

Last time... Boosting

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis a_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = \operatorname{sign}\left(\sum \alpha_t h_t(X)\right)$
- Practically useful
- Theoretically interesting

Last time.. The AdaBoost Algorithm

- **0)** Set $\tilde{W}_{i}^{(0)} = 1/n$ for i = 1, ..., n
- 1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

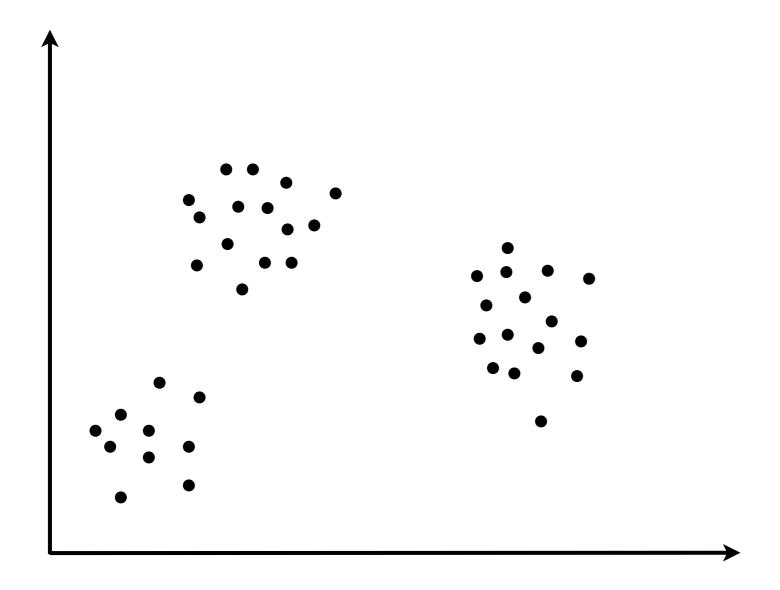
3) The weights are updated according to (Z_m) is chosen so that the new weights $\tilde{W}_i^{(m)}$ sum to one):

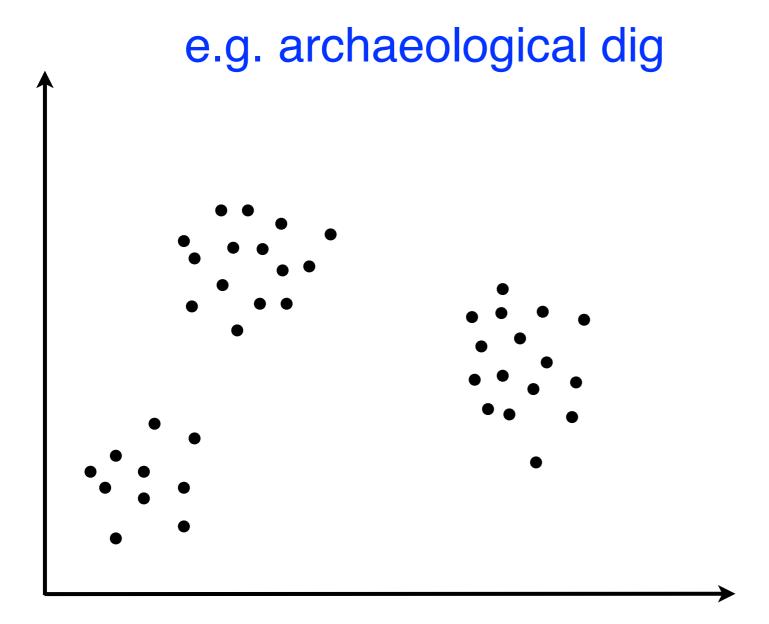
$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp\{-y_i \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)\}$$

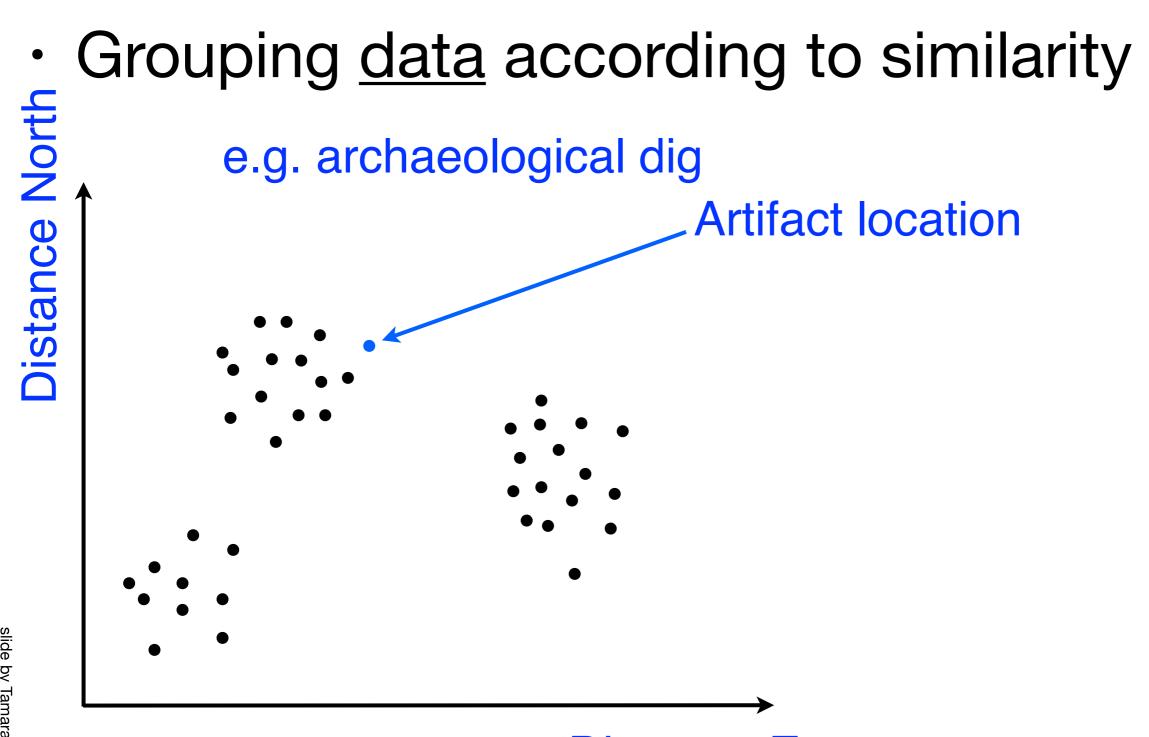
Today

- What is clustering?
- K-means algorithm

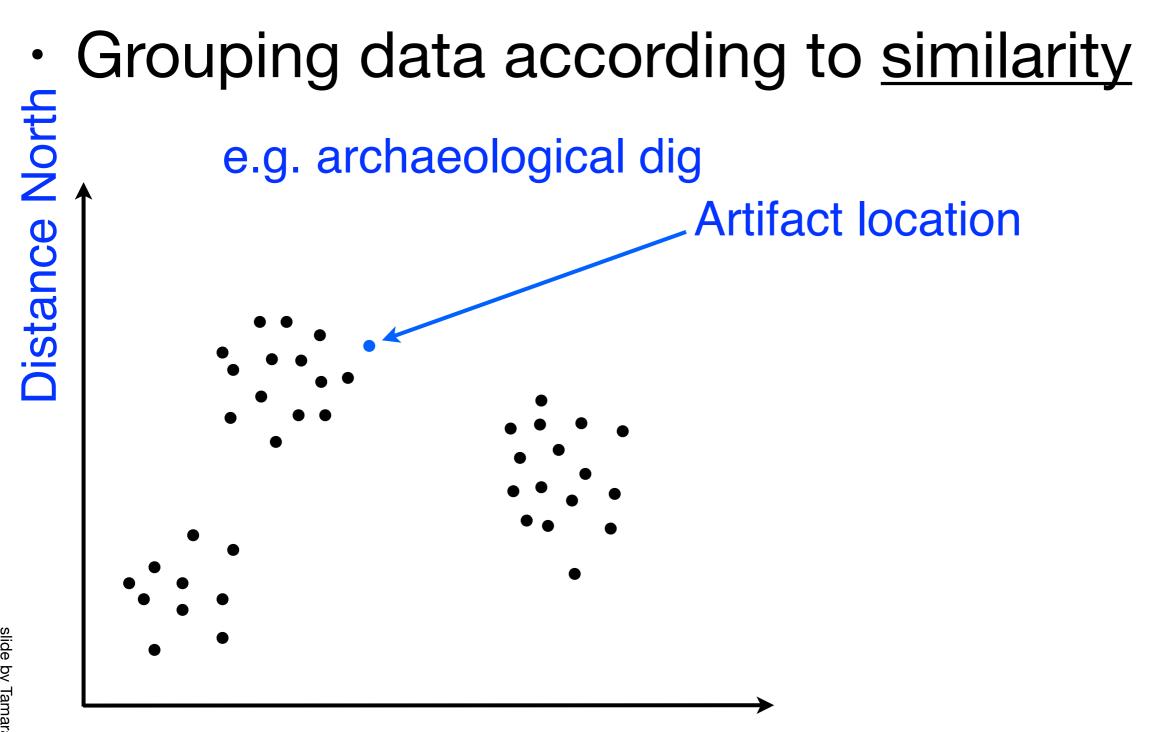
What is clustering



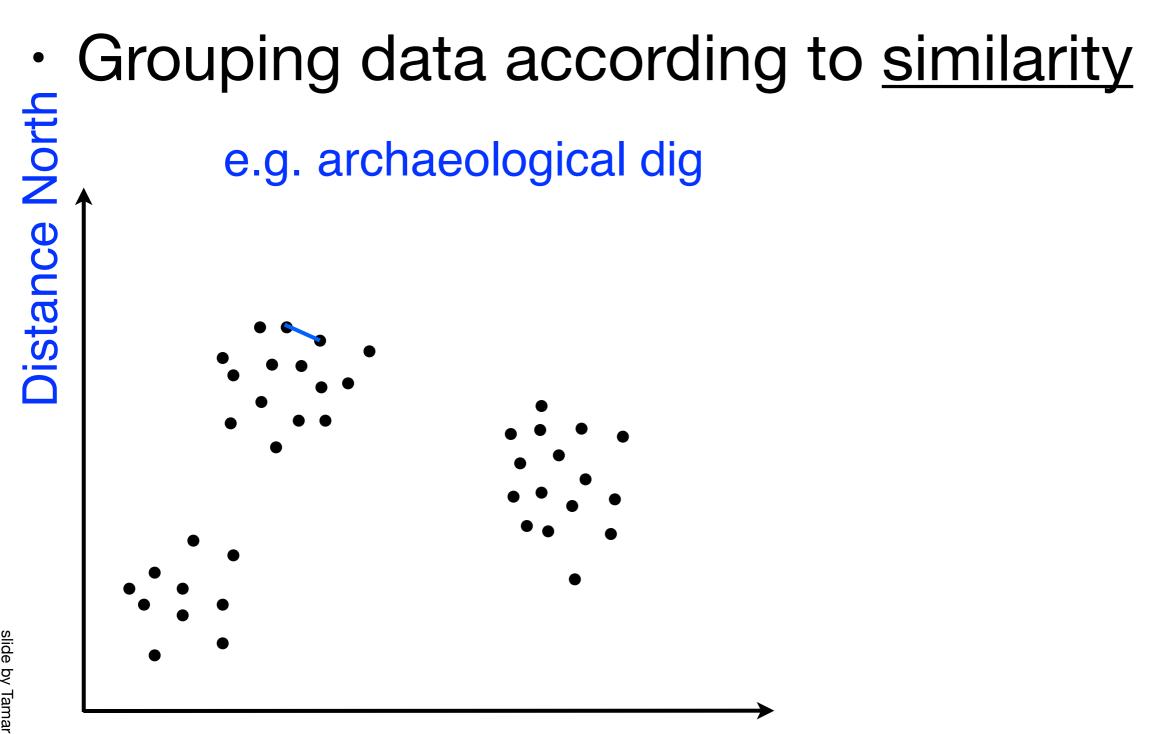


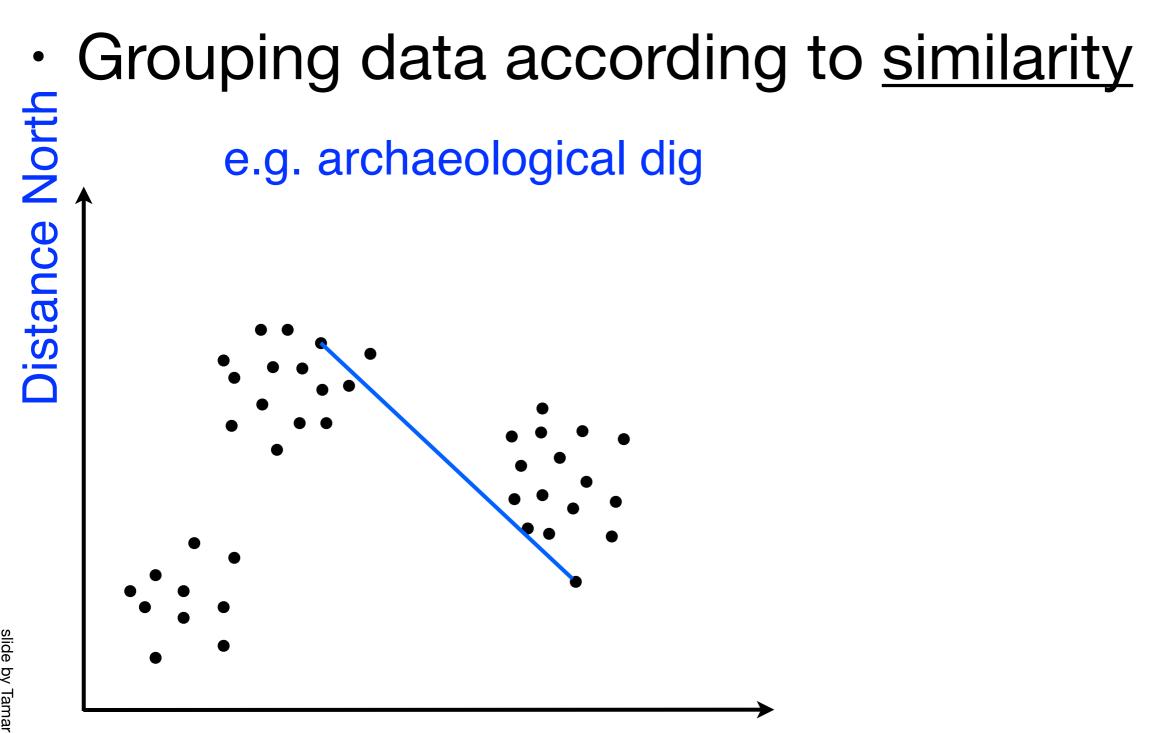


Distance East



Distance East

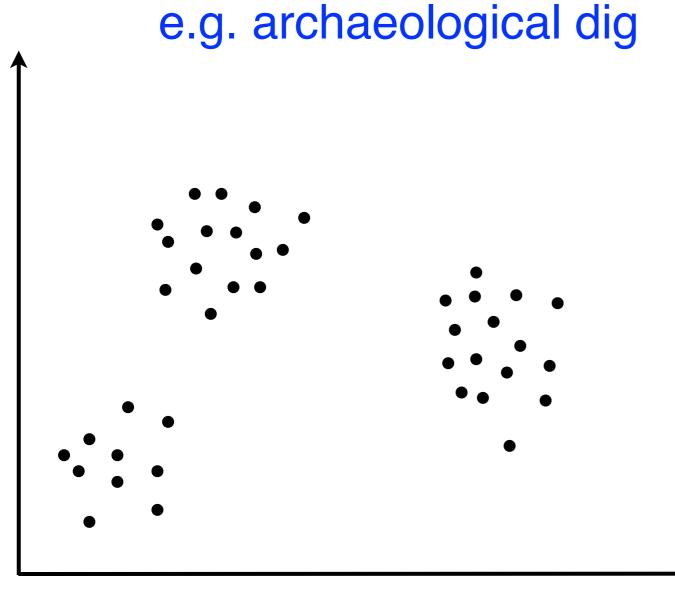




Distance North •

Clustering

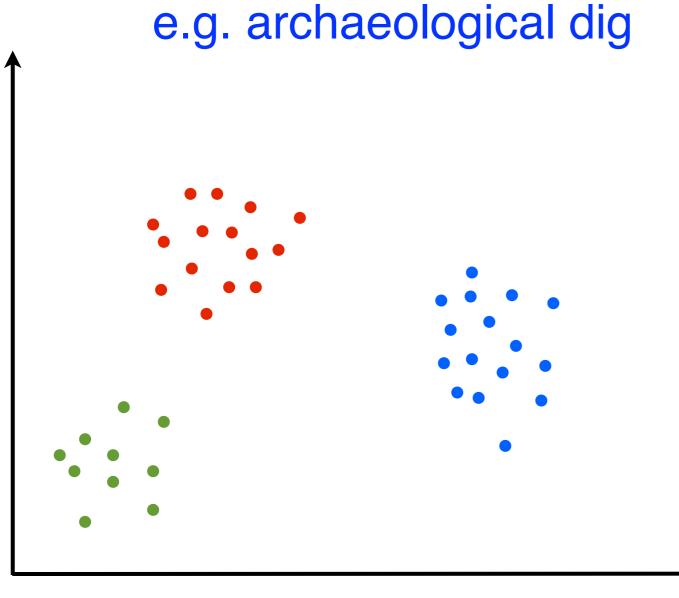
Grouping data according to similarity



Distance East

Distance North •

Clustering

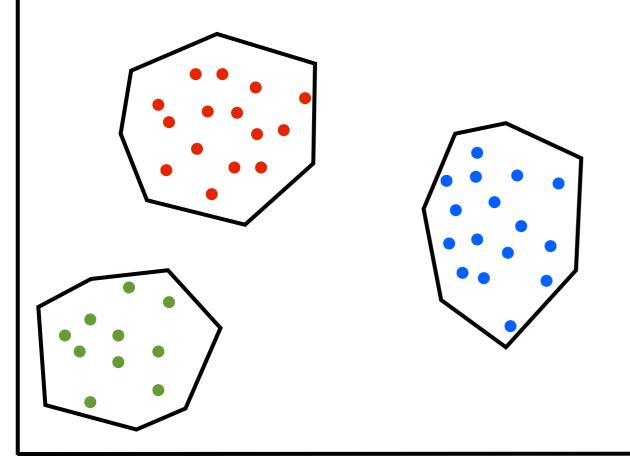


Distance North •

Clustering

Grouping data according to similarity

e.g. archaeological dig

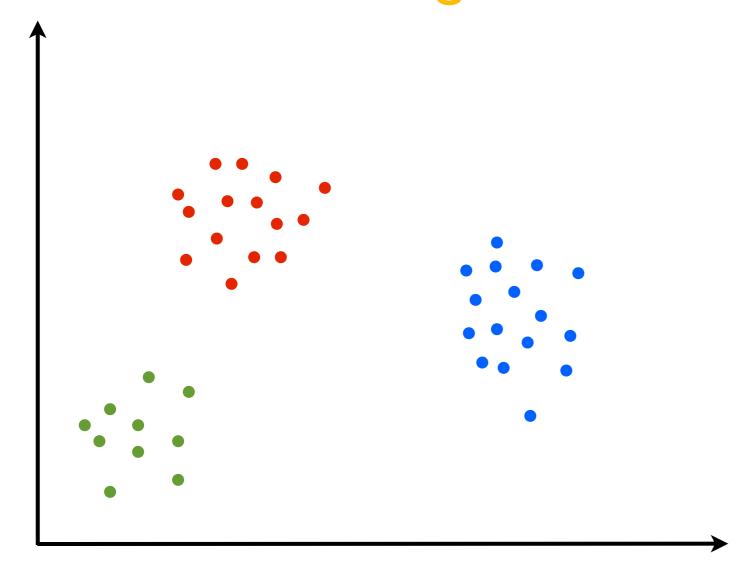


Distance East

Clustering vs. Classification

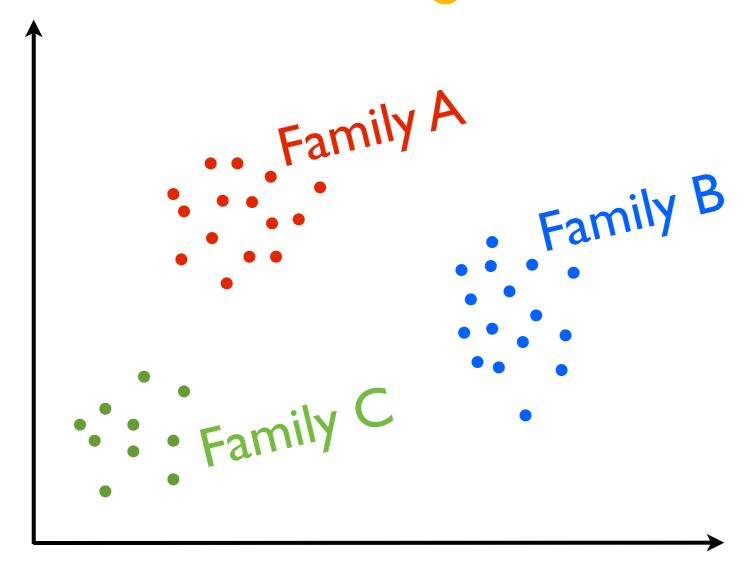
Grouping data according to similarity

Predicting new labels from old labels



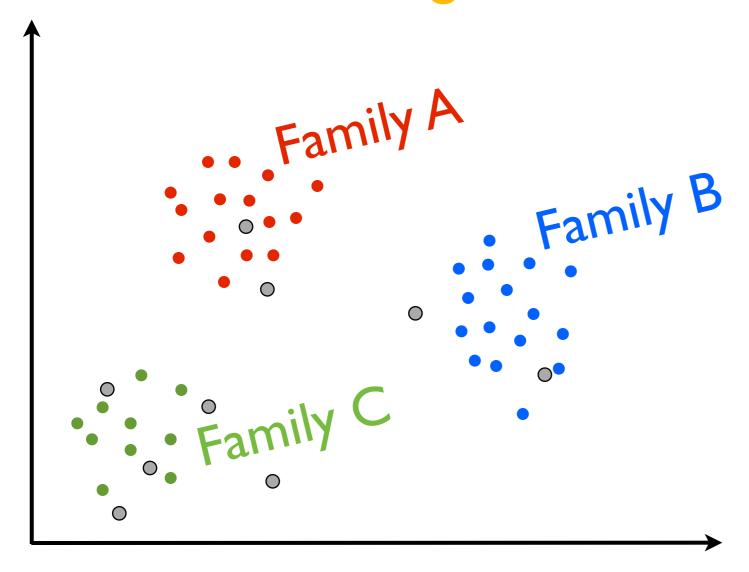
Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels



