Fuzzy Control

Asst. Prof. Burak Kürkçü

Goal

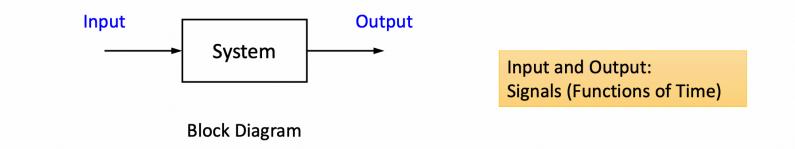
- To help researchers and engineers in the field of machine learning tackle problems in **control systems**
 - Control systems involve real-time decision making: a kind of artificial intelligence
 - Overview of **control theory** that may be helpful for proper use of machine learning

What is Control?

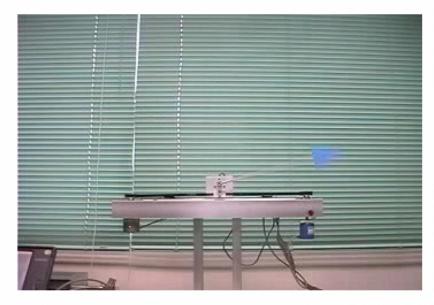
• To operate a **system** as desired

What is System?

• Something changing dynamically according to inputs



Control Systems

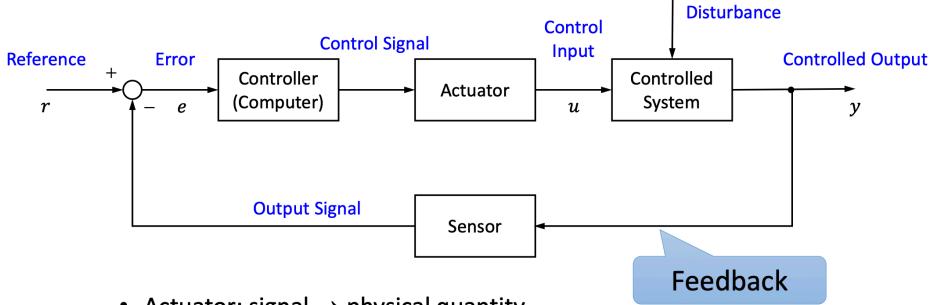


Inverted Pendulum © Toru Asai 2004

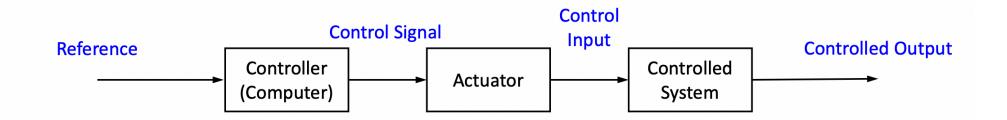
Rocket © JAXA 2014

Systems kept upward by control against gravity

Feedback Control System (Closed-Loop)



- Actuator: signal \rightarrow physical quantity
- Sensor: physical quantity \rightarrow signal
- Actuator/sensor blocks are often omitted.



- No sensor
- No disturbance

Control Systems are Everywhere

- Such machines as cars, ships, aircraft, and robots
 - Inputs: forces, torques, steering
 - **Outputs:** positions, velocities, directions
- Temperature, environment, economy, and epidemic
 - Inputs: heat, gas emissions, monetary policy, mask/vaccine mandate
 - Outputs: temperature, atmospheric constituent, money supply, spread rate

Control Engineering

- Methodology to analyze and design control systems
- Methodology based on mathematical models of control systems: Control Theory
- A lot of definitions, **theorems** and proofs: Stability, Controllability, Optimality, etc.

