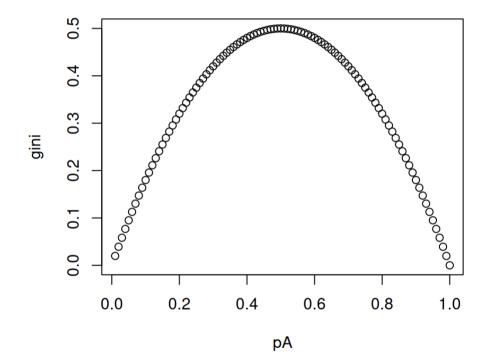
Find Best Split: GINI index

The Gini index of a dataset D, where each example belongs to one of C classes:

Consider a binary case where two classes are A and B

$$Gini(D) = 1 - \sum_{i=1}^C p_i^2$$
 .

 $\cdot p_i$ is the observed frequency of class i.



GINI index

If D is split by a logical test s, then

$$Gini_s(D) = rac{|D_s|}{|D|}Gini(D_s) + rac{|D_{
egs}|}{|D|}Gini(D_{
egs})$$

Then, the reduction in impurity is given by

 $\Delta Gini_s(D) = Gini(D) - Gini_s(D)$

• Information gain based on entropy is also frequently used

Least Squares

• For regression, LS is frequently used to measure error

$$Err(D) = rac{1}{|D|} \sum_{\langle x_i, y_i
angle \in D} (y_i - k_D)^2$$

where k_D is the constant representing value of D.

- · It is shown that $mean(y_i)$ actually minimizes LS.
- If D is split by a logical test s, then

$$Err_s(D) = rac{|D_s|}{|D|} Err(D_s) + rac{|D_{
egs}|}{|D|} Err(D_{
egs})$$

Then, the reduction in impurity is given by

 $\Delta Err_s(D) = Err(D) - Err_s(D)$

Termination

- When to stop?
 - Too deep -> over-fitting, variance error
 - Too shallow -> over-simplified, bias error
- Control with parameters
 - leaf size
 - split size
 - depth
 - complexity
- Grow a very large tree, then prune
 - According to some statistical information

Implementation

- Implemented in rpart and party
 - We will use rpart
- \cdot Functions
 - rpart() and prune.rpart()
- Book package contains
 - rpartXse() which combines rpart() and prune.rpart()
 - applies post-prunning with X-SE rule

Formula

 $\cdot\;$ A formula in R is provided in the following form

 $Y\sim X_1+X_2+X_3+X_4\ldots$

• This means the value of Y depends on the values of Xs

 $Y\sim$.

• means Y vs. everything else

Randomicity

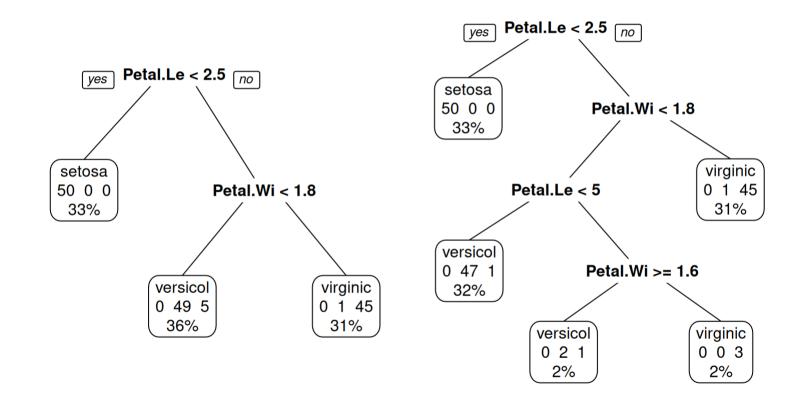
- Due to the certain randomized parts of the algorithm, it is possible to obtain slightly different trees between different runs.
- Hence, always use a seed
- rpart.plot package allows nice drawings of DTs using prp

•

data(iris)
ct1 <- rpartXse(Species ~ ., iris, model = TRUE)
ct2 <- rpartXse(Species ~ ., iris, se = 0, model = TRUE)</pre>

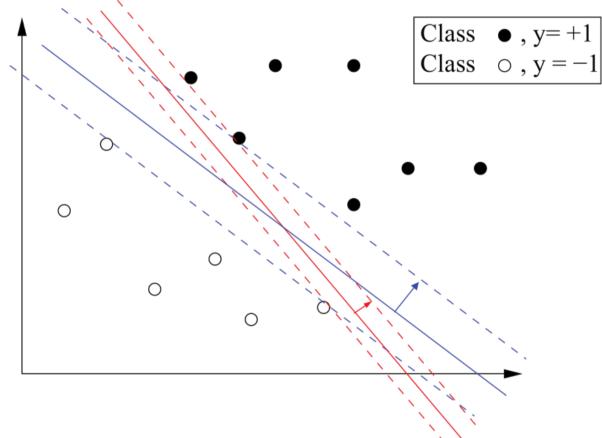
se=0 is a less agressive prunning

par(mfrow	v=c(1	, 2))			
prp(ct1,	type	=	Ò,	extra	=	101)
prp(ct2,	type	=	0,	extra	=	101)