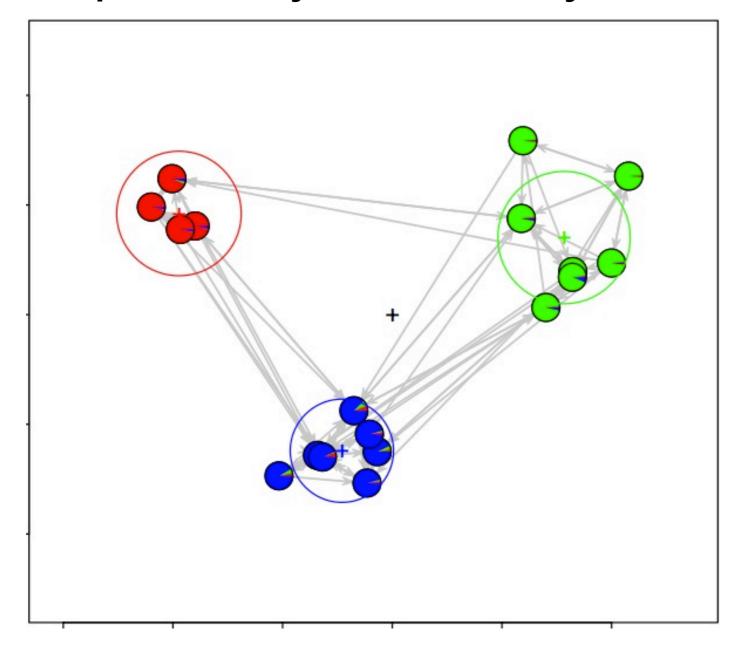
Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels

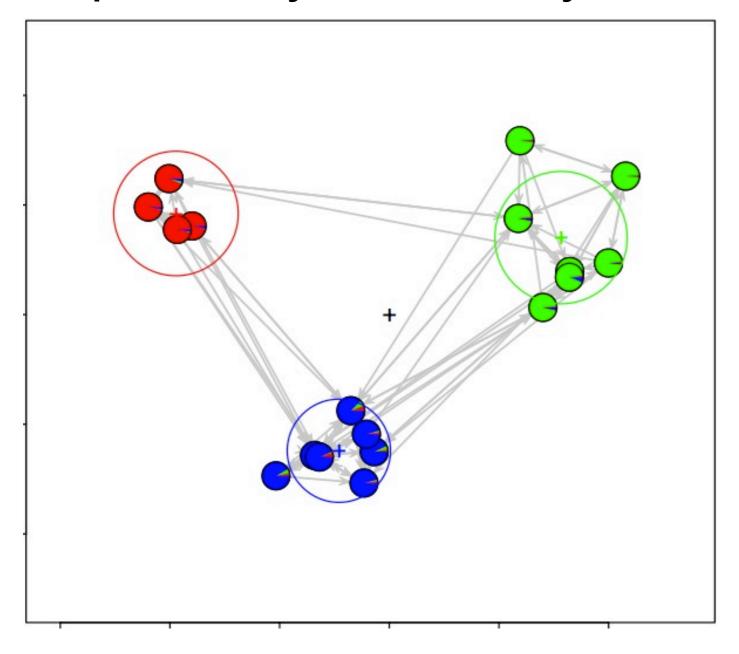


Exploratory data analysis

Exploratory data analysis



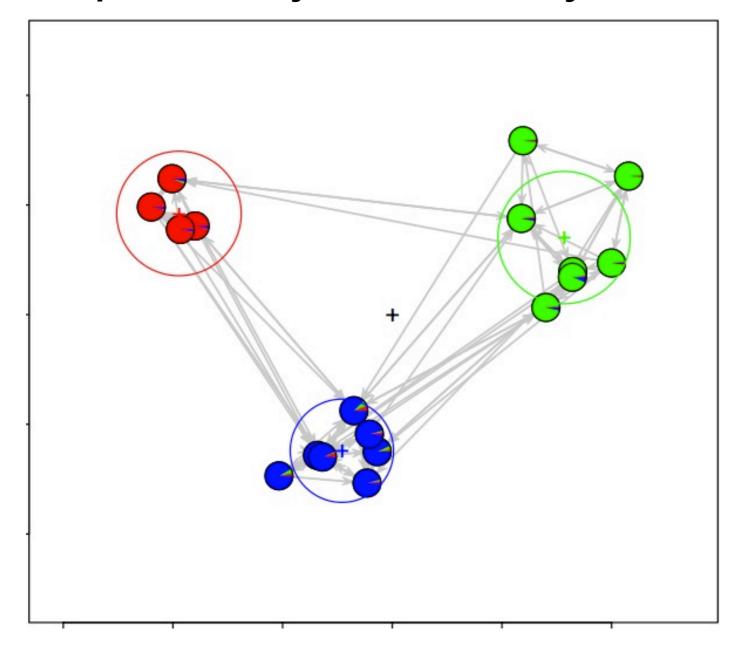
Exploratory data analysis



Datum: person

Similarity: the number of common interests of two people

Exploratory data analysis



Datum: a binary vector specifying whether a person has each interest

Similarity: the number of common interests of two people

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (<u>unknown</u>, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

NEW MILLION SCHOOL CHILDREN FILM TAX WOMEN STUDENTS SHOW PROGRAM PEOPLE SCHOOLS MUSIC CHILD BUDGET EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL YEAR. WORK PUBLIC BEST SPENDING PARENTS TEACHER ACTOR NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE THEATER PROGRAMS PERCENT PRESIDENT CARE ELEMENTARY ACTRESS GOVERNMENT LOVE CONGRESS LIFE HAITI

Topic Analysis

Parst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a
a mark on the future of the performing arts with these grants an act
our traditional areas of support in health, medical research, education
Hearst Foundation President Randolph A. Hearst said Monday in
incoln Center's share will be \$200,000 for its new building, which
and provide new public facilities. The Metropolitan Opera Co. and
will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

Philharmonic and Juilliard School. "Our board felt that we had a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

Datum: word

Similarity: how many documents exist where two

words co-occur

and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"	Topic Analysis
NEW FILM SHOW MUSIC MOVIE PLAY MUSICAL	MILLION TAX PROGRAM BUDGET BILLION FEDERAL YEAR	CHILDREN WOMEN PEOPLE CHILD YEARS FAMILIES WORK	SCHOOL STUDENTS SCHOOLS EDUCATION TEACHERS HIGH PUBLIC	Datum: binary vector indicating document occurrence
BEST ACTOR FIRST YORK OPERA THEATER	SPENDING NEW STATE PLAN MONEY PROGRAMS	PARENTS SAYS FAMILY WELFARE MEN PERCENT	TEACHER BENNETT MANIGAT NAMPHY STATE PRESIDENT	Similarity: how many documents exist where two
ACTRESS LOVE	GOVERNMENT	_	ELEMENTARY HAITI performing arts are to the Lincoln Center	words co-occur

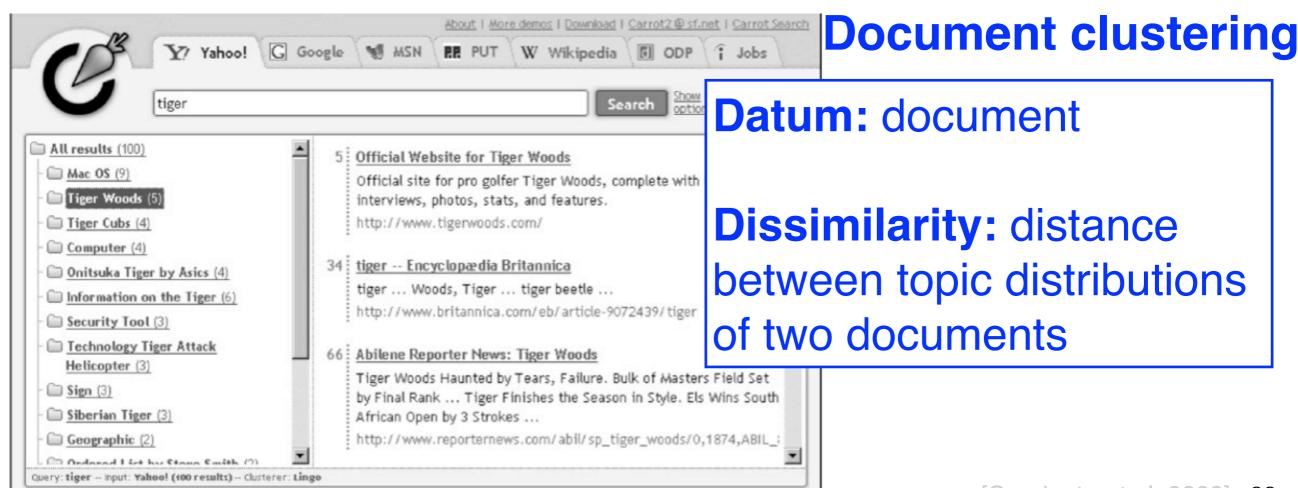
donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

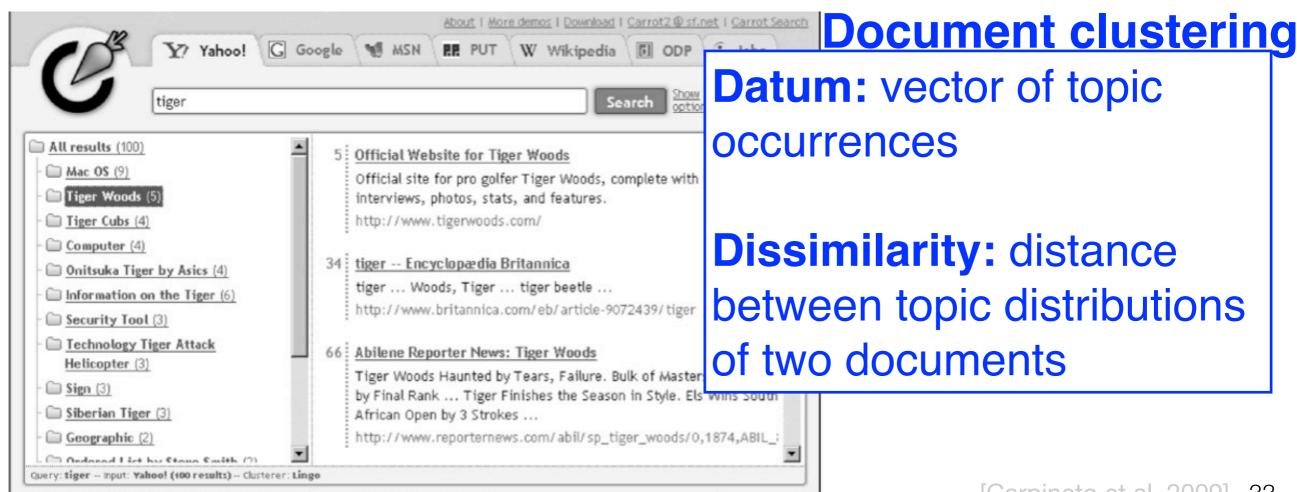
- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

Document clustering

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)



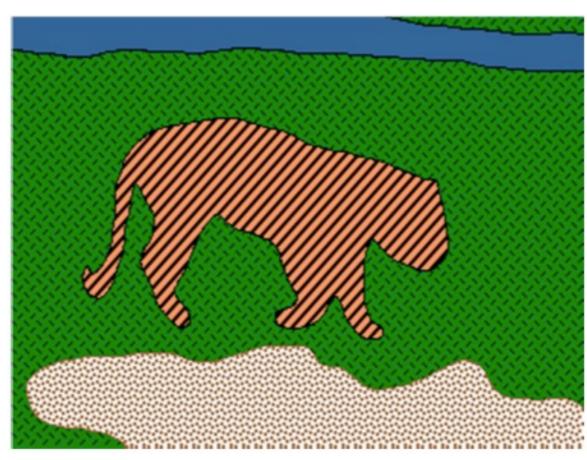
- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)



- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

Image segmentation



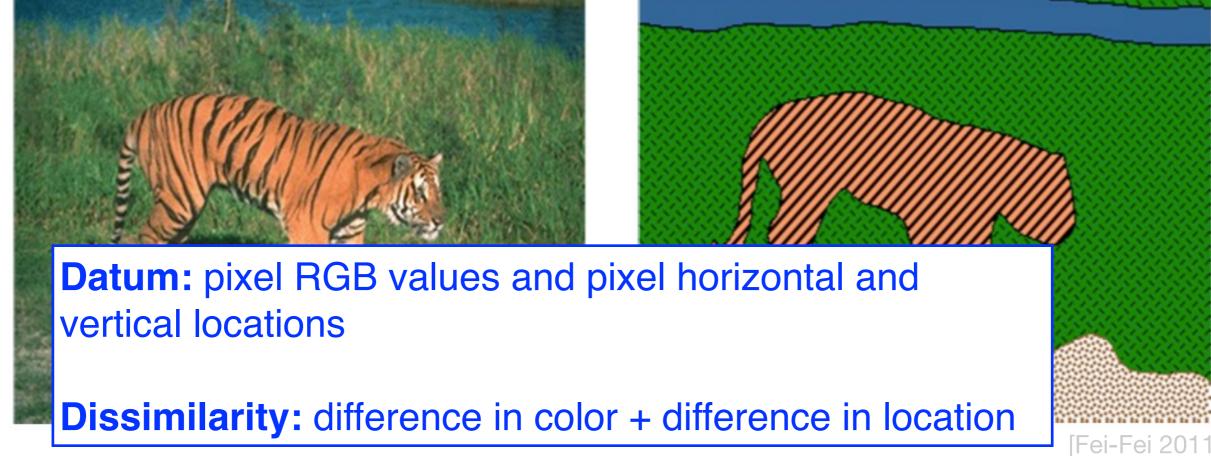
- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

Image segmentation

Why use clustering... ...instead of classification

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

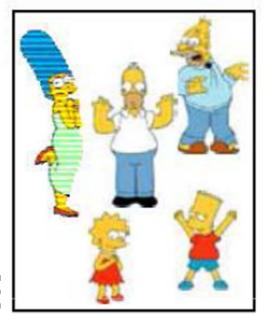
Image segmentation



Clustering algorithms

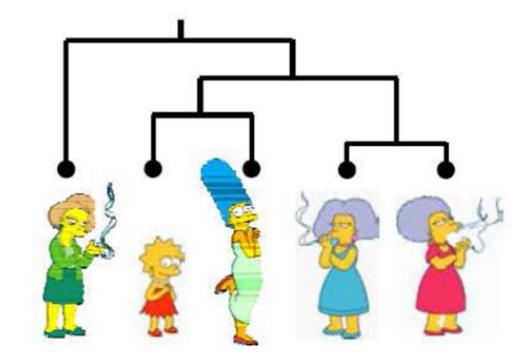
- Partitioning algorithms
 - Construct various partitions and then evaluate them by
 - •
 - [
 - . (

Clustering a

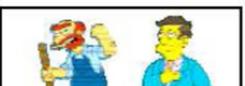


- Hie
 - Cr of cri
 - Bc
 - To

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive



Partition algorithms (Flat)



Desirable Properties of a Clustering Algorithm

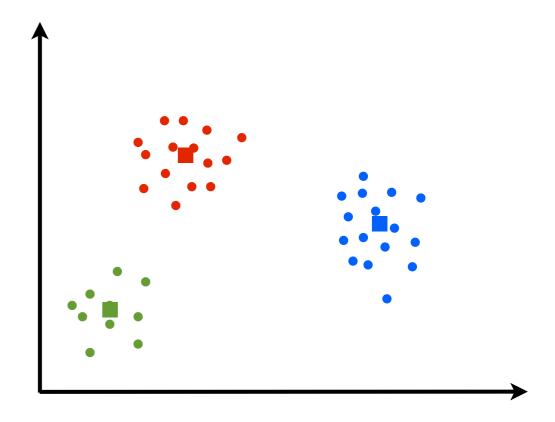
- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noisy data
- Interpretability and usability
- Optional
 - Incorporation of user-specified constraints

