
BBM 201 – Data Structures - Fall 2019

1st Midterm

November 19, 2019

Name: __

Student ID Number: ________________________ Section:______________

 INSTRUCTIONS

• Do not open this exam booklet until you are directed to do so. Read all the

instructions first.

• When the exam begins, write your name on every page of this exam booklet.

• The exam contains six multi-part problems. You have 120 minutes to earn 105

points (5pts bonus).

• The exam booklet contains 6 pages including this one.

• This exam is an open book and notes exam. You are allowed to have two pieces of

bound books or notebooks.

• Please write your answers in the space provided on the exam paper.

• Be neat.

• Good luck!

Problem Points Grade

1 15

2 20

3 15

4 15

5 20

6 20

Total 105

QUESTIONS

Question 1) Performance analysis (15 pts):

a) (3 pts) For a collection of algorithms that runs in O(1), O(n log n), O(n), O(n2),
O(log n), O(n!), order the algorithms from fastest to slowest.

O(1), O(log n), O(n), O(n log n), O(n2), O(n!)

b) (12 pts) Find the big-O time complexity of each of the following code fragments.

Hint:

1 + 2 + 3 +⋯+ (𝑛 − 2) + (𝑛 − 1) =
(𝑛 − 1)(𝑛)

2
= 𝑂(𝑛2)

1 + 2 + 4 +⋯+
𝑛

4
+
𝑛

2
+ 𝑛 = 2𝑛 − 1 = 𝑂(𝑛)

int i = 1;

while (i <= n) {

 print("*");

 i = 2 * i;

}

Answer: O(log n)

int i = n;

while (i > 0) {

 for (int j = 0; j < n; j++)

 print ("*");

 i = i / 2;

}

Answer: O(n log n)

while (n > 0) {

for (int j = 0; j < n; j++)

 print("*");

 n = n / 2;

}

Answer: O(n)

for (int i = 0; i < n; i++)

 for (int j = i+1; j > i; j--)

for (int k = n; k > j; k--)

 print("*");

Answer: O(n^2)

Question 2) Recursion (20 pts):

a) (12 pts) Write a recursive function (that takes a string and the length of the
string as arguments) in C that returns 1 if the given string is palindrome, and 0 if
it is not. A string is said to be a palindrome if the string read from left to right
is equal to the string read from right to left. For example, "kayak", "level", "radar",
"repaper", "noon" are all palindrome words in English, however "paper", "book",
"little" are not. Only recursive solutions will be accepted.

b) (8 pts) Please write the output of the following method if recursiveFun(6) is
called.

void recursiveFun(int value)

{

 if(0 < value && value < 10)

 {

 recursiveFun(value – 2);

 recursiveFun(value + 1);

 printf(“ %d”, value);

 }

}

The code produces no output and ends with “segmentation fault”.

int isPalindrome (char *str, int len){

 if (len == 0 || len == 1)

 return 1;

 if (str[0] == str[len-1])

 return isPalindrome (str+1, len-2);

 else return 0;

}

}

}

Question 3) Multi-dimensional arrays (15 pts):

Consider the following multi-dimensional array:

int A[3][4][2] =

1
0
0

1
9
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Let p be defined as,

 int (*p)[4][2] = A;

Fill in the values for the second column in the following table according to the
expressions/code in the first column:

Expression/code Result

p 100

p + 2 164

*(p + 1) 132

**(p + 1) 132

***(p + 1) 8

*(*p + 2) 116

((*p + 2) + 1) 5

((*(p + 1) + 1) + 1) 11

int sum = 0;

for (int i = 0; i < 3; i++)

 sum += **(*(p + i) + 1);

printf("Sum : %d\n", sum);

Sum: 30

int sum = 0;

for (int i = 0; i < 3; i++)

 sum += *(*(*(p + 2) + i) + 1);

printf("Sum : %d\n", sum);

Sum: 57

Question 4) Triangular Matrix (15 pts):

Let A[n][n] be a lower triangular matrix (see the example given below in A and C). The
elements of this triangular matrix are stored in a one-dimensional array (U). We want
to convert the given left-aligned lower triangular matrix into a right-aligned lower
triangular matrix as given in B and D without changing the order of the items in the
one-dimensional array U.

gettriangularmatrix(int i,int j,int n) method returns the item in the given index
(A[i][j]).