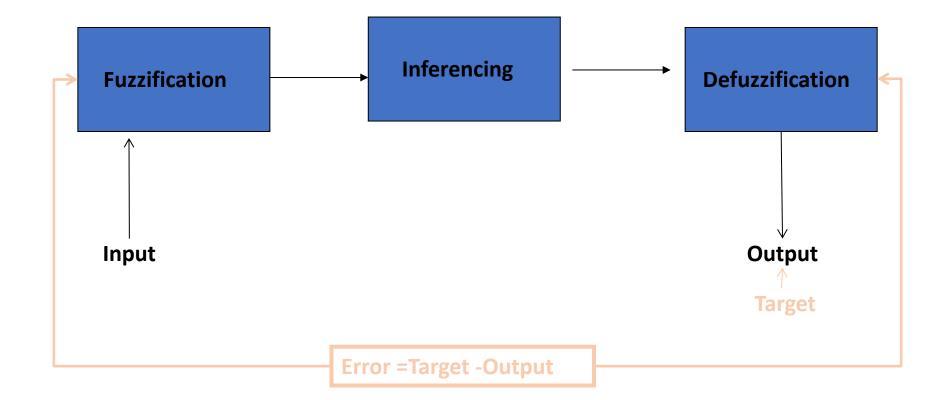
Fuzzy Perspective

- Rules Contrain MS functions
- Consequent MS function can be simplified
 - Variable space (i.e., error) \rightarrow partitions
- Within each partition, output variable:
 - linear functions of the inputs
 - Nonlinear functions...
 - Not a MS function

Review Fuzzy Models

If <antecedence> then <consequence>.

Basic Configuration of a Fuzzy Logic System



Types of Rules

Mamdani Model

R1: If x is A_1 and y is B_1 then z is C_1

R2: If x is A_2 and y is B_2 then z is C_2

A_i, B_i and C_i, are fuzzy sets defined on the universes of x, y, z respectively

Takagi-Sugeno Model

R1: If x is A_1 and y is B_1 then $z = f_1(x, y)$

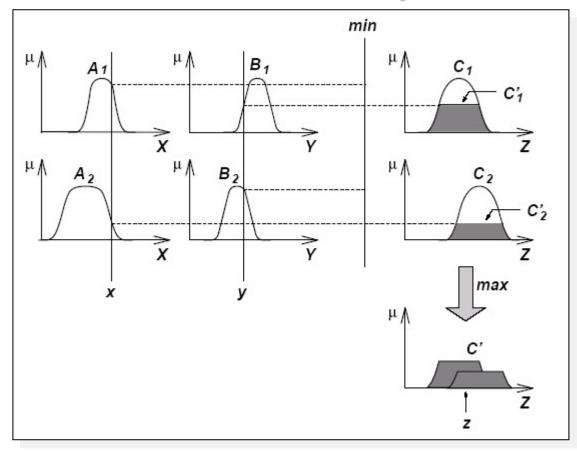
R1: If x is A_2 and y is B_2 then $z = f_2(x, y)$

For example: $f_i(x,y) = a_i x + b_i y + c_i$

Mamdani Fuzzy Models

The Reasoning Scheme

Both antecedent and consequent are fuzzy

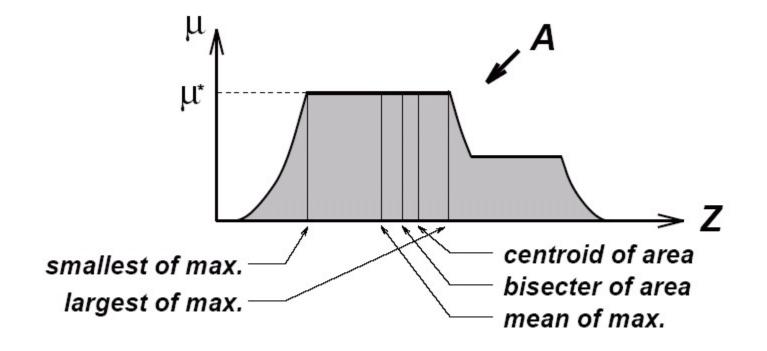


Defuzzifier

Since consequent is fuzzy, it has to be defuzzified

- Converts the fuzzy output of the inference engine to crisp using membership functions analogous to the ones used by the fuzzifier.
- Five commonly used defuzzifying methods:
 - Centroid of area (COA)
 - Bisector of area (BOA)
 - Mean of maximum (MOM)
 - Smallest of maximum (SOM)
 - Largest of maximum (LOM)