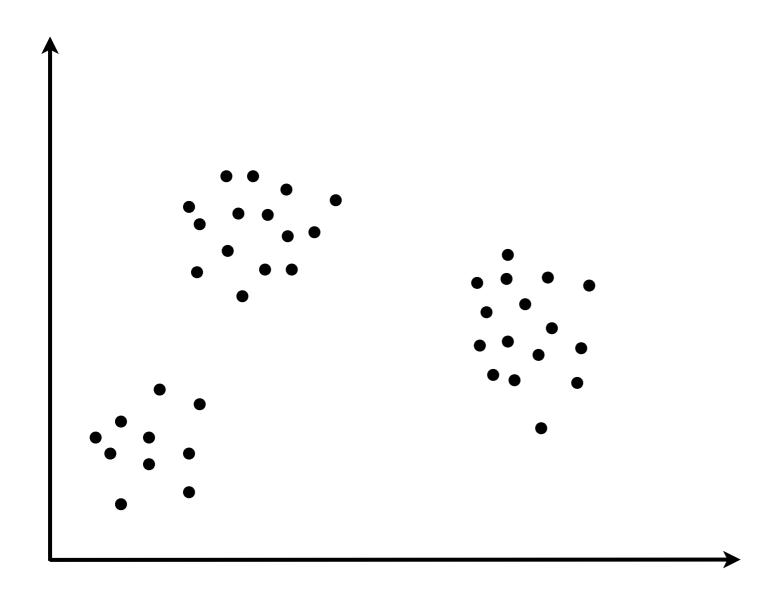
K-Means Clustering

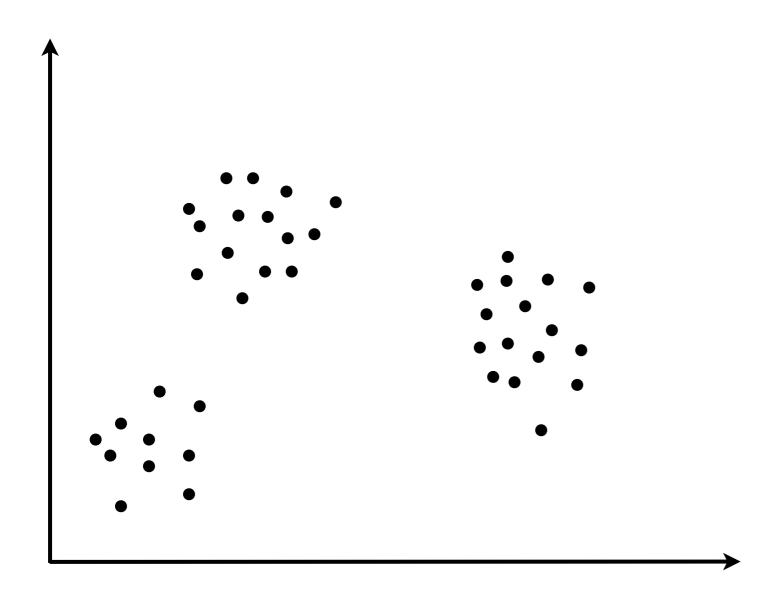
K-Means Clustering

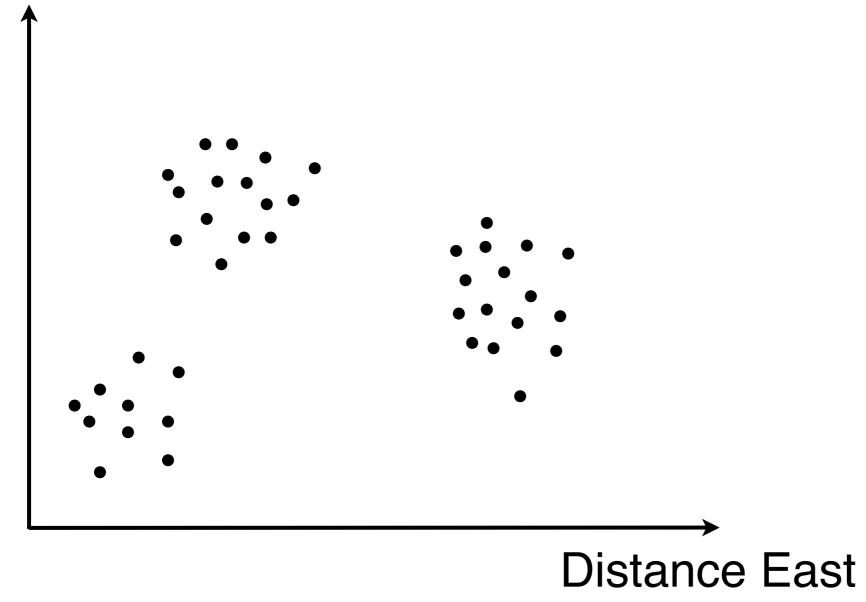
Benefits

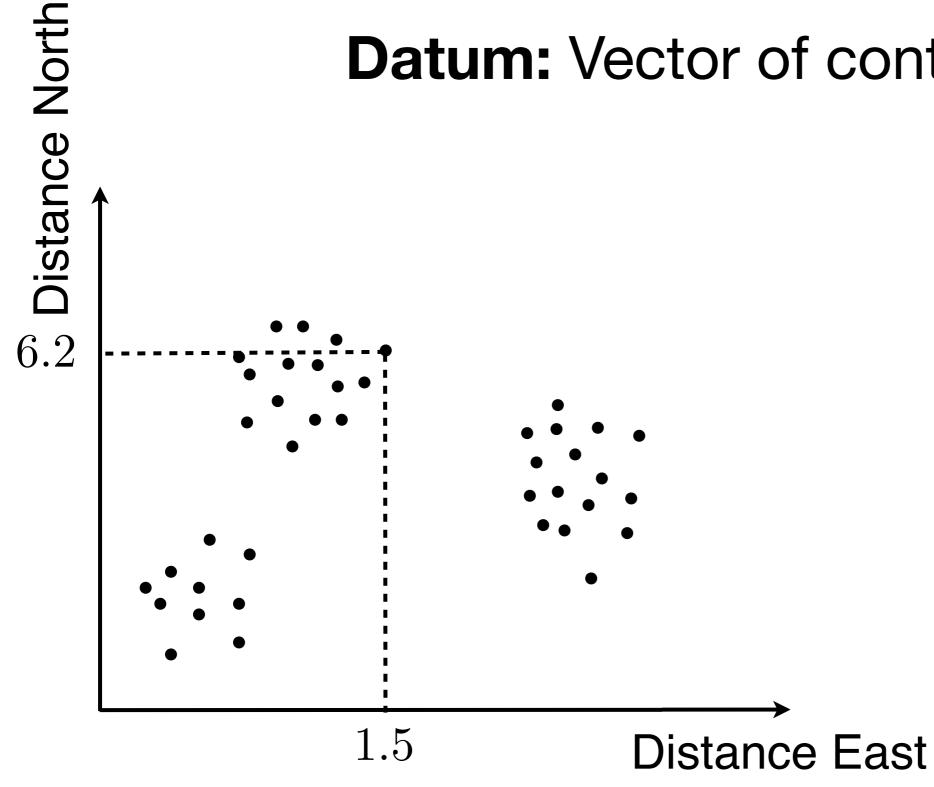
- Fast
- Conceptually straightforward
- Popular