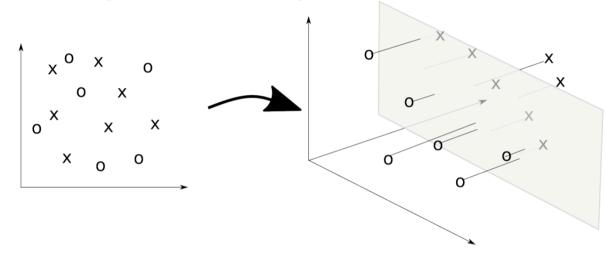
<pre>samp <- sample(1:nrow(iris), 120) tr_set <- iris[samp,] tst_set <- iris[-samp,] model <- rpartXse(Species ~ ., tr_set, se = 0.5) predicted <- predict(model, tst_set, type = "class") head(predicted)</pre>
12 15 35 37 40 43 ## setosa setosa setosa setosa setosa ## Levels: setosa versicolor virginica
<pre>table(tst_set\$Species, predicted)</pre>
<pre>## predicted ## setosa versicolor virginica ## setosa 8 0 0 ## versicolor 0 10 1 ## virginica 0 0 11</pre>
errorRate <- sum(predicted != tst_set\$Species) / nrow(tst_set) errorRate
[1] 0 03333333

[1] 0.03333333

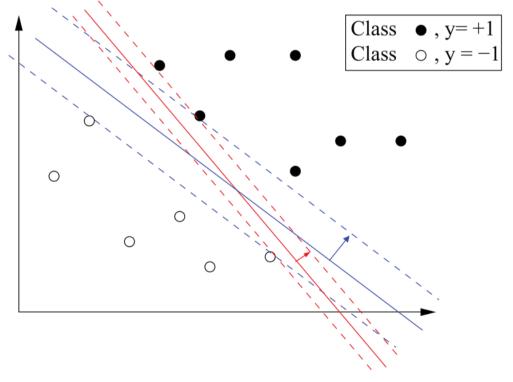


Linearly separable sets

- Linearly non-separable sets
 - Lift to a higher dimension using a non-linear function



- Questions
 - Which function to use?
 - Which hyperplane to choose?
 - The one that maximizes the separating margin



- Choosing the optimal hyperplane
 - Involves linear algebra and quadratic optimization
 - Lagrangian relaxation
 - Dual problem
 - Karush-Kuhn-Tucker conditions
 - Core operation is computing the dot product of two points (vectors)
 - Which can be very expensive after dimension expansion
 - We need to do this faster

Kernel Trick

- Kernel trick
 - Consider two points $x:\langle x_1,x_2
 angle$ and $z:\langle z_1,z_2
 angle$
 - Let $\phi(x)$ be a nonlinear mapping of x to a higher dimension
 - We want to compute $\phi(x) \cdot \phi(z)$
 - Consider the following kernel function: $K(x_i,x_j)=(x_i\cdot x_j)^2$
 - Then

 $egin{aligned} K(x,z) &= (\langle x_1,x_2
angle \cdot \langle z_1,z_2
angle)^2 \ &= (x_1z_1+x_2z_2)^2 = x_1^2z_1^2+x_2^2z_2^2+2x_1x_2z_1z_2 \ &= \langle x_1^2,x_2^2,\sqrt{2}x_1x_2
angle \cdot \langle z_1^2,z_2^2,\sqrt{2}z_1z_2
angle \ & ext{-} \ & ext{So, for } \phi(\langle x_1,x_2
angle) = \langle x_1^2,x_2^2,\sqrt{2}x_1x_2
angle \ & ext{we have} \ &K(x,z) = \phi(x) \cdot \phi(z) \end{aligned}$

Kernel Function Families

- This means, if we find these Kernel functions then we can use them for mapping our data to higher dimensions much faster.
- Indeed there are many such kernel function families
 - Gaussian kernel

$$K(x_i,x_j) = e^{-rac{||x_i-x_j||^2}{2\sigma^2}}$$

- Polynomial

$$K(x_i,x_j)=(x_i\cdot x_j)^d$$

- Radial kernel

 $K(x_i,x_j)=e^{-\gamma ||x_i-x_j||^2}$

- How does SVM handle non-binary classification?
 - By solving multiple binary classification problems
- Regression?
 - ϵ -SV approach finds an optimal hyperplane where each data point lies within ϵ distance of the hyperplane.

Implementation

- Implemented in packages e1071 and kernlab.
 - They are quite similar. kernlab may be more flexible. e1071 is simpler.

<pre>data(iris) rndSample <- sample(1:nrow(iris) tr <- iris[rndSample,] ts <- iris[-rndSample,] s <- svm(Species ~ ., tr) ps <- predict(s, ts) (cm <- table(ps, ts\$Species))</pre>	s), 100)			
<pre>## ## ps setosa versico ## setosa 24 ## versicolor 0 ## virginica 0</pre>	lor virgi 0 14 1	inica 0 0 11		


```
s2 <- svm(Species ~ ., tr, cost=10, kernel="polynomial", degree=<mark>3</mark>)
ps2 <- predict(s2, ts)
(cm2 <- table(ps2, ts$Species))
```

##				
	ps2	setosa	versicolor	virginica
##	setosa	24	0	0
##	versicolor	0	15	3
##	virginica	0	0	8