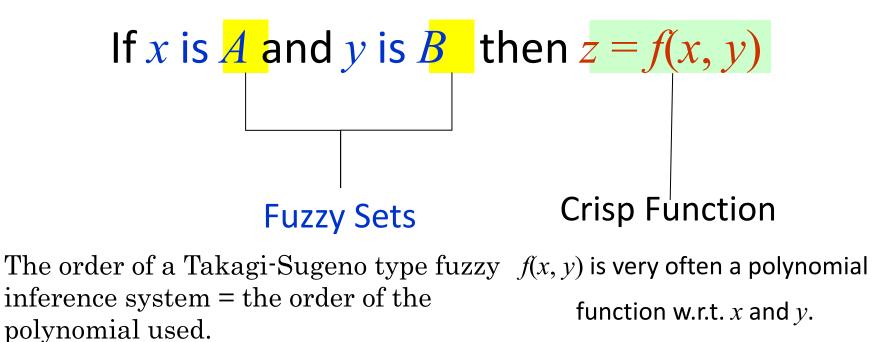
Defuzzifier



Takagi-Sugeno (TSK) Fuzzy Models

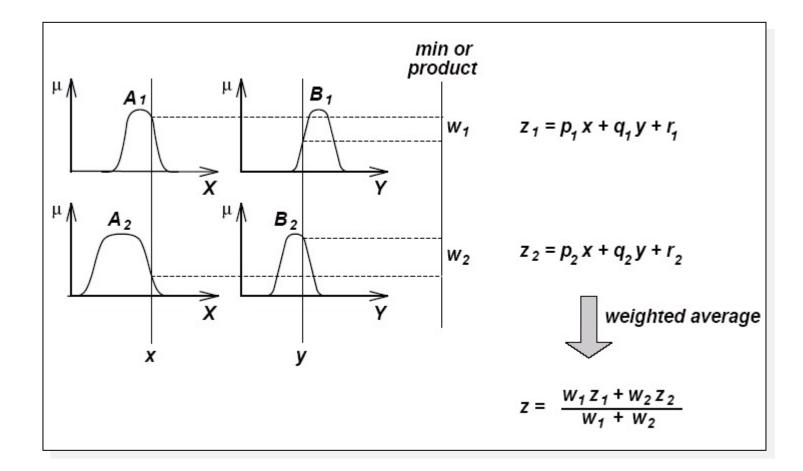
Fuzzy Rules of TSK Model

While antecedent is fuzzy, consequent is crisp



The over all aggregated output will be obtained via Weighted Average Defuzzification Method

The Reasoning Scheme

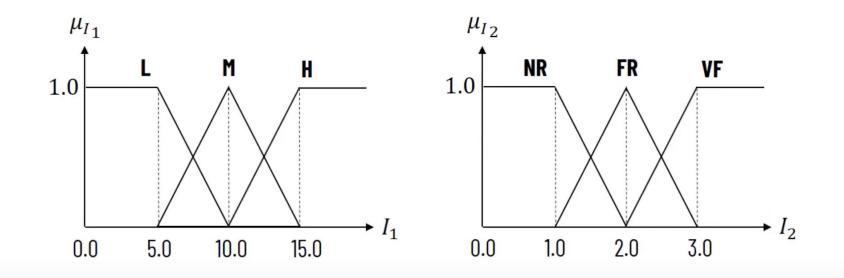


Fuzzy Rules of TSK Model

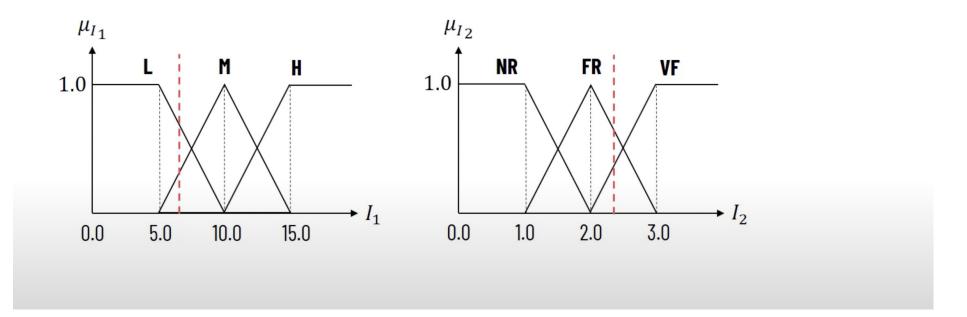
- i-th rule can be represented R_i: x_1 is A^i and x_2 is B^i ... and x_n is K^i then $z^i = a_0^i + a_1^i x_1 + \dots + a_n^i x_n$
- Weight of the i-th rule is $w_i = \mu_A^i(x_1) \times \mu_B^i(x_2) \times \cdots \times \mu_K^i(x_n)$
- Combined control action