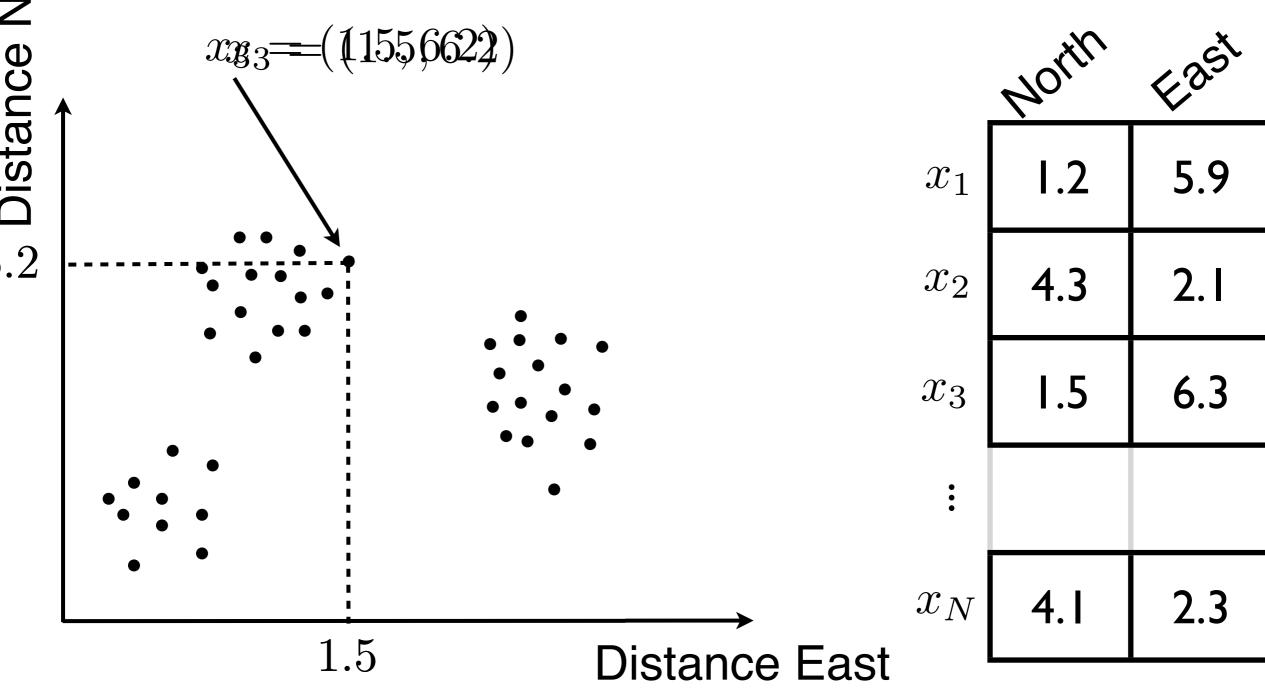


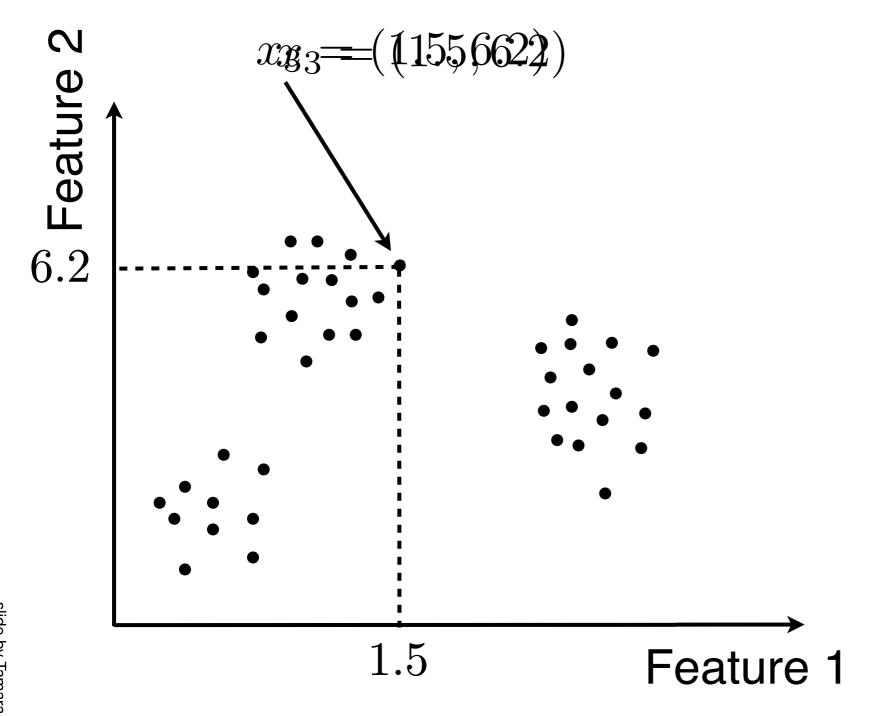


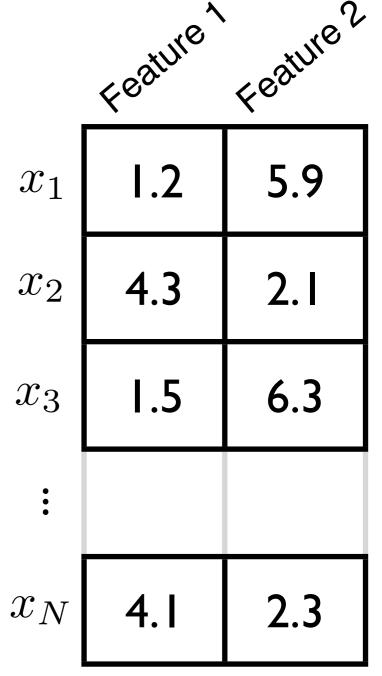


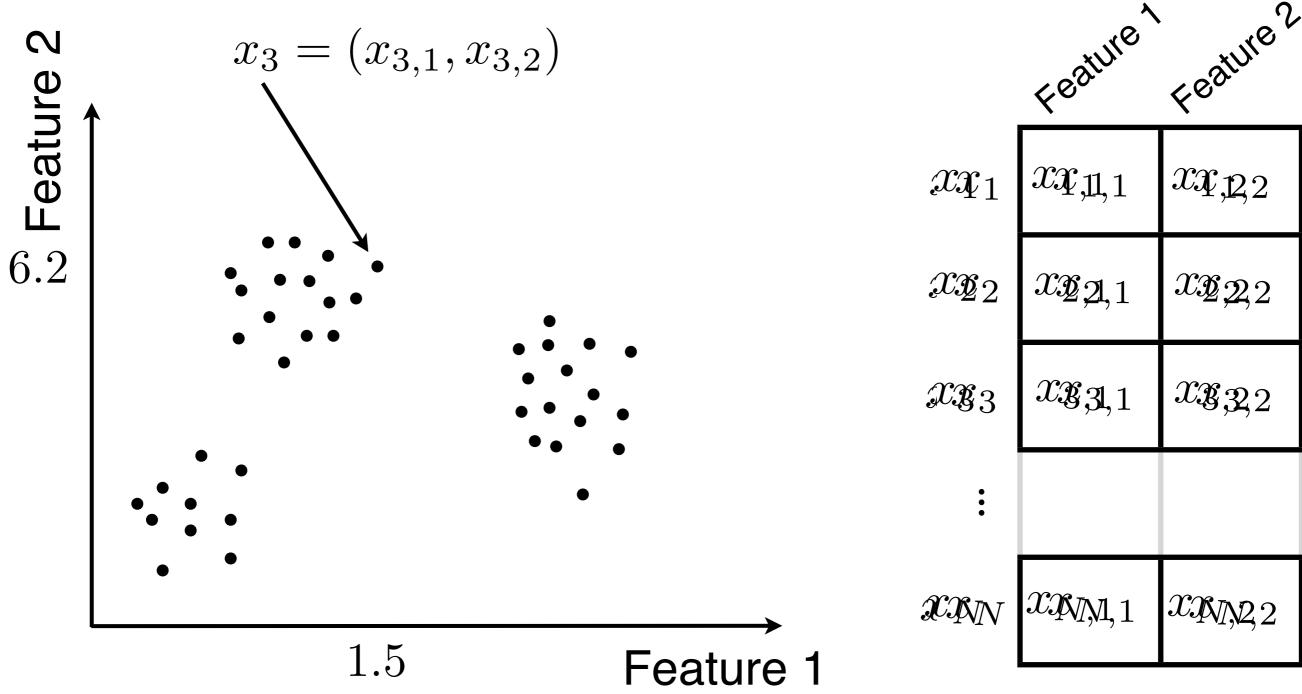
E. Distance North

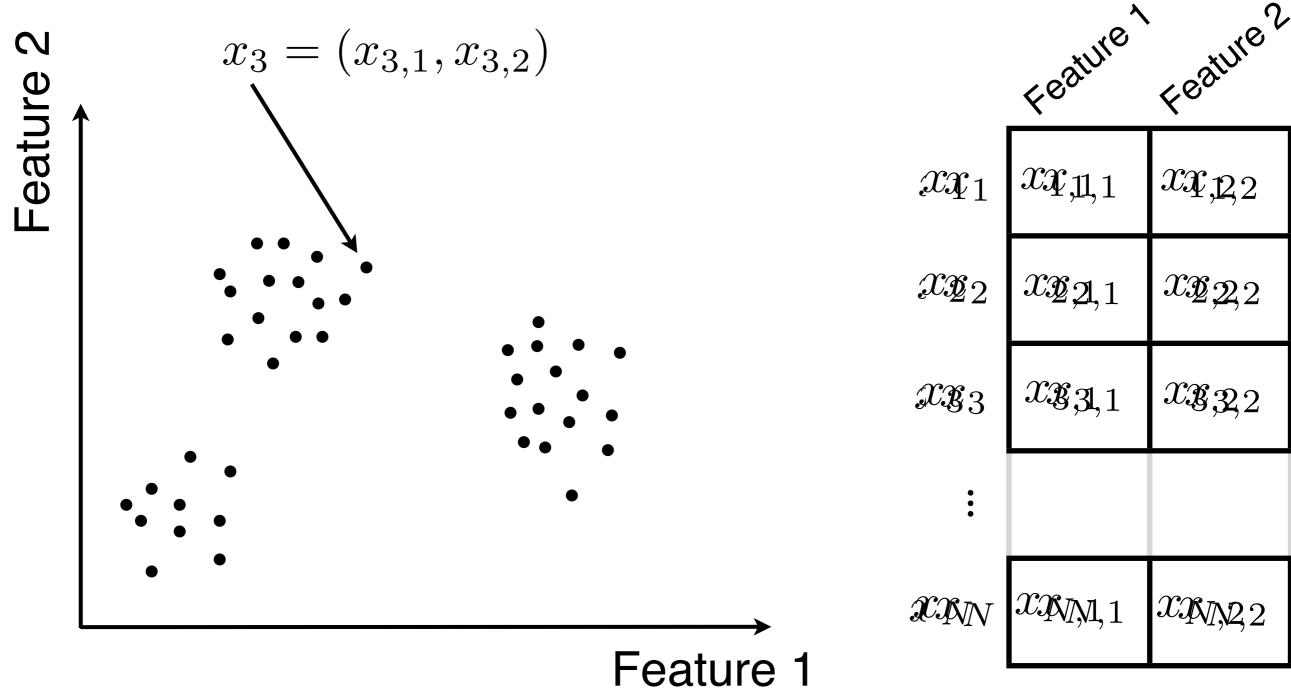
K-Means: Preliminaries

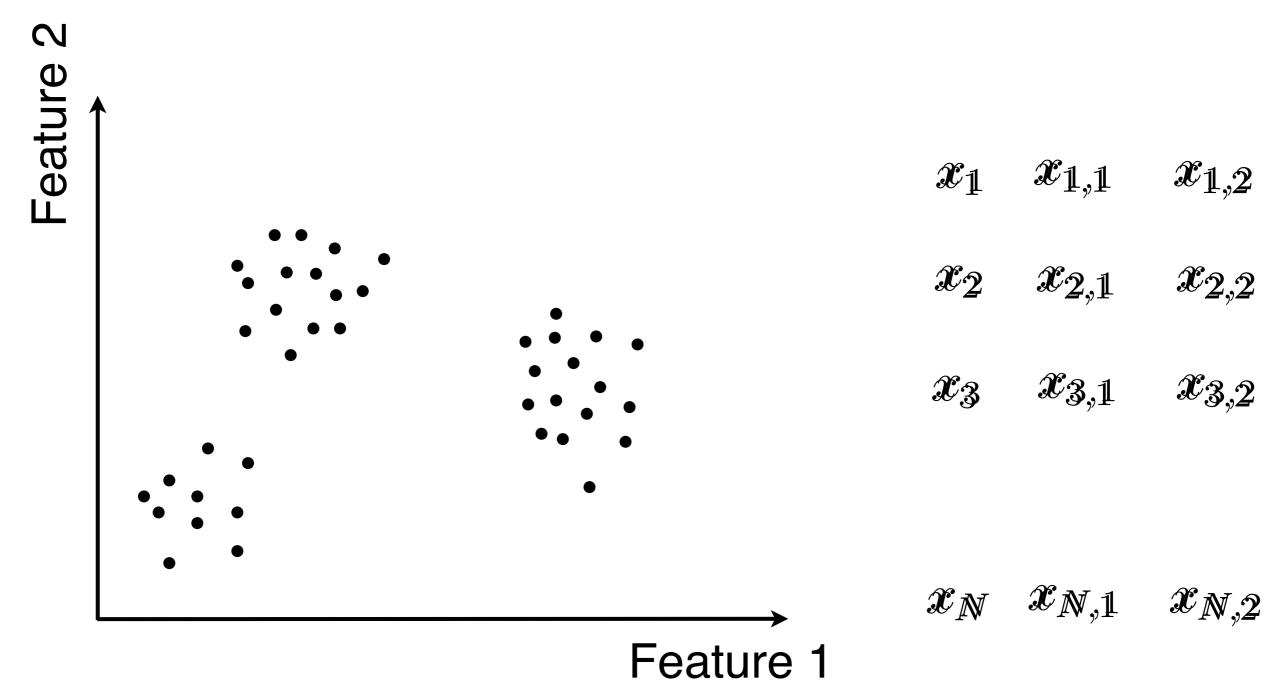




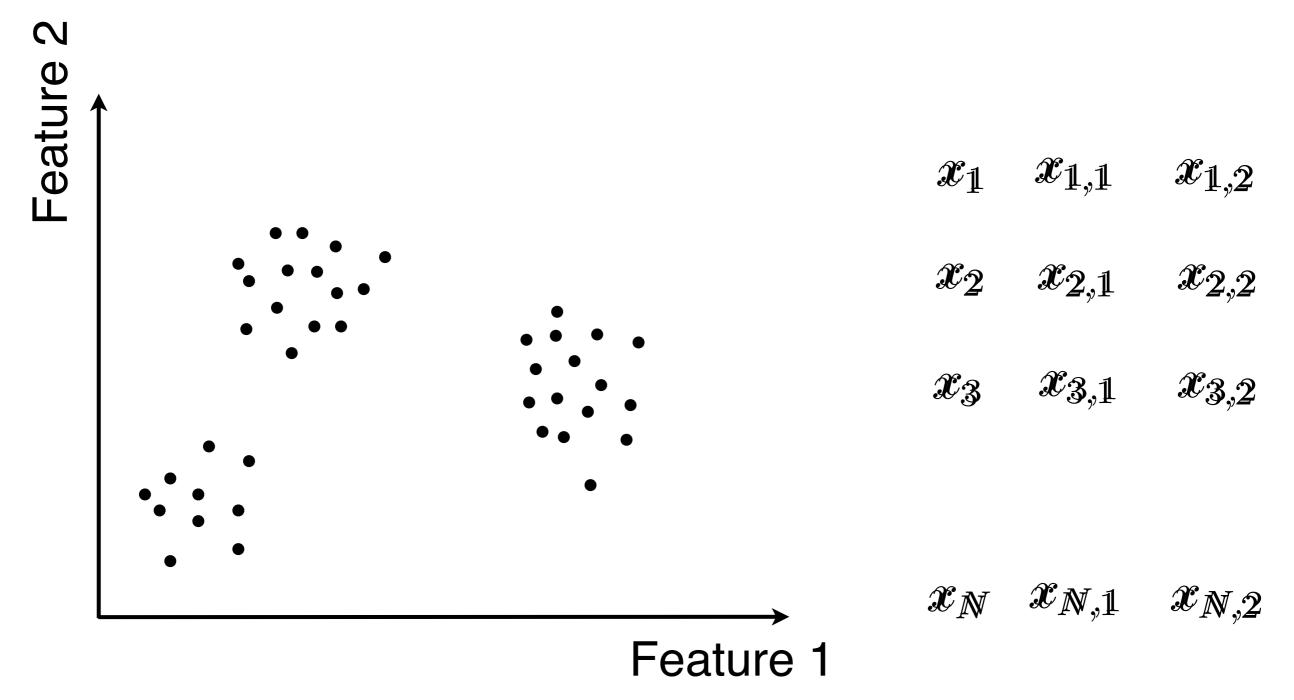




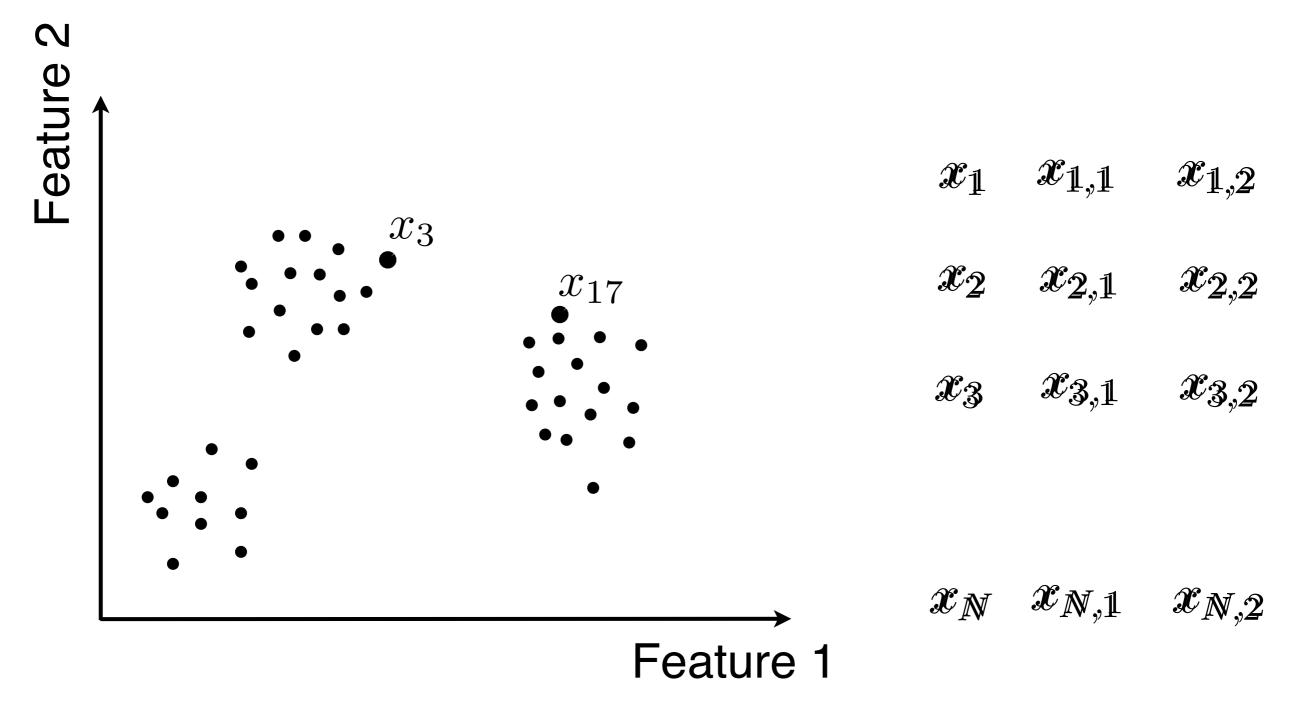




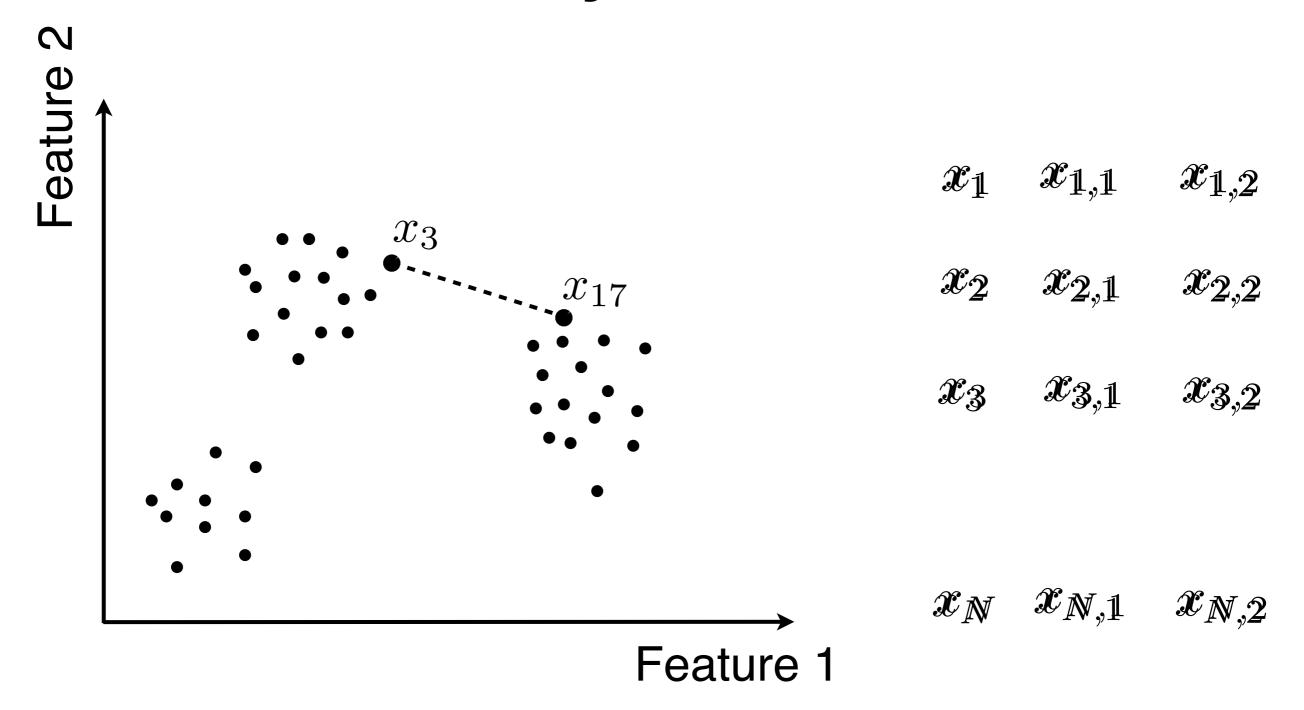
Dissimilarity: Distance as the crow flies



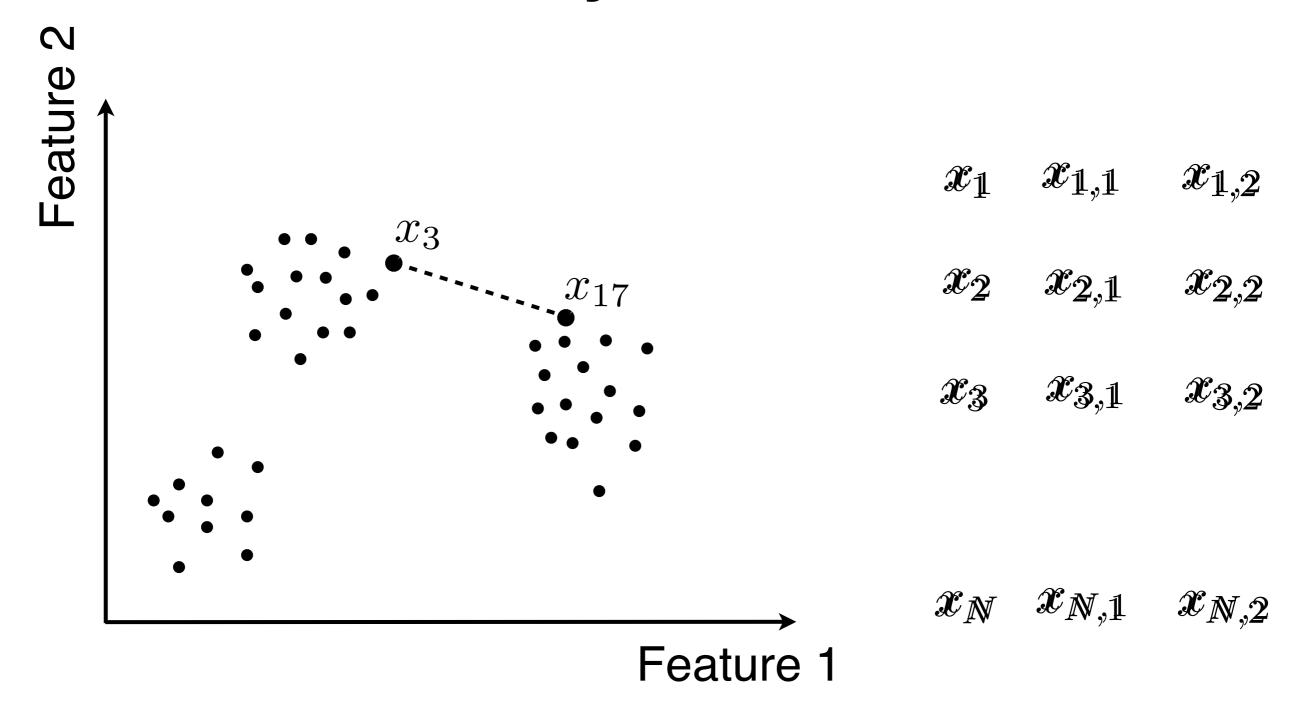
Dissimilarity: Distance as the crow flies



Dissimilarity: Distance as the crow flies

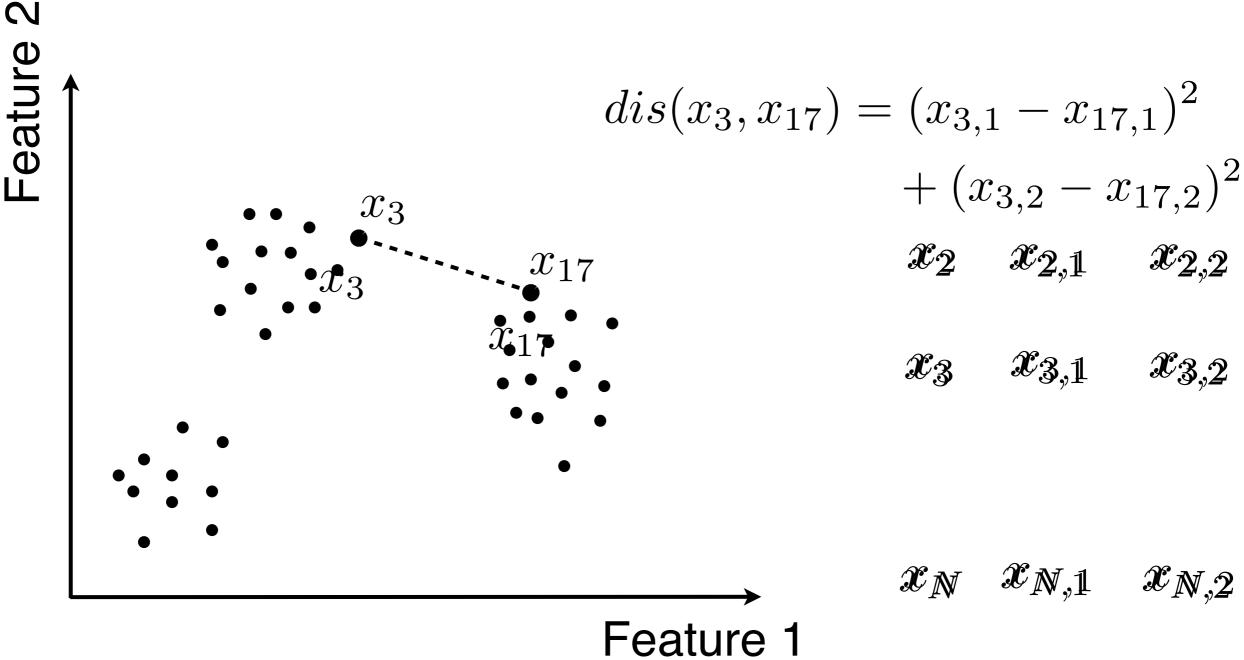


Dissimilarity: Euclidean distance

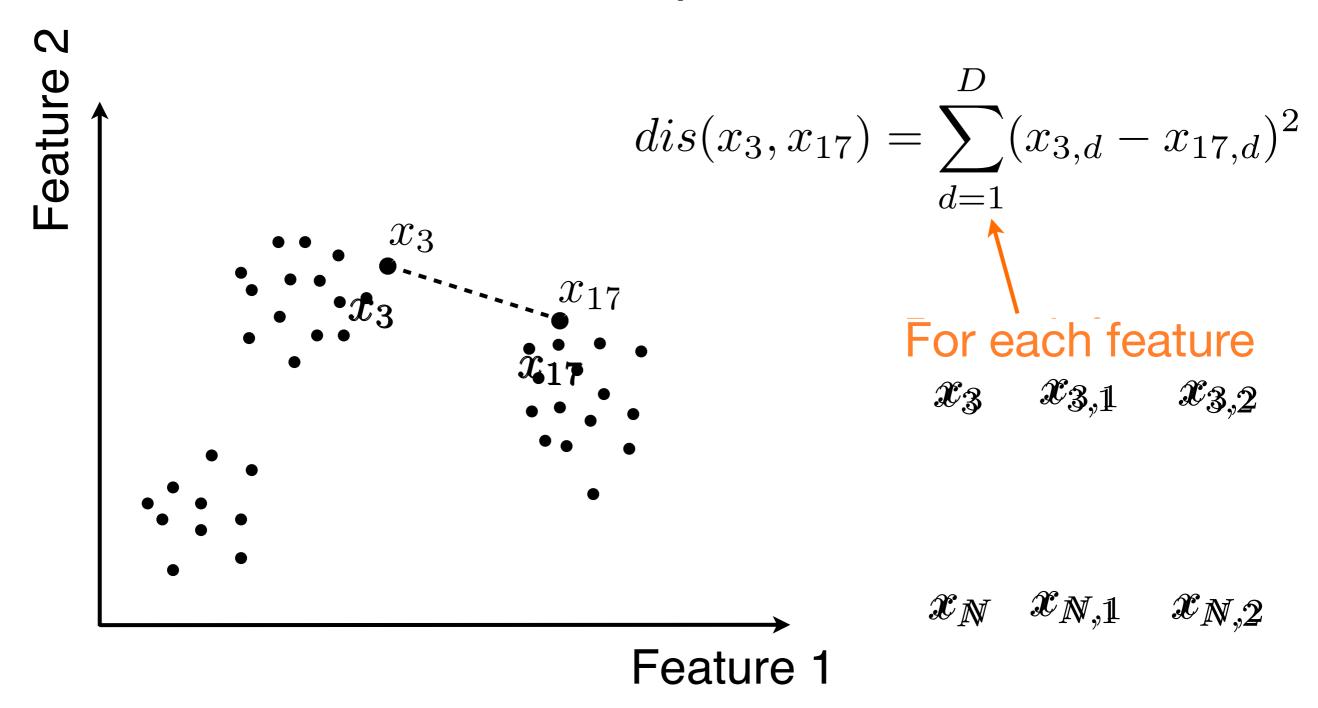


54

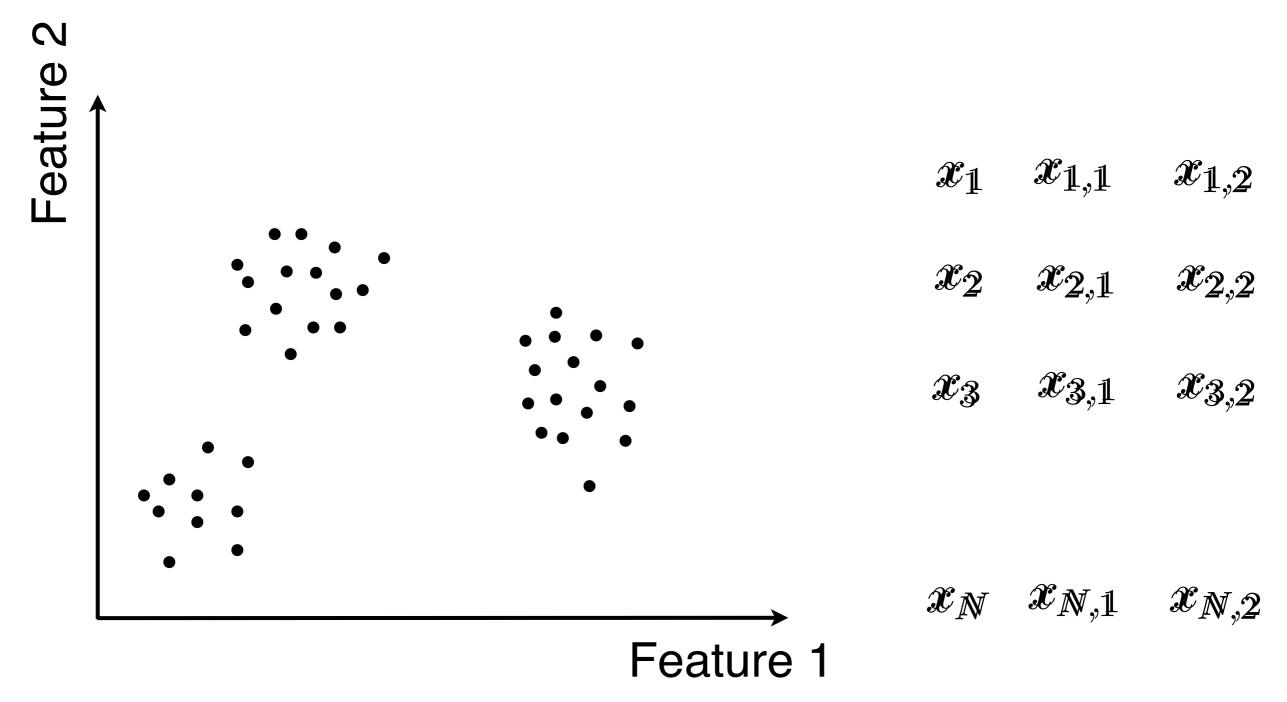
Dissimilarity: Squared Euclidean distance

