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Seed used in these slides

set.seed(1024)
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Libraries used in these slides

library(rpart)
library(rpart.plot)
library(mlbench)
library(DMwR2)
library(e1071)
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Tree Based Models



Properties

Interpretable results

Reasonable accuracy

Applicable for both classification and regression tasks

Works with both numeric and categorical variables

Can handle NAs

No assumption of the shape of the function

Not top prediction performance

·

·

·

·

·

·

·

Ensembles of trees have much better performance-
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Shape

A hierarchy of logical tests on variables

Each branch, including the root splits the data at hand into two

The leaves contain results / predictions

The path to a leaf is a conjunction of logical tests

·

Is X > 5?

Is color = green?

Is birthplace in {Ankara, Istanbul, İzmir}?

-

-

-

·

Decreasing the total error rate-

·

·
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Example

##  [1] "Id"              "Cl.thickness"    "Cell.size"       "Cell.shape"     
##  [5] "Marg.adhesion"   "Epith.c.size"    "Bare.nuclei"     "Bl.cromatin"    
##  [9] "Normal.nucleoli" "Mitoses"         "Class"
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Algorithm
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The Gini index of a dataset D, where each
example belongs to one of C classes:

Find Best Split: GINI index

Gini(D) = 1 −∑
i=1

C

p2
i

 is the observed frequency of class i.· pi

Consider a binary case where two classes are A and B·
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GINI index

If D is split by a logical test s, then

Then, the reduction in impurity is given by

Gin (D) = Gini( ) + Gini( )is
| |Ds

|D|
Ds

| |D¬s

|D|
D¬s

ΔGin (D) = Gini(D) − Gin (D)is is

Information gain based on entropy is also frequently used·
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Least Squares

where  is the constant representing value of D.

Then, the reduction in impurity is given by

For regression, LS is frequently used to measure error·

Err(D) = ( −
1

|D|
∑

⟨ , ⟩∈Dxi yi

yi kD)2

kD

It is shown that  actually minimizes LS.

If D is split by a logical test s, then

· mean( )yi

·

Er (D) = Err( ) + Err( )rs
| |Ds

|D|
Ds

| |D¬s

|D|
D¬s

ΔEr (D) = Err(D) − Er (D)rs rs
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Termination

When to stop?

Control with parameters

Grow a very large tree, then prune

·

Too deep -> over-fitting, variance error

Too shallow -> over-simplified, bias error

-

-

·

leaf size

split size

depth

complexity

-

-

-

-

·

According to some statistical information-
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Implementation

Implemented in rpart  and party

Functions

Book package contains

·

We will use rpart-

·

rpart()  and prune.rpart()-

·

rpartXse()  which combines rpart()  and prune.rpart()

applies post-prunning with X-SE rule

-

-
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Formula

A formula in R is provided in the following form·

Y ∼ + + + . . .X1 X2 X3 X4

This means the value of Y depends on the values of Xs·

Y ∼.

means Y vs. everything else·
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Randomicity

Due to the certain randomized parts of the algorithm, it is possible to obtain slightly different trees
between different runs.

Hence, always use a seed

rpart.plot  package allows nice drawings of DTs using prp

·

·

·
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Example

data(iris)
ct1 <- rpartXse(Species ~ ., iris, model = TRUE)
ct2 <- rpartXse(Species ~ ., iris, se = 0, model = TRUE)

se=0  is a less agressive prunning·
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Example

par(mfrow=c(1,2))
prp(ct1, type = 0, extra = 101)
prp(ct2, type = 0, extra = 101)
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Example

samp <- sample(1:nrow(iris), 120)
tr_set <- iris[samp, ]
tst_set <- iris[-samp, ]
model <- rpartXse(Species ~ ., tr_set, se = 0.5)
predicted <- predict(model, tst_set, type = "class")
head(predicted)

##     12     15     35     37     40     43 
## setosa setosa setosa setosa setosa setosa 
## Levels: setosa versicolor virginica

table(tst_set$Species, predicted)

##             predicted
##              setosa versicolor virginica
##   setosa          8          0         0
##   versicolor      0         10         1
##   virginica       0          0        11

errorRate <- sum(predicted != tst_set$Species) / nrow(tst_set)
errorRate

## [1] 0.03333333
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Support Vector Machines



Support Vector Machines

Linearly separable sets 

·
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Support Vector Machines

Linearly non-separable sets·

Lift to a higher dimension using a non-linear function-
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Support Vector Machines

Questions·

Which function to use?

Which hyperplane to choose?

-

-

The one that maximizes the separating margin-
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Support Vector Machines

Choosing the optimal hyperplane·

Involves linear algebra and quadratic optimization

Core operation is computing the dot product of two points (vectors)

We need to do this faster

-

Lagrangian relaxation

Dual problem

Karush-Kuhn-Tucker conditions

-

-

-

-

Which can be very expensive after dimension expansion-

-
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Kernel Trick

Kernel trick·

Consider two points  and 

Let  be a nonlinear mapping of x to a higher dimension

We want to compute 

Consider the following kernel function: 

Then

- x : ⟨ , ⟩x1 x2 z : ⟨ , ⟩z1 z2

- ϕ(x)

- ϕ(x) ⋅ ϕ(z)

- K( , ) = ( ⋅xi xj xi xj)2

-

K(x, z) = (⟨ , ⟩ ⋅ ⟨ , ⟩x1 x2 z1 z2 )2

= ( + = + + 2x1z1 x2z2)2 x2
1z

2
1 x2

2z
2
2 x1x2z1z2

= ⟨ , , ⟩ ⋅ ⟨ , , ⟩x2
1 x2

2 2
–√ x1x2 z2

1 z2
2 2

–√ z1z2

So, for  we have- ϕ(⟨ , ⟩) = ⟨ , , ⟩x1 x2 x2
1 x2

2 2
–√ x1x2

K(x, z) = ϕ(x) ⋅ ϕ(z)
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Kernel Function Families

This means, if we find these Kernel functions then we can use them for mapping our data to higher
dimensions much faster.

Indeed there are many such kernel function families

·

·

Gaussian kernel-

K( , ) =xi xj e
−

|| − |xi xj |2

2σ2

Polynomial-

K( , ) = ( ⋅xi xj xi xj)
d

Radial kernel-

K( , ) =xi xj e−γ|| − |xi xj |2

25/29



Support Vector Machines

How does SVM handle non-binary classification?

Regression?

·

By solving multiple binary classification problems-

·

-SV approach finds an optimal hyperplane where each data point lies within  distance of the
hyperplane.

- ϵ ϵ
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Implementation

Implemented in packages e1071  and kernlab .·

They are quite similar. kernlab  may be more flexible. e1071  is simpler.-
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Example

data(iris)
rndSample <- sample(1:nrow(iris), 100)
tr <- iris[rndSample, ]
ts <- iris[-rndSample, ]
s <- svm(Species ~ ., tr)
ps <- predict(s, ts)
(cm <- table(ps, ts$Species))

##             
## ps           setosa versicolor virginica
##   setosa         24          0         0
##   versicolor      0         14         0
##   virginica       0          1        11
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Example

s2 <- svm(Species ~ ., tr, cost=10, kernel="polynomial", degree=3)
ps2 <- predict(s2, ts)
(cm2 <- table(ps2, ts$Species))

##             
## ps2          setosa versicolor virginica
##   setosa         24          0         0
##   versicolor      0         15         3
##   virginica       0          0         8
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