$$x^{\star} = \frac{\sum_{i=1}^{k} w^{i} z^{i}}{\sum_{i=1}^{k} w^{i}}$$

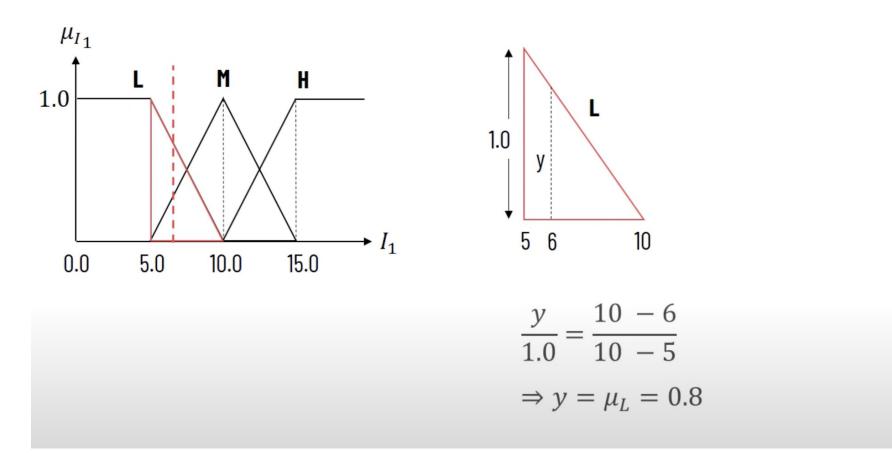
(P) Solve it for Inputs $I_1 = 6.0$ and $I_2 = 2.2$



- Inputs: I₁ of 6.0 unit may be called L or M
- Inputs: I₂ of 2.2 unit may be called FR or VF



Q Using principle of similar triangle:



- \bigcirc Similarly, $\mu_L = 0.8$, $\mu_M = 0.2$, $\mu_{FR} = 0.8$, $\mu_{VF} = 0.2$
- \bigcirc I₁ I in sets L and M, I₂ is in set FR and VF
- Fired Set of Rules:
 Weights:
 - \bigcirc I_1 is L and I_2 is FR
 - \bigcirc I_1 is L and I_2 is VF
 - \bigcirc I_1 is M and I_2 is FR
 - \bigcirc I_1 is M and I_2 is VF

 $w^2 = \mu_L \times \mu_{VF} = 0.8 \times 0.2 = 0.16$

 $w^1 = \mu_L \times \mu_{FR} = 0.8 \times 0.8 = 0.64$

- $w^3 = \mu_M \times \mu_{FR} = 0.2 \times 0.8 = 0.16$
- $w^4 = \mu_M \times \mu_{VF} = 0.2 \times 0.2 = 0.04$

(P) Inputs:
$$I_1 = 6.0$$
 and $I_2 = 2.2$

(a)
$$y^1 = I_1 + 2I_2 = 6.0 + 2 \times 2.2 = 10.4$$

(b) $y^2 = I_1 + 3I_2 = 6.0 + 3 \times 2.2 = 12.6$
(c) $y^3 = 2I_1 + 2I_2 = 2 \times 6.0 + 2 \times 2.2 = 16.4$
(c) $y^4 = 2I_1 + 3I_2 = 2 \times 6.0 + 3 \times 2.2 = 18.6$

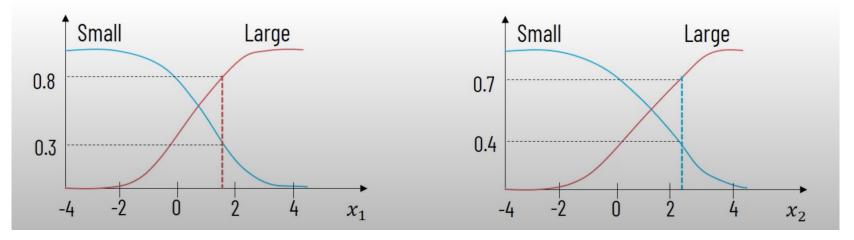
i	w ⁱ	y ⁱ
1	0.64	10.4
2	0.1 <mark>6</mark>	12.6
3	0.16	16.4
4	0.04	18.4

$$9 \quad y^4 = 2I_1 + 3I_2 = 2 \times 6.0 + 3 \times 2.2 = 18.6$$

$$x^* = \frac{w^1 y^1 + w^2 y^2 + w^3 y^3 + w^4 y^4}{w^1 + w^2 + w^3 + w^4} \qquad x^* = \frac{(0.64 \times 10.4) + (0.16 \times 12.6) + (0.16 \times 16.4) + (0.04 \times 18.6)}{0.64 + 0.16 + 0.16 + 0.04}$$
$$x^* = 12.04$$