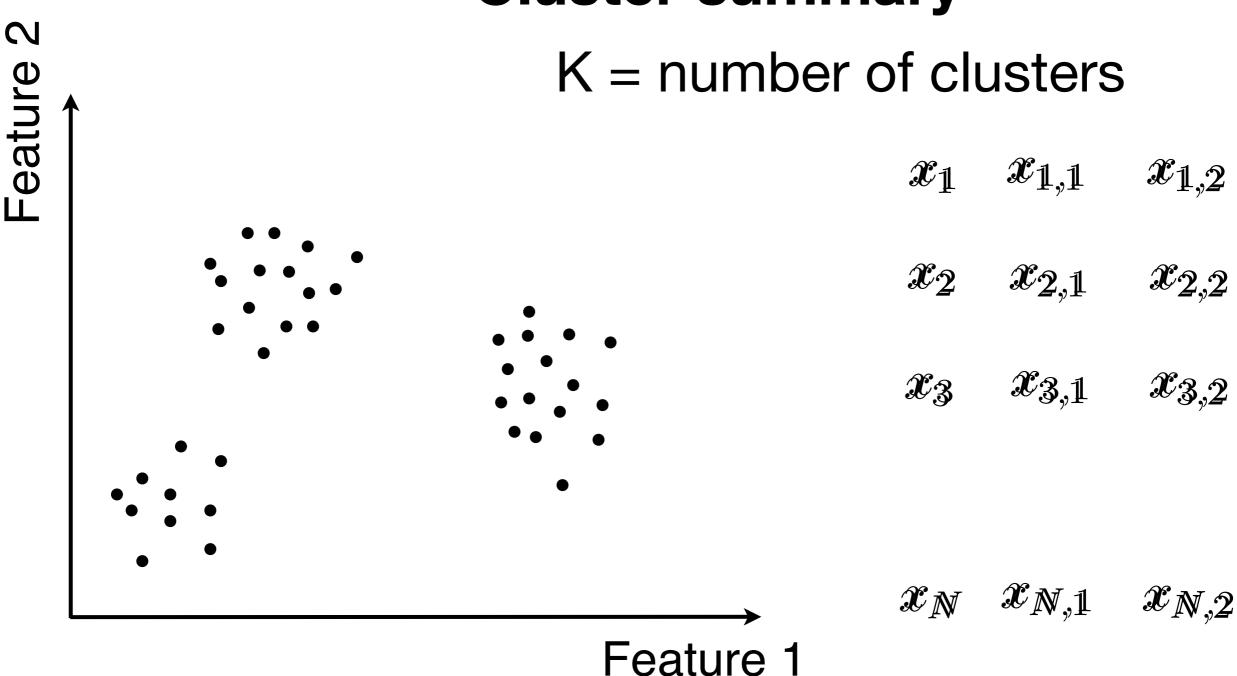


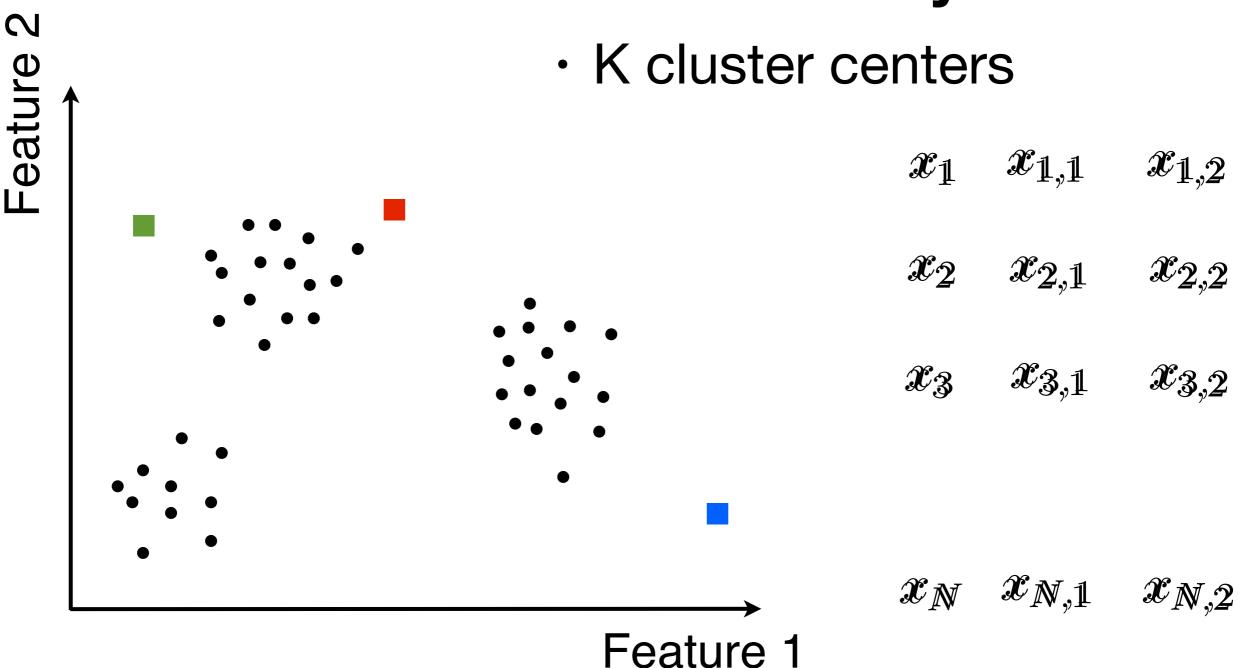
Dissimilarity: Squared Euclidean distance