Which lines in the method should we change to make it work for the right-aligned lower
triangular matrix for the same one-dimensional array? Please write the updated lines
on the side of each line that needs to be changed. No new lines will be added. Leave
the space blank for the lines which do not require any changes.

A B

C D

 U

 U

int gettriangularmatrix(int i, int j, int n){

 if(i<0||i>=n||j<0||j>=n){ 1

 printf(“\n invalid index\n“);............................ 2

 exit(-2);

 }

 else if(i>=j) //valid index else if (i+j>=n-1)..... 3

 return (i+1)*i/2+j (i*(i+1)/2)+j-(n-i-1)...... 4

 else return -1; 5

}

a00 a10 a11 a20 a21 a22 a30 a31 a32 a33

a03 a12 a13 a21 a22 a23 a30 a31 a32 a33

a
00

 0 0 0

a
10

 a
11

 0 0

a
20

 a
21

 a
22

 0

a
30

 a
31

 a
32

 a
33

0 0 0 a
03

0 0 a
12

 a
13

0 a
21

 a
22

 a
23

a
30

 a
31

 a
32

 a
33

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 10

0 0 0 1

0 0 2 3

0 4 5 6

7 8 9 10

Question 5) Stacks (20 pts):

Answer the following questions by putting a check mark on the correct column. Unless
otherwise stated, you have access to only the stack interface functions. You cannot
directly access the underlying array structure.

Q Question True False
1 To reverse the order of all the items within a stack, it is

sufficient to use an additional stack (the items should end up
in the original stack).

 F

2 To process a list of tasks in the arriving order, using a
single stack is sufficient.

 F

3 Summing up all the items in a stack requires O(n) time. T
4 Finding the maximum item in a stack requires O(nlog n) time due

to sorting.
 F

5 Consider you have stacks S1 and S2 containing k1 and k2 integer
values and both of them are sorted such that the item values
increase towards the bottom of the stack. Let k be the sum of
k1 and k2. Using only one more stack, S3, we want to merge both
stacks, in same sorting order, in S1. We need at most 2*k pop
operations to do this.

T

6 To detect whether a word is a palindrome (which is same when
read left-to-right and right-to-left) we can use a single
stack. Some palindromes are racecar, radar, level, civic.

T

7 When a stack of size n is full, we can transfer its contents to
a larger stack in n pop and push operations.

 F

8 For the 7th question, if we had access to the underlying array
structure, the stack capacity could be extended in constant
O(1) time.

 F

9 If we decide to replace a queue with stacks, we need two stacks
to mimic the full queue functionality.

T

10 Assume a popBottom() operation to pop the bottom item in a
stack. If you have access to the underlying array structure,
this operation can be implemented to require at most O(1) time.

T

Question 6) Queues (20 pts):

a) (10 pts) A priority queue is a data structure that supports storing a set of values,
each of which has an associated key. Each key-value pair is an entry in the priority
queue. The basic operations on a priority queue are:

• insert(k, v) – insert value v with key k into the priority queue

• removeMin() – return and remove from the priority queue the entry with the smallest
key

Other operations on the priority queue include size(), which returns the number of
entries in the queue and isEmpty() which returns true if the queue is empty and false
otherwise.

Two simple implementations of a priority queue are using an unsorted array, where new
entries are added at the end of the array, and a sorted array, where entries in the
array are sorted by their key values.

Fill in the following table to give the running times of the priority queue operations
for these two implementations using O() notation. You should assume that the
implementation is optimised.

Operation Unsorted Array Sorted Array

isEmpty() O(1) O(1)

insert(k, v) O(1) O(n)

removeMin() O(n) O(1)

b) (10 pts) For a given integer queue Q, fill in the blanks in the below pseudocode
so that the function findMaxOfQueue will find the maximum element in Q. You may only
use the operations: enqueue(), dequeue(), size().

Usage:

dequeue() : Dequeues an item from Q

enqueue(X) : Enqueues X into Q

size() : Returns the size of Q

Queue must remain intact after finding the max. Each blank is either a complete single
line or part of a single line.

findMaxOfQueue (Queue Q)

{

max = ……………… dequeue()……………………… ;

…………………………enqueue (max) ………………………… ;

for (int i=1 ; ……i<size()…………… ; ………i++………)

{

 next = ……………… dequeue()……………;

if (………………next>max………………………) {

 …………………max=next…………………… ;

}

………………… enqueue(next)…………………… ;

}

return ……………………max………………… ;

}