- Consider a two input single output Sugeno model with 4 rules as:
 - **Example 1:** IF x_1 is small and x_2 is small THEN $y_1 = -x_1 + x_2 + 1$
 - **Rule 2:** IF x_1 is small and x_2 is large THEN $y_2 = -x_2 + 3$
 - **Rule 3:** IF x_1 is *large* and x_2 is *small* THEN $y_3 = -x_1 + 3$
 - So Rule 4: IF x_1 is *large* and x_2 is *large* THEN $y_4 = x_1 + x_2 + 2$

(P) Find the output when $x_1 = 1.5$ and $x_2 = 2.5$

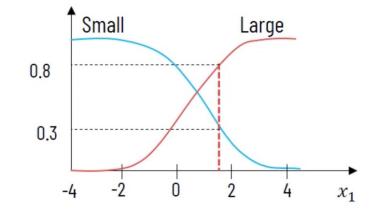


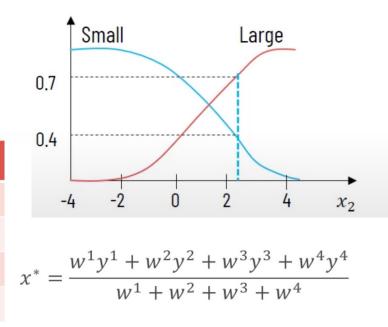
- \bigcirc Here, $x_1 = 1.5$, $x_2 = 2.5$
- **Functional Consequents:**
 - $y^1 = -x_1 + x_2 + 1 = -1.5 + 2.5 + 1 = 2$
 - $y^2 = -x_2 + 3 = -2 + 3 = 0.5$
 - $y^3 = -x_1 + 3 = -1.5 + 3 = 1.5$
 - $y^4 = x_1 + x_2 + 2 = 1.5 + 2.5 + 2 = 6$

- **P** Here, $x_1 = 1.5$ and $x_2 = 2.5$
 - **Rule 1:** IF x_1 is small and x_2 is small THEN $y_1 = -x_1 + x_2 + 1$
 - **Rule 2:** IF x_1 is small and x_2 is large THEN $y_2 = -x_2 + 3$
 - **Rule 3:** IF x_1 is *large* and x_2 is *small* THEN $y_3 = -x_1 + 3$
 - **Rule 4:** IF x_1 is *large* and x_2 is *large* THEN $y_4 = x_1 + x_2 + 2$

Weights:

- $w^1 = min(\mu_{x_1}, \mu_{x_2}) = min(0.3, 0.4) = 0.3$
- $w^2 = min(0.3, 0.7) = 0.3$
- $w^3 = min(0.8, 0.4) = 0.4$
- $w^4 = min(0.8, 0.7) = 0.7$





wⁱ

0.3

0.3

0.4

0.7

vi

2

0.5

1.5

6

2

3

4

Fuzzy Rules of TSK Model

R: if (x is $\mu_A(x)$) then $z = p_0 + p_1 x$

$$z_1 = p_0 + p_1 x_1 z_2 = p_0 + p_1 x_2$$

$$p_1 = \frac{z_1 - z_2}{x_1 - x_2}, p_0 = z_1 - \frac{z_1 - z_2}{x_1 - x_2}$$

Mamdani or Sugeno

Mamdani method:

- It is widely accepted for capturing expert knowledge.
- It allows us to describe the expertise in more intuitive, more human-like manner.
- However, Mamdani-type fuzzy inference entails a substantial computational burden.

Sugeno method:

- lt is computationally effective
- It works well with optimization and adaptive techniques, which makes it very attractive in control problems, particularly for dynamic nonlinear systems.
- It avoids the time consuming methods of defuzzification that are needed for Mamdani model