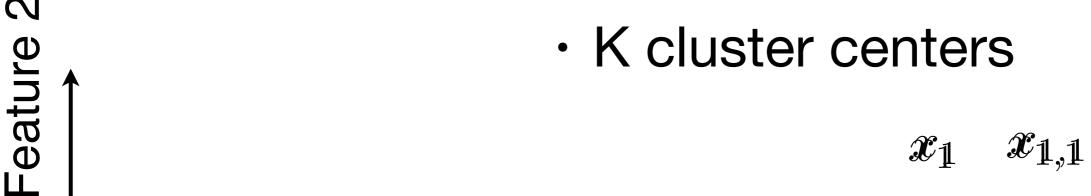
K-Means: Preliminaries Dissimilarity







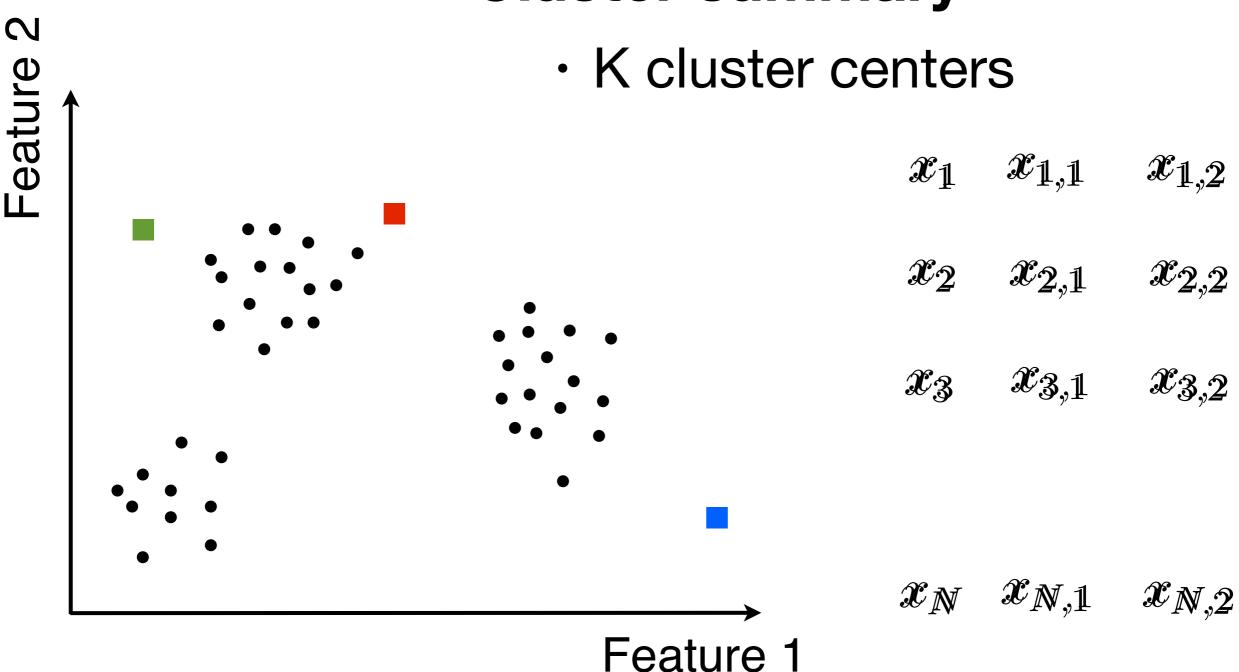
Cluster summary

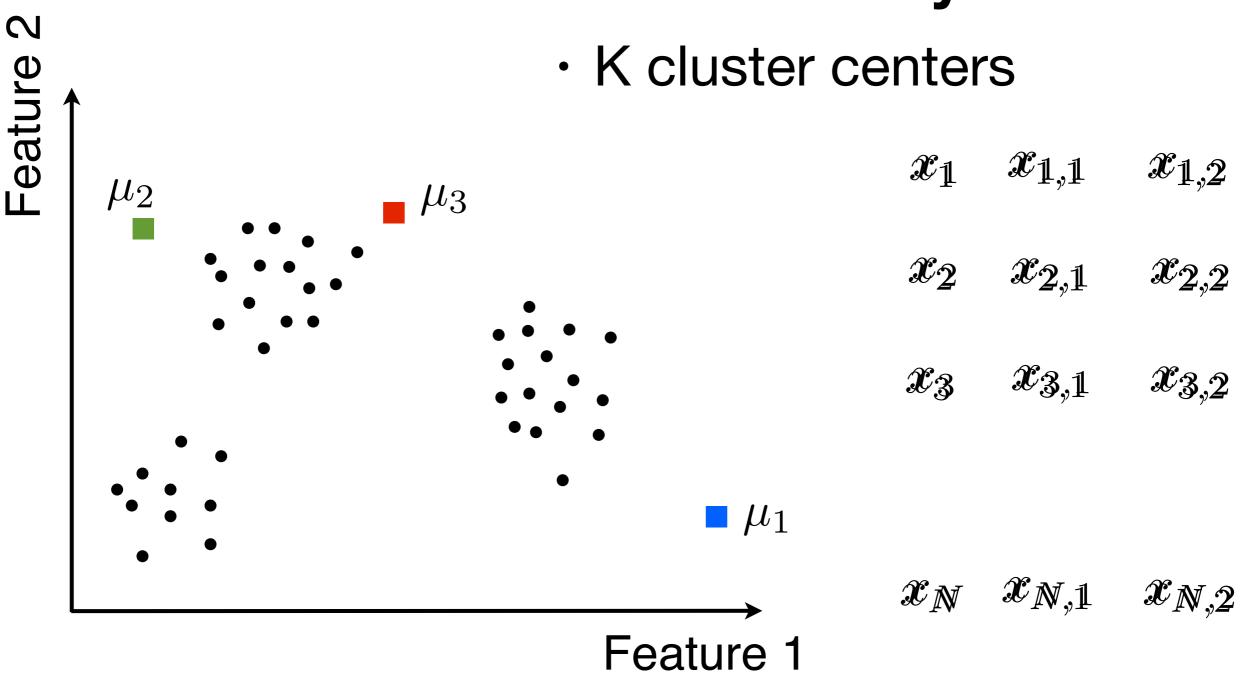


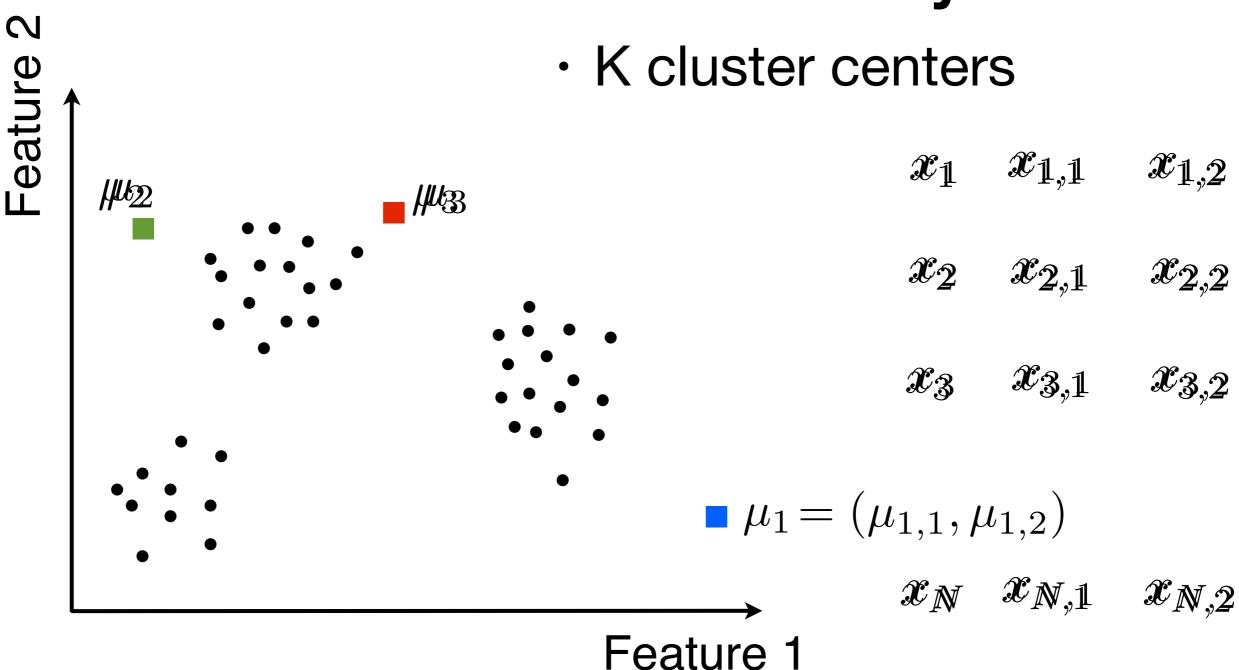


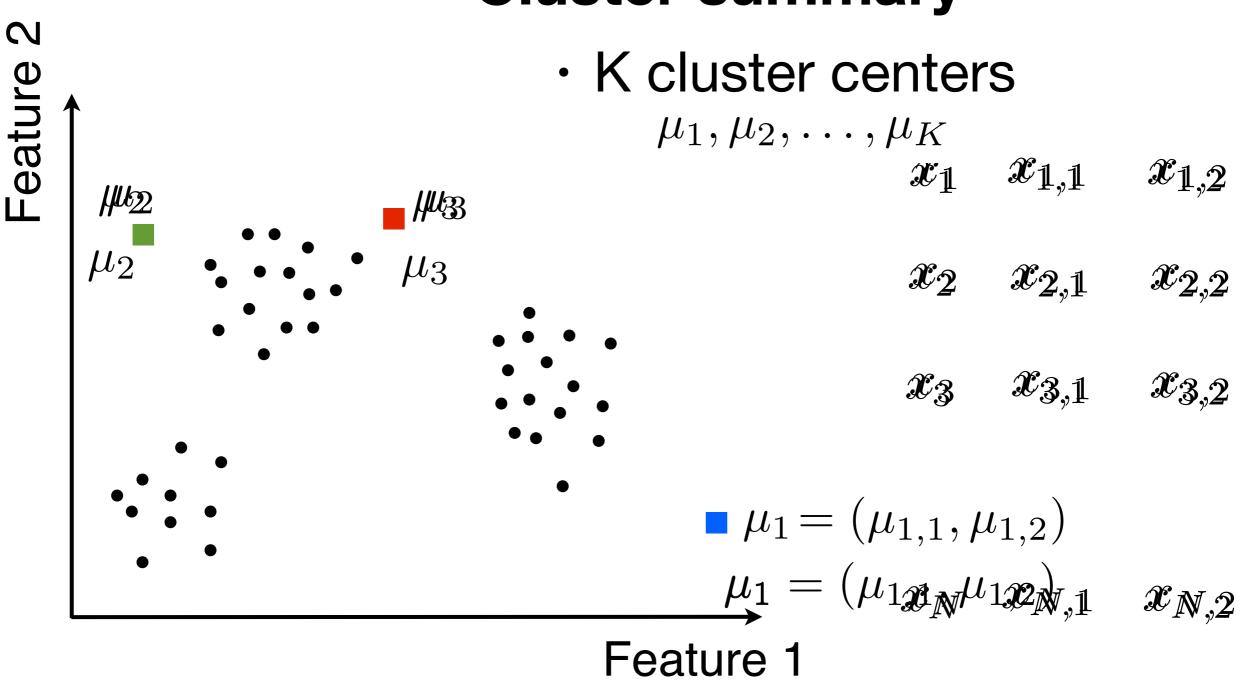
Feature 1

 $x_{1,2}$





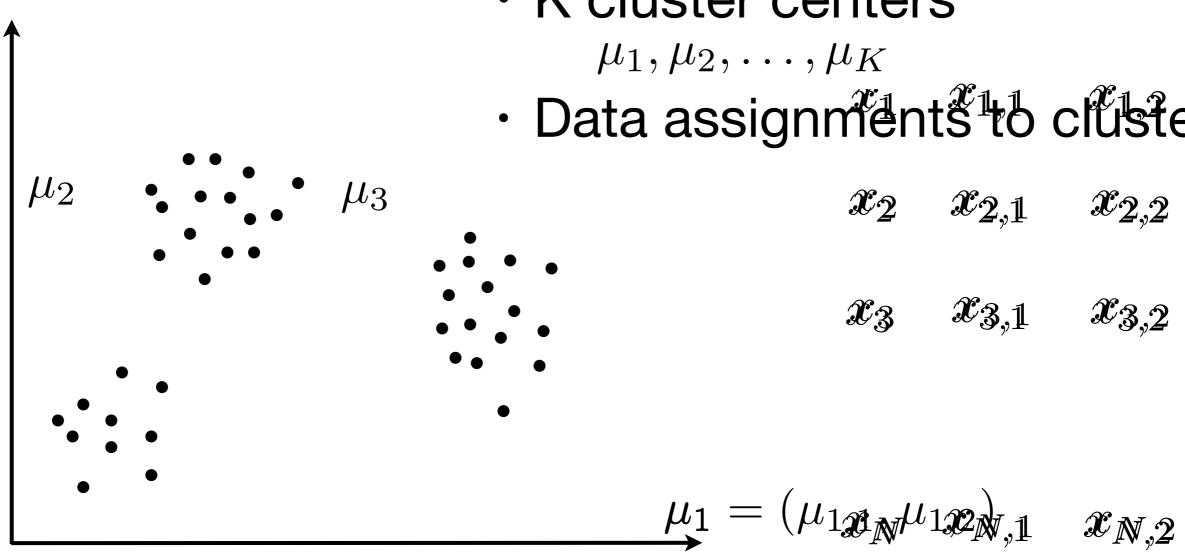




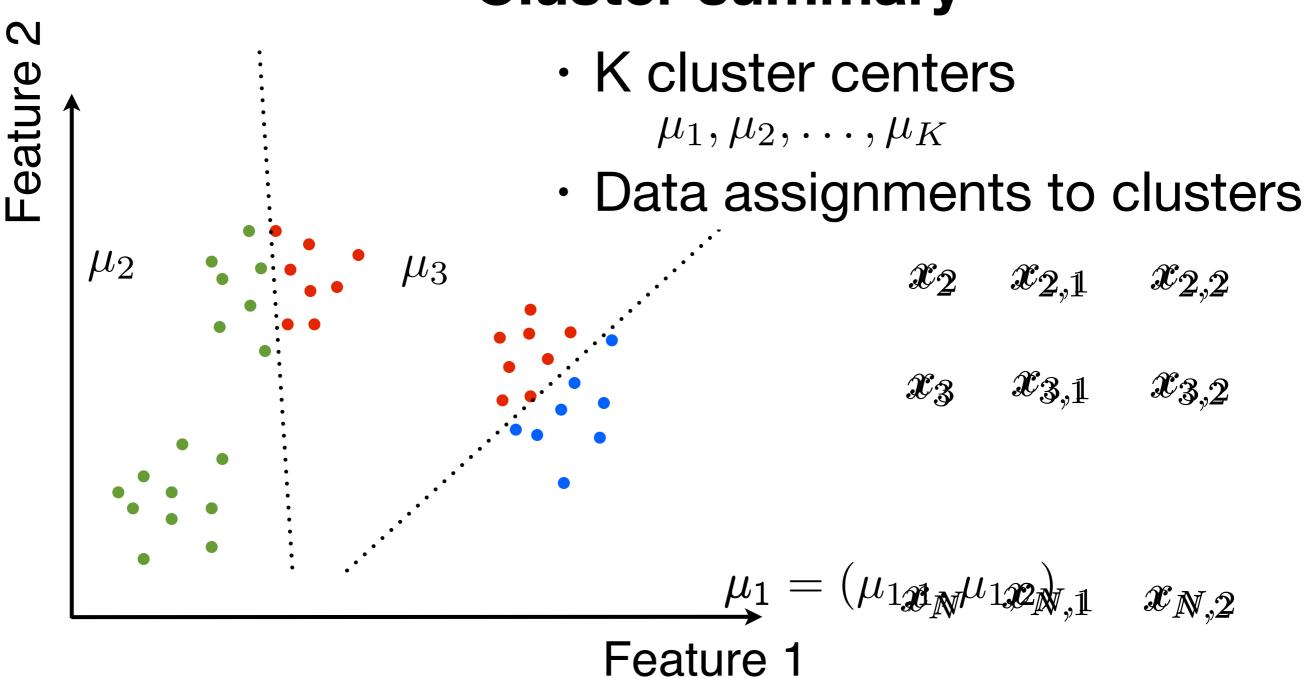
Cluster summary

 K cluster centers Feature

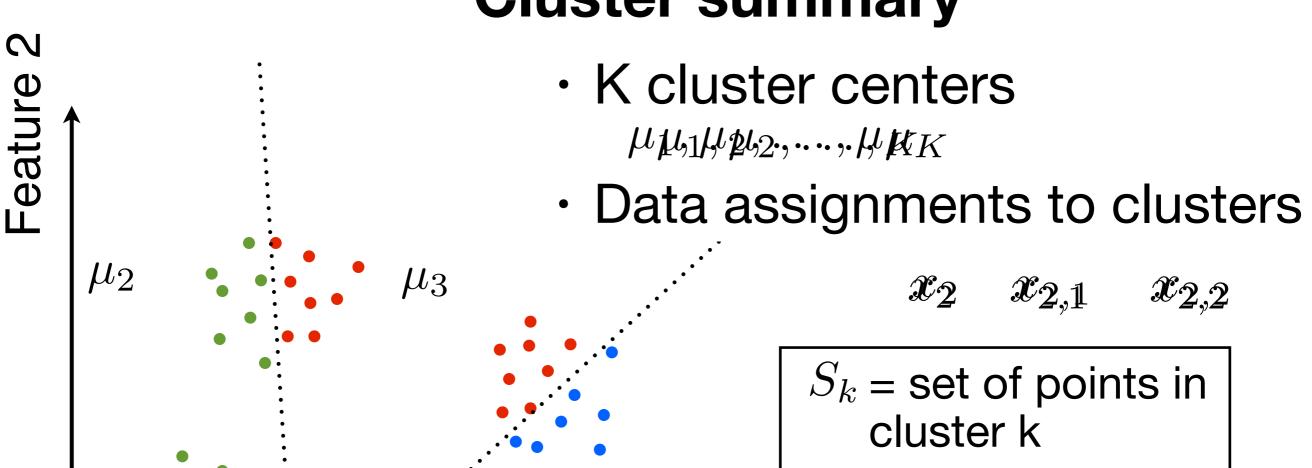
· Data assignments to clusters



Feature 1



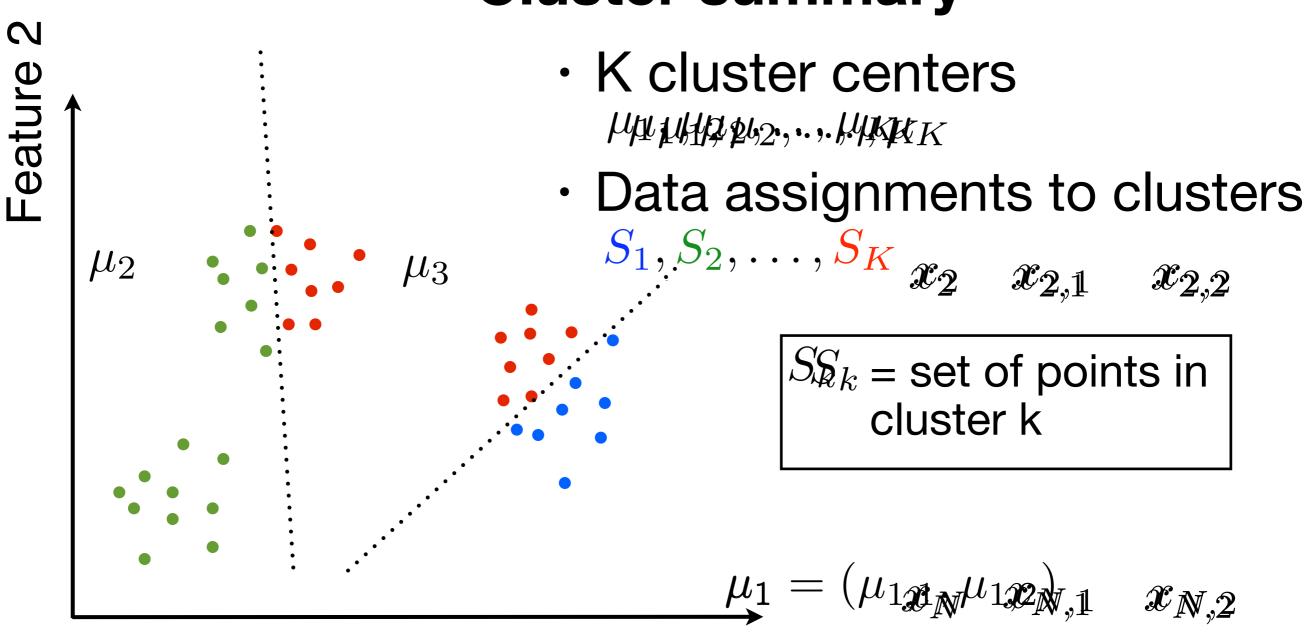
Cluster summary



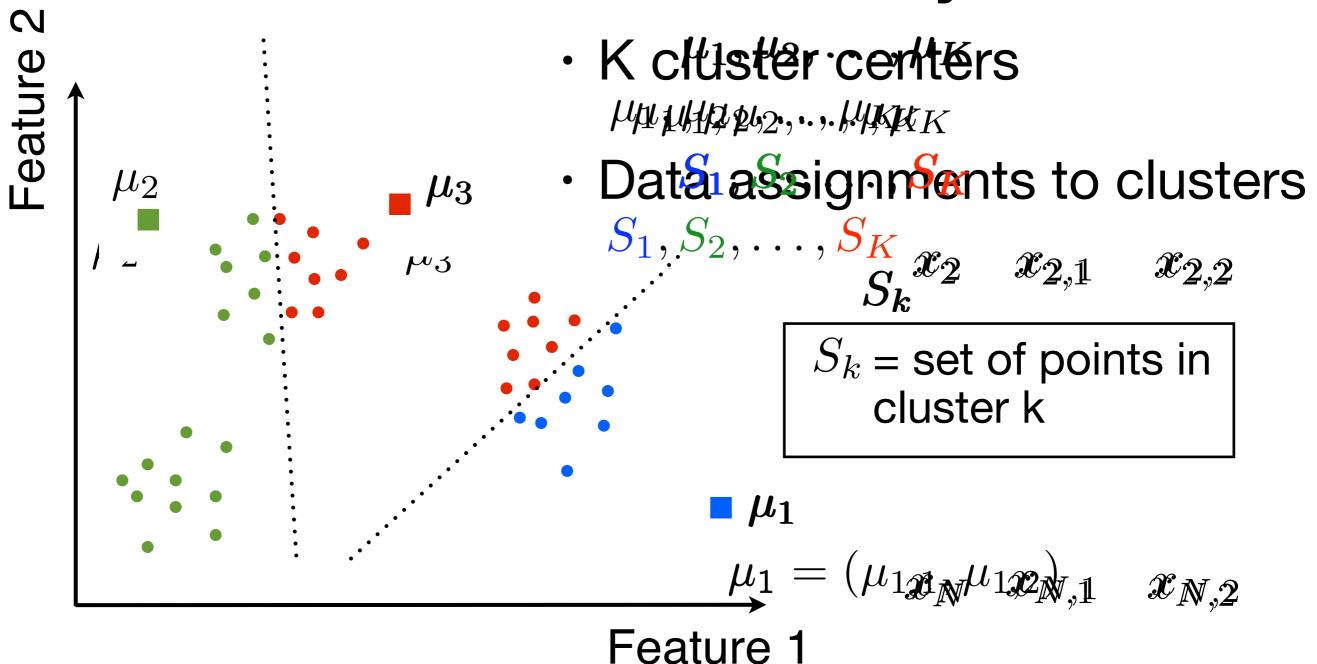
 $\underline{\mu_1} = (\mu_1 \underline{x}_{N} \mu_1 \underline{x}_{N,1}) \underline{x}_{N,2}$

Feature 1

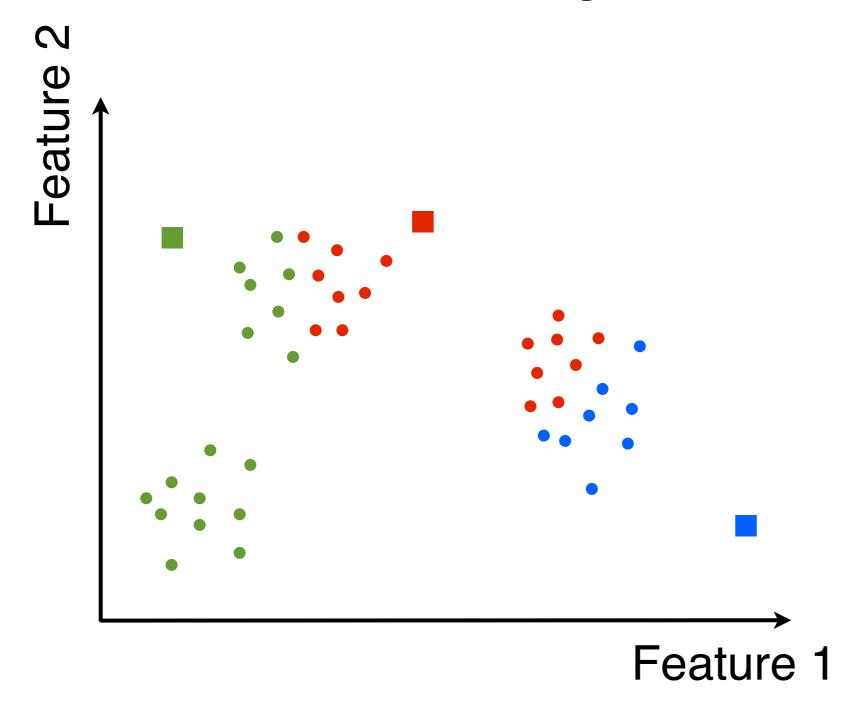
Cluster summary



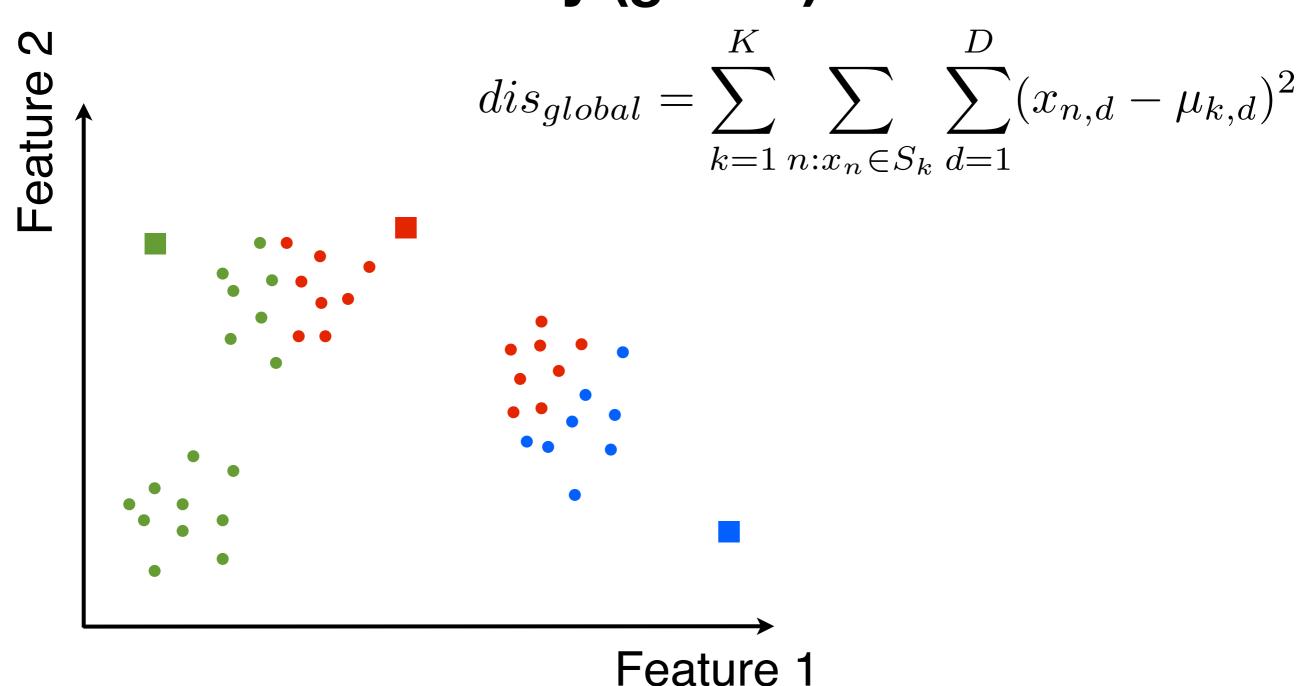
Feature 1



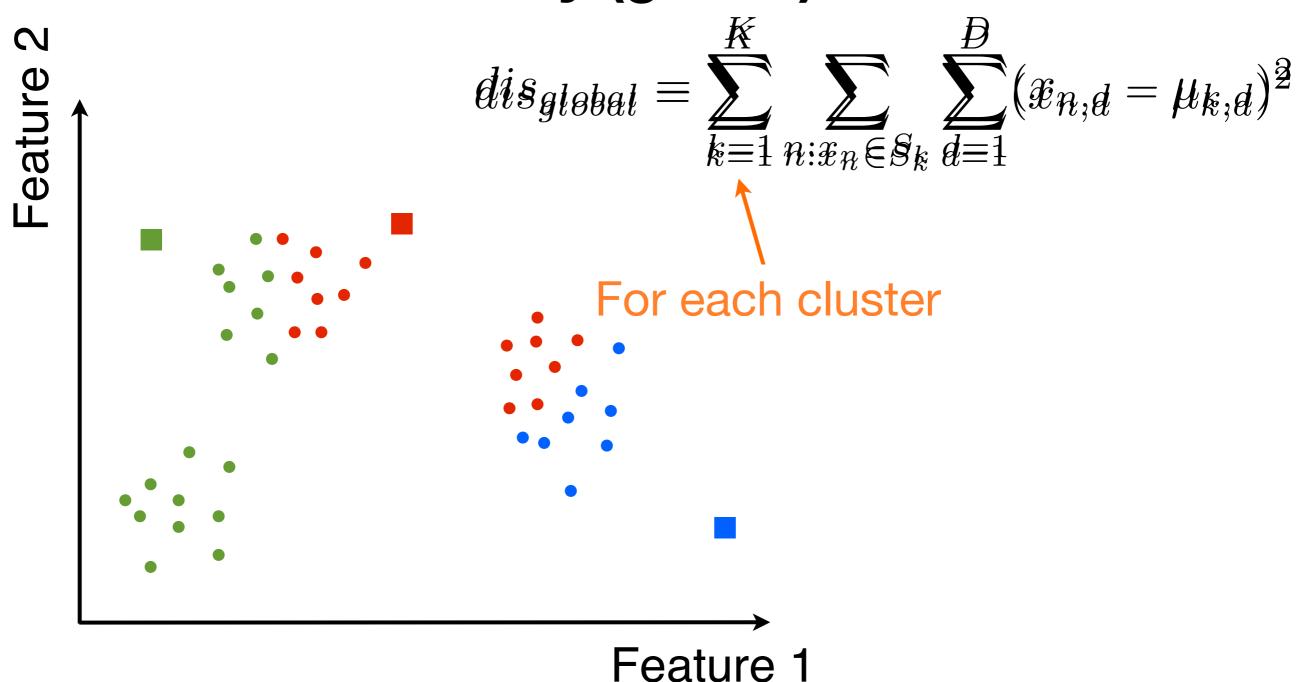
K-Means: Preliminaries Dissimilarity



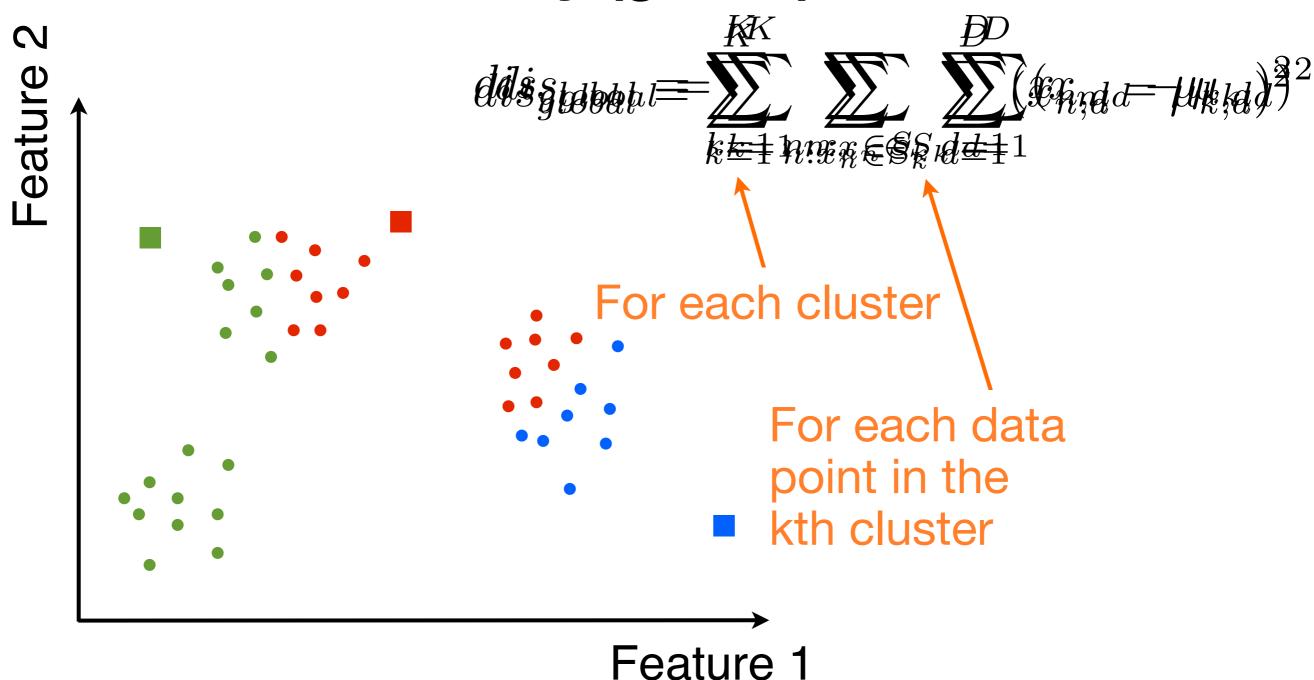
K-Means: Preliminaries Dissimilarity (global)



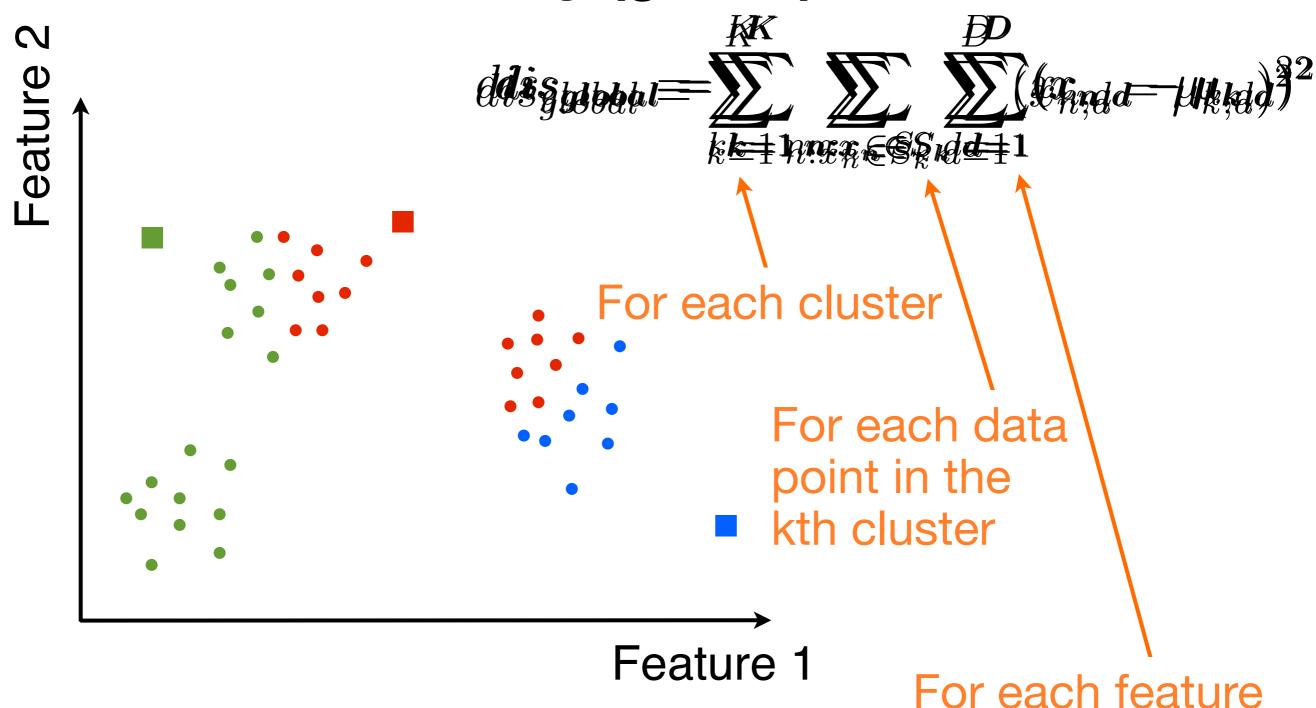
K-Means: Preliminaries Dissimilarity (global)



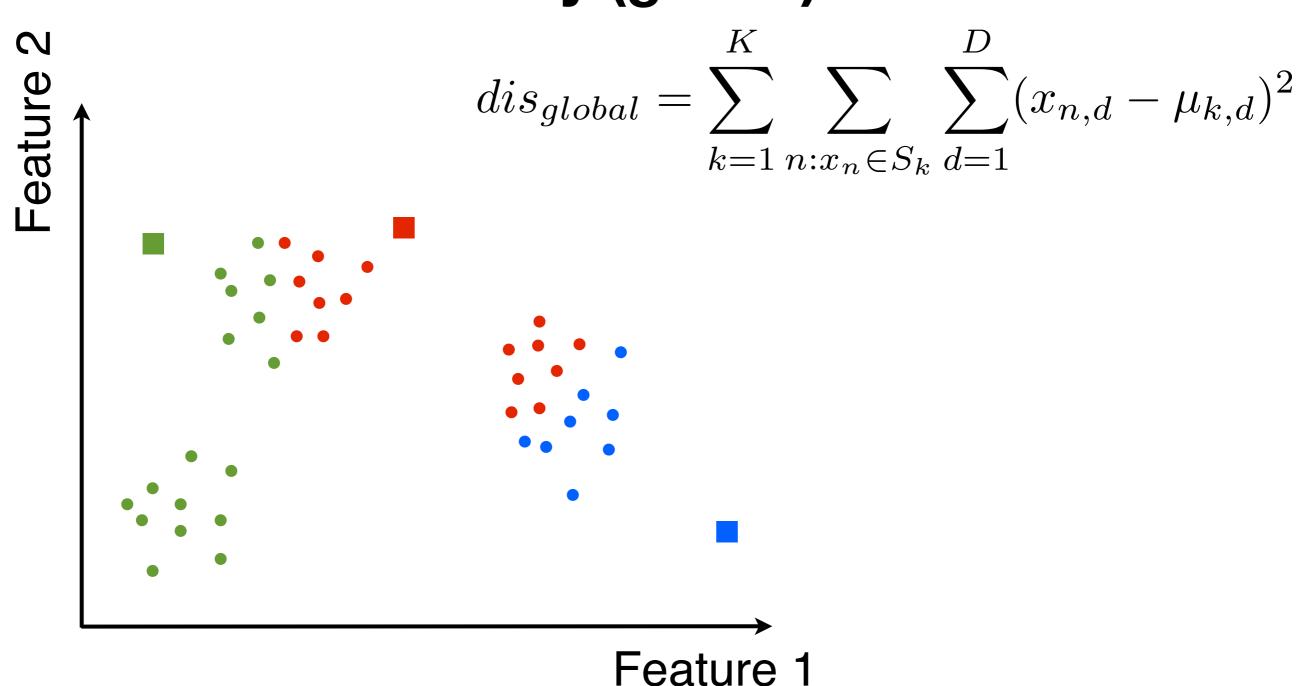
K-Means: Preliminaries Dissimilarity (global)

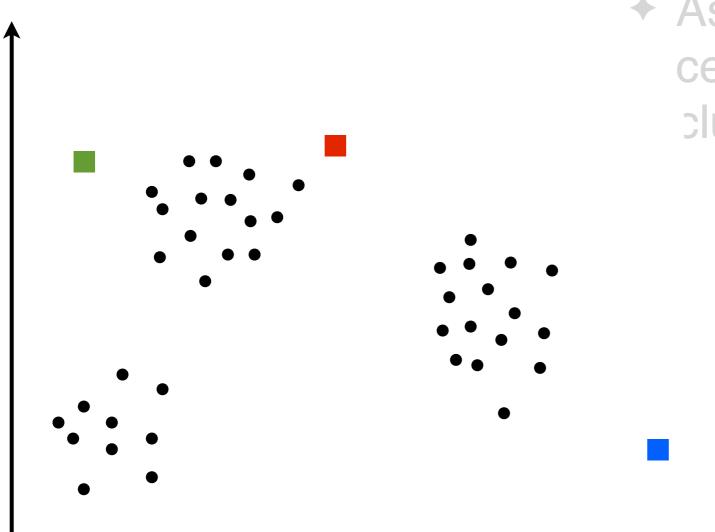


K-Means: Preliminaries Dissimilarity (global)



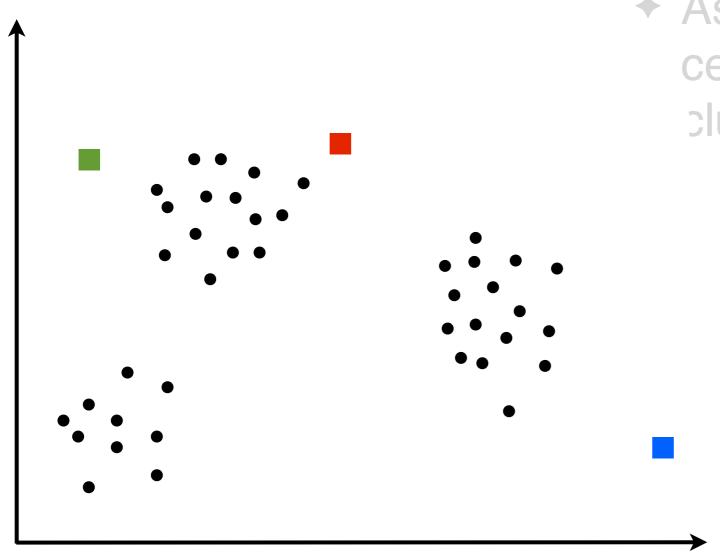
K-Means: Preliminaries Dissimilarity (global)





- Initialize K cluster centers
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

- Initialize K cluster centers
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



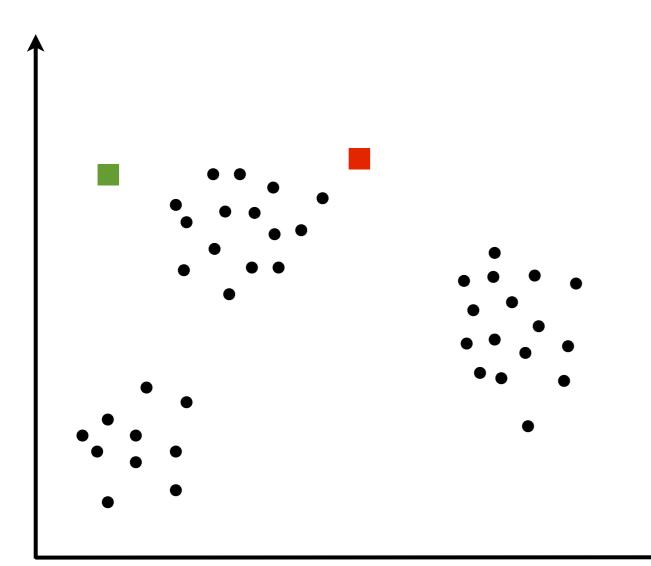
• For k = 1, ..., K

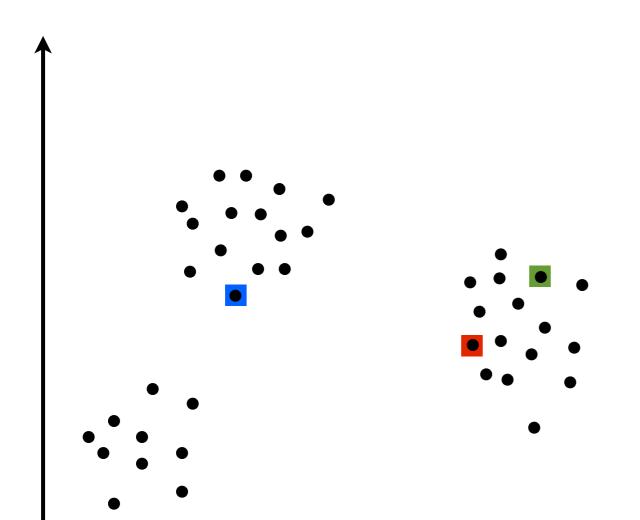
*Randomly draw n from

1,...,N without replacement

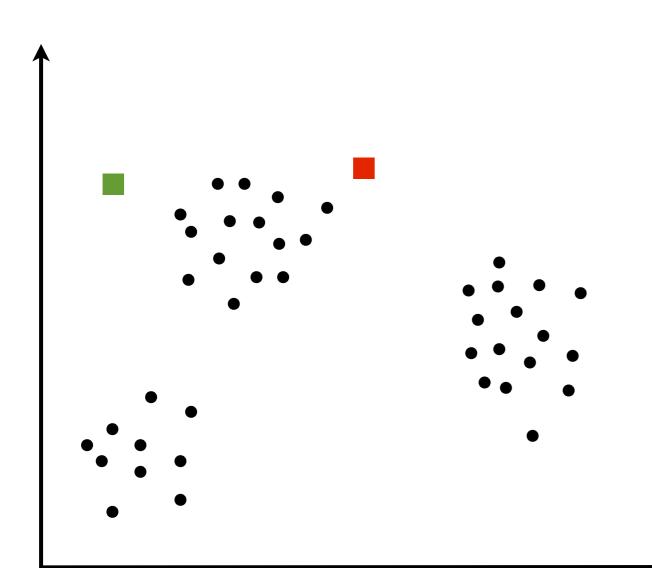
$$\bullet \mu_k \leftarrow x_n$$

- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

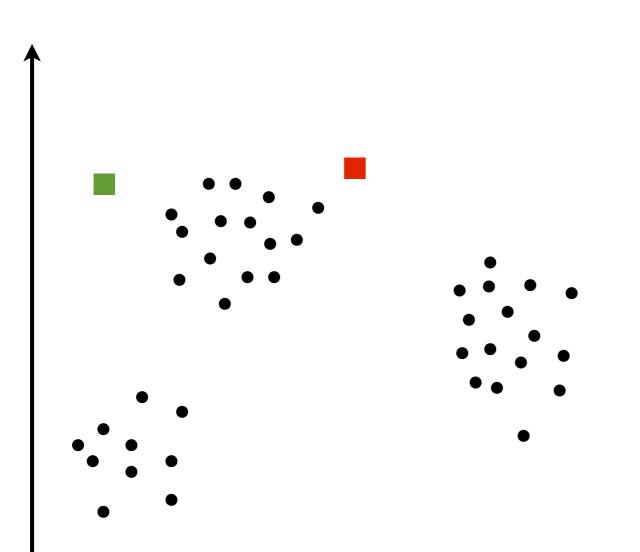




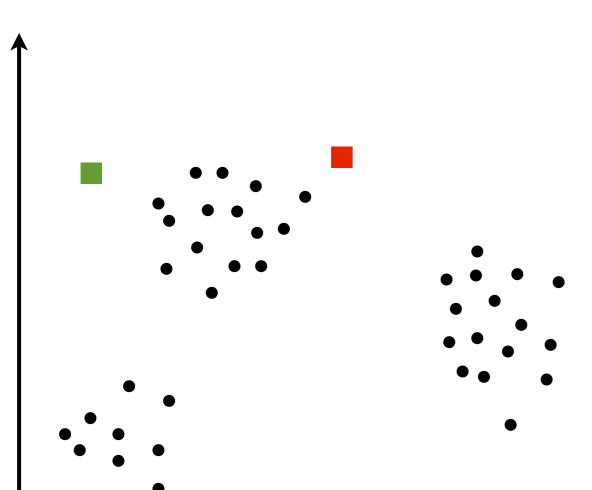
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement $+\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points



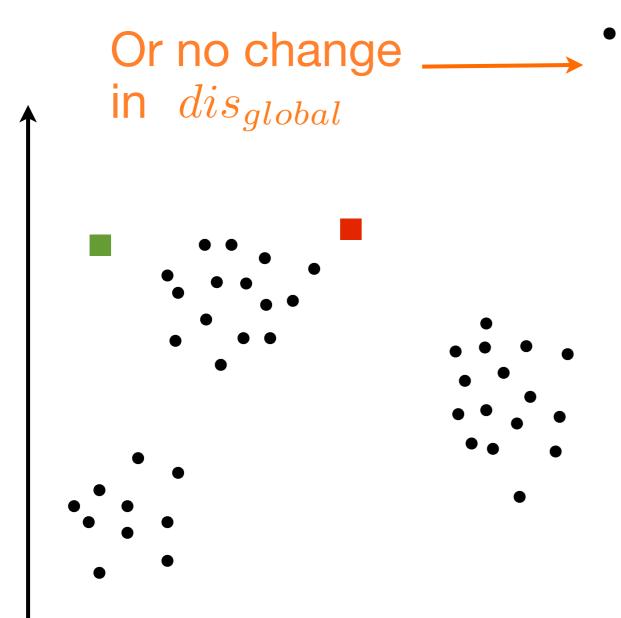
- For k = 1, ..., K
 - *Randomly draw n from 1,...,N without replacement $+\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points



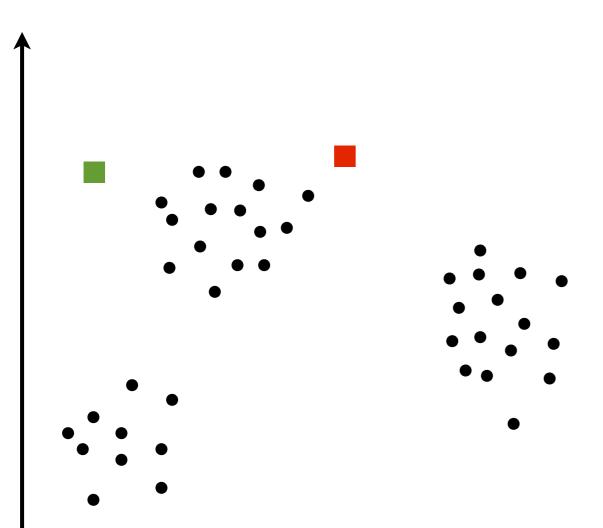
- For k = 1, ..., K
 - * Randomly draw n from 1,...,N without replacement $+\mu_k \leftarrow x_n - x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points



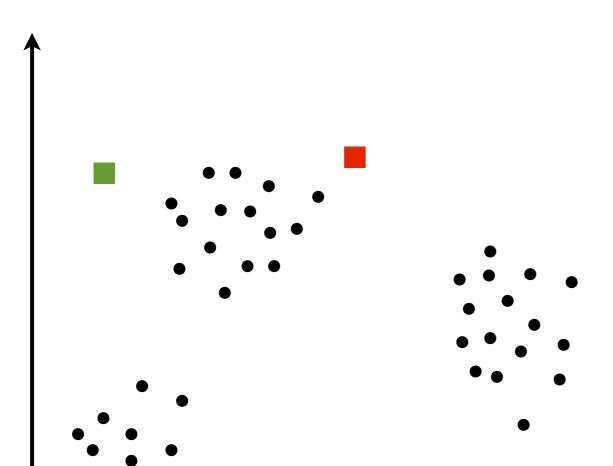
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $\star \mu_k \leftarrow x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



- For k = 1, ..., K
 - * Randomly draw n from 1,...,N without replacement
 - $+\mu_k\mu_k x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

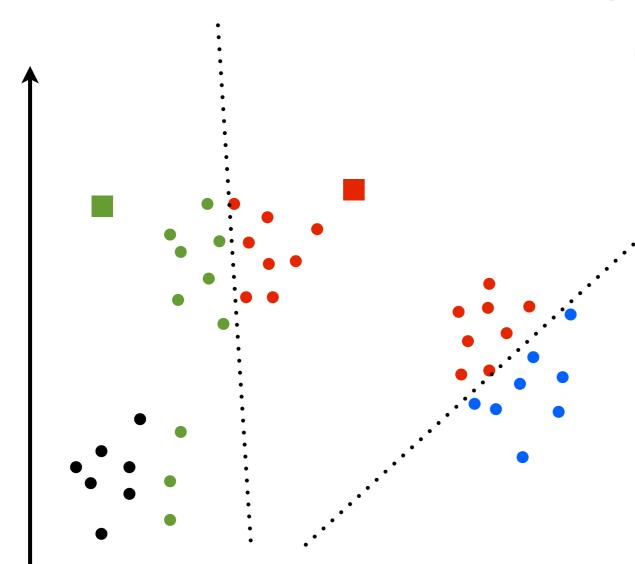


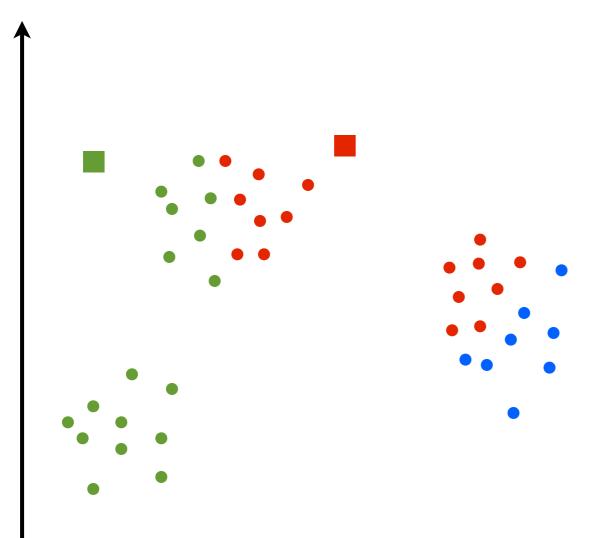
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n^- x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - Assign each cluster
 center to be the mean of its
 - cluster's data points

- Randomly draw n from 1,...,N without replacement
- $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:

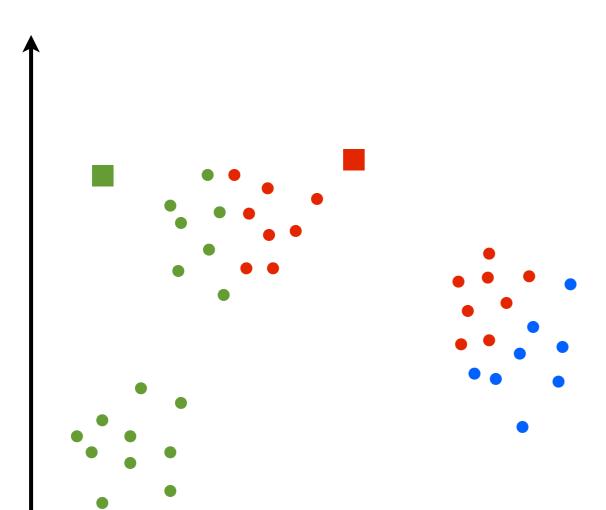
♦ For
$$n = 1,...N$$

- * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k) \in S_k$ * Put $x_n \in S_k$ (and no
- other S_i)
- Assign each cluster center to be the mean of its
- cluster's data points



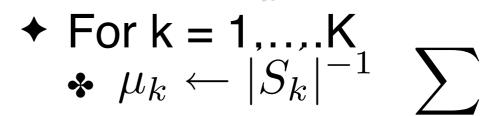


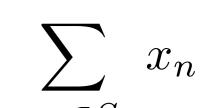
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ * Put $x_n \in S_k$ (and no
 - \bullet Put $x_n \in S_k$ (and no other S_i)
 - Assign each cluster
 center to be the mean of its
 - cluster's data points



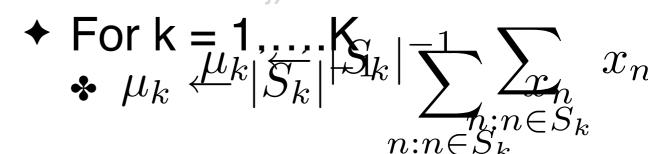
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement $+\mu k = x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k) \in S_k$ earld no
 - other S_i)
 - Assign each cluster center to be the mean of its
 - cluster's data points

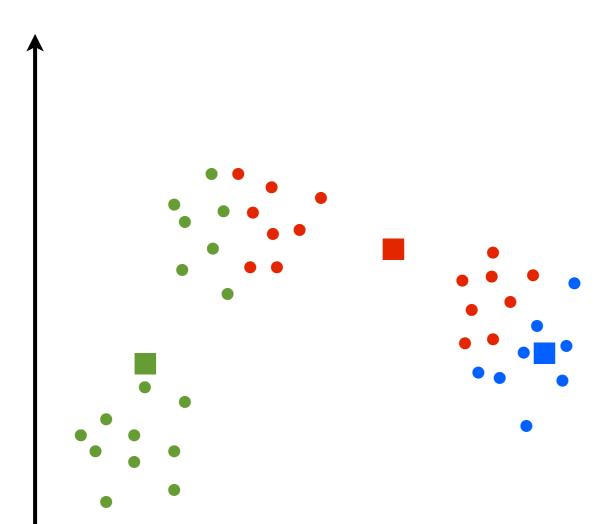
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)

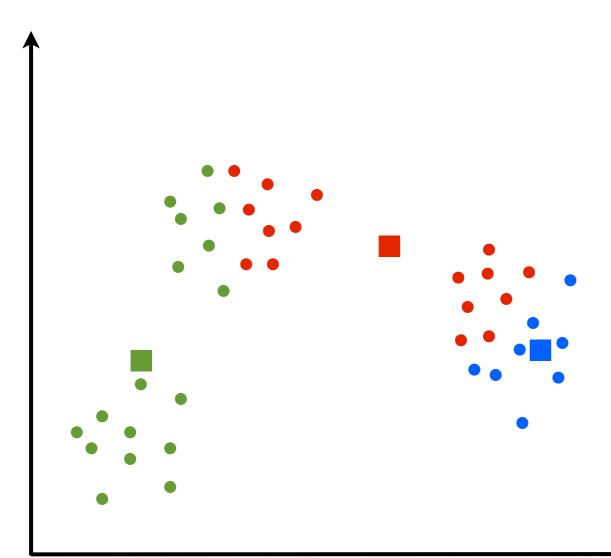




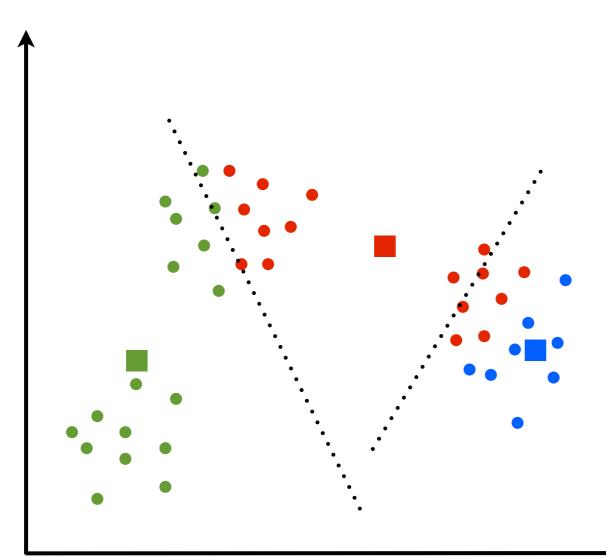
- For k = 1, ..., K
 - + Randomly draw n from
 - 1,...,N without replacement
 - \bullet High \leftarrow x_n
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n) \mu_k$ $dis(x_n) \mu_k$ * Put $x_n \in S_k$ (and no
 - Put ♠ Sk (and no other Si)



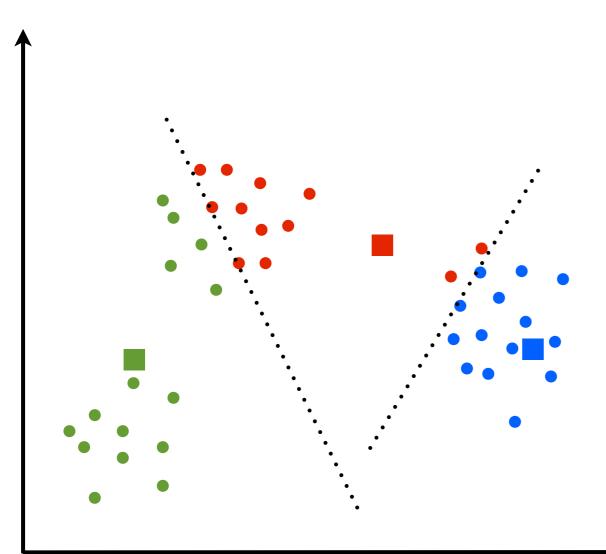




- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_i)
 - $\begin{array}{c} \star \text{ Assign each } S_k \text{ | } S_k \text{$

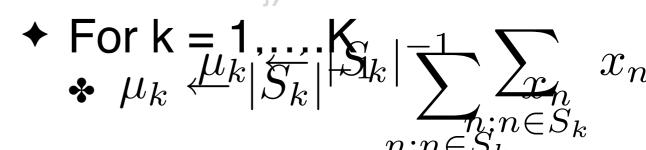


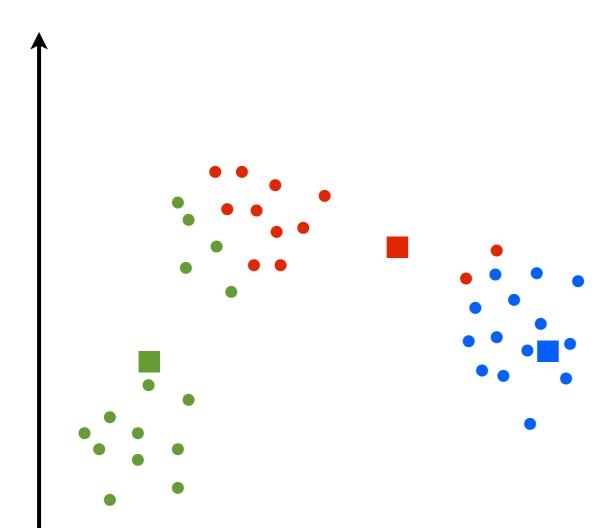
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \rightleftharpoons x_n \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)
 - Assign each Suster Sk
 center to be the mean cluster's data points



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)
 - * Assign each cluster center to be the mean e cluster's data points $n:n\in\mathbb{N}$

- |-
- For k = 1, ..., K
 - + Randomly draw n from
 - 1,...,N without replacement
 - $+\mu k = x_n$
 - Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n)\mu_k$ and $dis(x_n)\mu_k$ * Put $x_n \in S_k$ (and no
 - Put ♣ Sk (and no other Si)





• For k = 1, ..., K

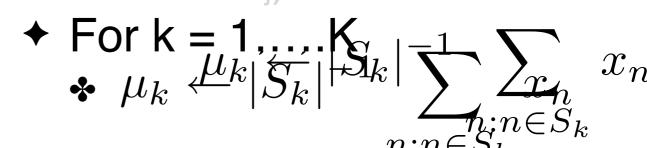
Randomly draw n from

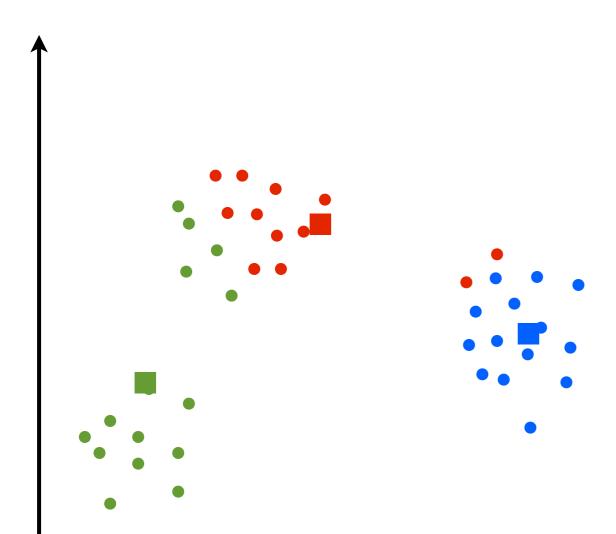
1,...,N without replacement

• Repeat until S₁,...,S_k don't change:

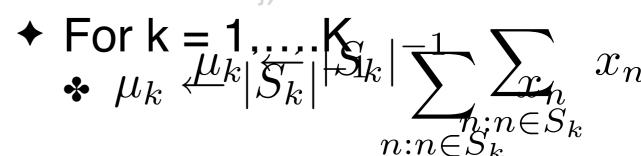
$$+$$
 For $n = 1,...N$

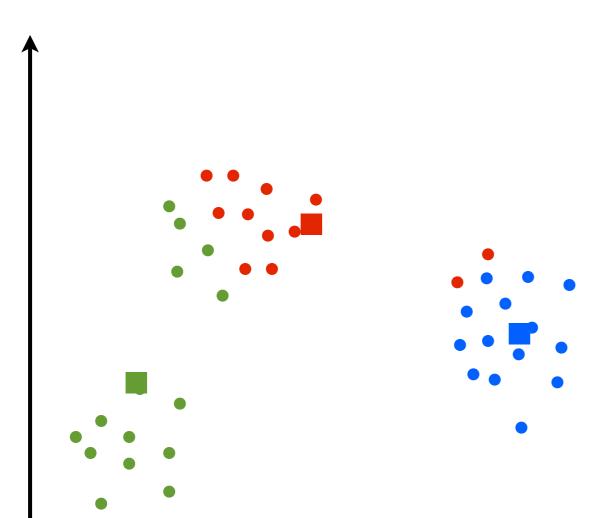
- Find k with smallest
- other S_i)





- For k = 1, ..., K
 - Randomly draw n from
 - 1,...,N without replacement
 - \bullet Mkk x_n
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n)^{\mu_k}$
 - Put ♣ Sk (and no other Si)



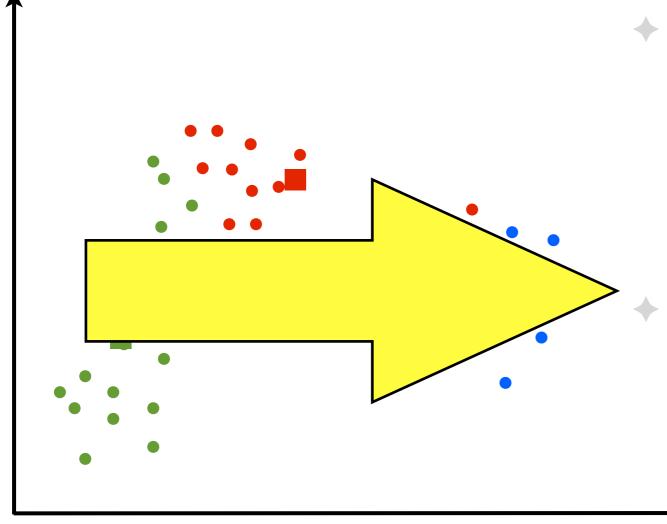


- For k = 1, ..., K
 - Randomly draw n from
 1,...,N without replacement
 - \bullet Mkk = x_n
- Repeat until S₁,...,S_k don't change:

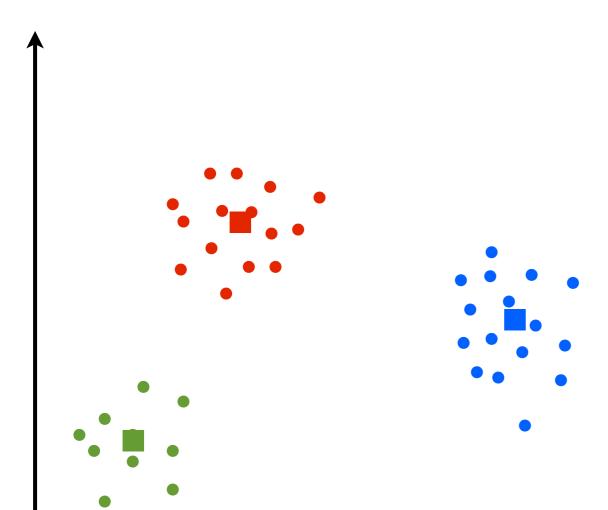
$$+$$
 For $n = 1,...N$

- * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$
- * Put \mathfrak{S}_k (and no other S_i)

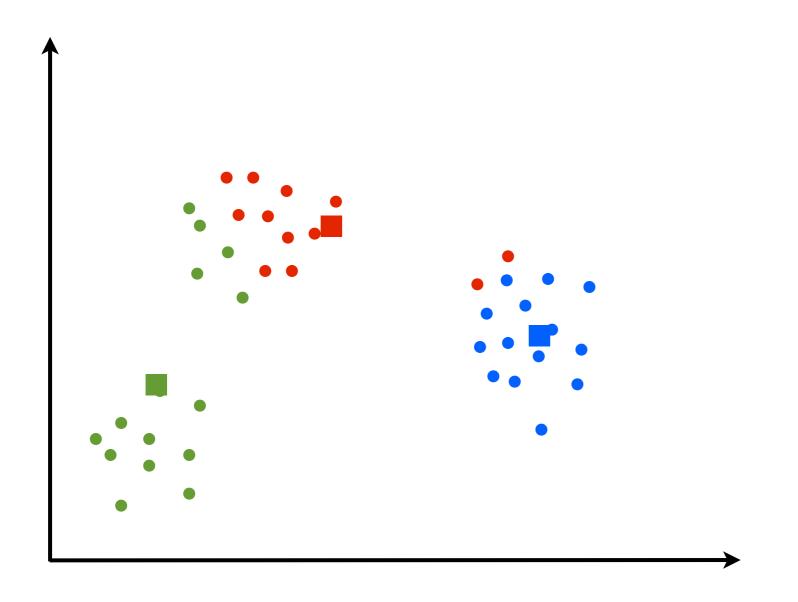
+ For
$$k = 1, \dots, K_{2}$$
 $|-1|$ x_n x_n
+ $\mu_k \leftarrow |S_k|^{-1}$ x_n



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu k + \mu k x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $diss(x_n, \mu_k)$
 - * Put \mathfrak{S}_{kk} (and no other S_i)



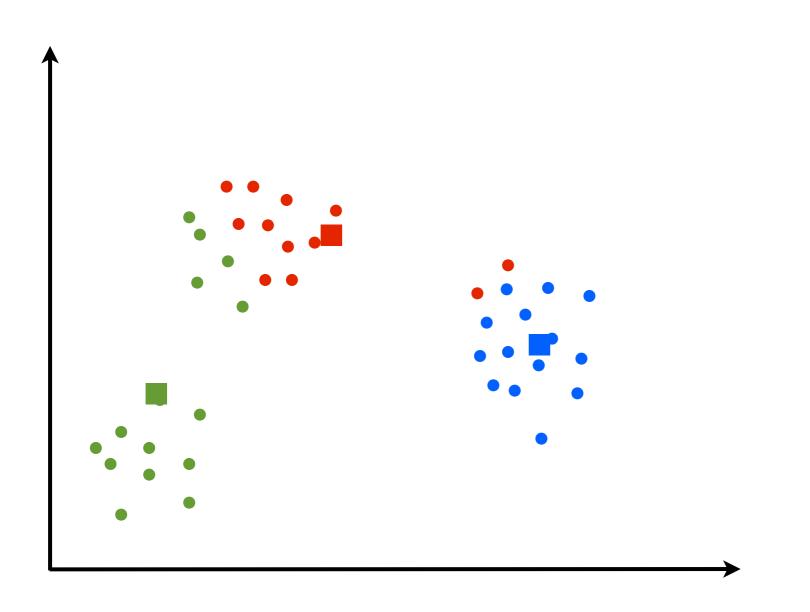
$$\mu_k \leftarrow x_n$$



$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$

$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

• Will it terminate? $\mu_k \leftarrow x_n$ Yes. Always.



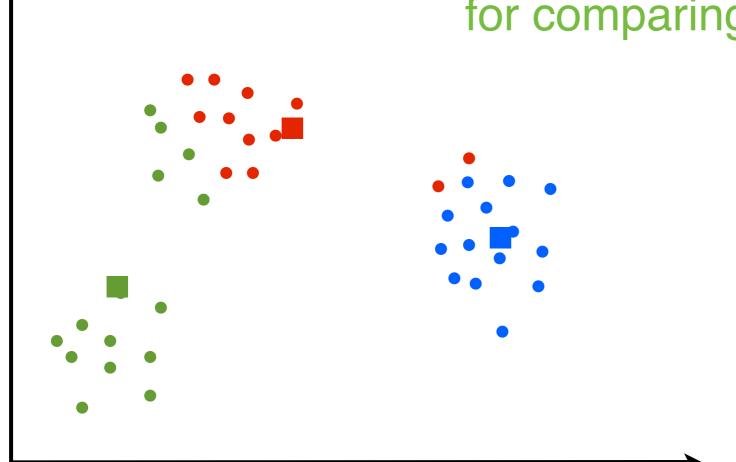
$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$

$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

- Will it terminate? $\mu_k \leftarrow x_n$ Yes. Always.
- Is the clustering any good?

Global dissimilarity only useful for comparing clusterings.

$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$



$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - Change the cluster center to the average of its assigned points
 O(N) time

Objective $\min_{u} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$

1. Fix μ , optimize C:

1. Fix
$$\mu$$
, optimize C :
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i=1}^{n} |x_i - \mu_{x_i}|^2$$
2. Fix C , optimize μ :

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

Take partial derivative of μ_i and set to zero, we have

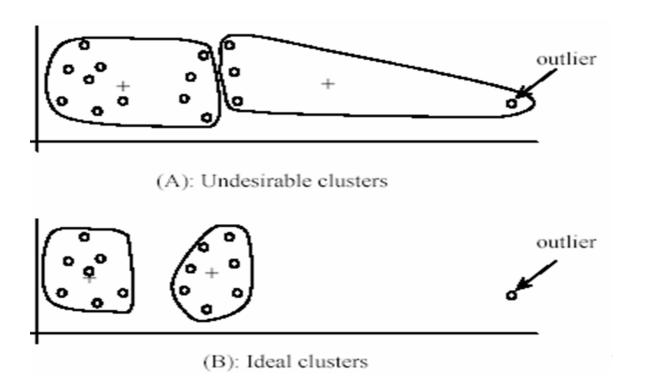
$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$
 Step 2 of kmeans

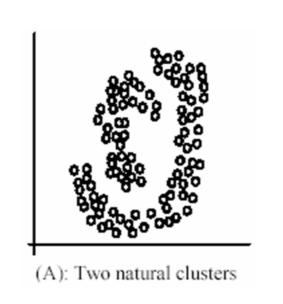
K-Means takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

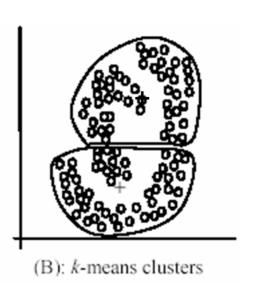
Demo time...

K-Means Algorithm: Some Issues

- How to set k?
- Sensitive to initial centers
 - Multiple initializations
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed
 - It requires continuous, numerical features







Next Lecture:

K-Means Applications,
Spectral clustering,
Hierarchical clustering and
What is a good clustering?