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Last time… Logistic Regression
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Assumes the following functional form for P(Y|X):

Logistic function applied to linear 
function of the data

Logistic 
function 
(or Sigmoid):

Features can be discrete or continuous!



Last time.. Logistic Regression vs. 
Gaussian Naïve Bayes
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• LR is a linear classifier

− decision rule is a hyperplane 


• LR optimized by maximizing conditional likelihood

− no closed-form solution

− concave ! global optimum with gradient ascent 


• Gaussian Naïve Bayes with class-independent variances  
representationally equivalent to LR 

− Solution differs because of objective (loss) function 


• In general, NB and LR make different assumptions

− NB: Features independent given class! assumption on P(X|Y)

− LR: Functional form of P(Y|X), no assumption on P(X|Y) 


• Convergence rates

− GNB (usually) needs less data

− LR (usually) gets to better solutions in the limit



Linear Discriminant  
Functions
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Linear Discriminant Function
• Linear discriminant function for a vector x 
 
 
where w is called weight vector, and w0 is a bias. 


• The classification function is 
 
 
where step function sign(·) is defined as
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Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0
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Properties of Linear Discriminant Function
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y(x) = 0 for x on the decision surface. The normal distance from the origin to the
decision surface is

wTx
kwk = � w0

kwk
So w0 determines the location of the decision surface.
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Properties of Linear Discriminant 
Functions

• y(x) = 0 for x on the decision surface. The normal distance 
from the origin to the decision surface is 


• So w0 determines the location of the decision surface. 7
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• The decision surface, shown in red, 
is perpendicular to w, and its 

displacement from the origin is 
controlled by the bias parameter w0.  

• The signed orthogonal distance of 
a general point x from the decision 

surface is given by y(x)/||w|| 

• y(x) gives a signed measure of the 

perpendicular distance r of the 

point x from the decision surface
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Properties of Linear 
Discriminant Functions
• Let 
 
where x⊥ is the projection x on the decision surface. Then 
 
 
 
 
 
 

• Simpler notion: define                   and                 so that
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Properties of Linear Discriminant Function

Let
x = x? + r

w
kwk

where x? is the projection x on the decision surface. Then

wTx = wTx? + r
wTw
kwk

wTx + w0 = wTx? + w0 + rkwk
y(x) = rkwk

r =
y(x)
kwk

Simpler notion: define ew = (w0,w) and ex = (1, x) so that

y(x) = ewTex
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Multiple Classes: Simple Extension
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Multiple Classes: Simple Extension

One-versus-the-rest classifier: classify Ck and samples not in Ck.

One-versus-one classifier: classify every pair of classes.
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?C1

C2

C1

C3

C2
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Discriminant Functions – Multiple Classes 6/16

• One-versus-the-rest classifier: classify Ck and samples 
not in Ck. (K −1 classifiers)


• One-versus-one classifier: classify every pair of classes. 
K(K −1)/2 classifiers)
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Multiple Classes: K-Class Discriminant

• A single K-class discriminant comprising K linear functions


• Decision function


• The decision boundary between class Ck and Cj is given 
by yk(x) = yj(x)
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Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

slide by Ce Liu



Property of the Decision Regions
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Property of the Decision Regions

Theorem
The decision regions of the K-class discriminant yk(x) = wT

k
x + wk0 are singly

connected and convex.

Proof.
Suppose two points xA and xB both lie inside decision region Rk. Any point x̂ on the
line between xA and xB can be expressed as

x̂ = �xA + (1 � �)xB

So
yk(x̂) = �yk(xA) + (1 � �)yk(xB)

> �yj(xA) + (1 � �)yj(xB) (8 j 6= k)

= yj(x̂) (8 j 6= k)

Therefore, the regions Rk is single connected and convex.
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Property of the Decision Regions
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184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)
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If two points xA and xB both lie 

inside the same decision region 
Rk, then any point x that lies on 

the line connecting these two 
points must also lie in Rk, and 

hence the decision region must 
be singly connected and 
convex.
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Fisher’s Linear Discriminant
Pursue the optimal linear projection on which the two classes can be maximally
separated

y = wTx
The mean vectors of the two classes

m1 =
1

N1

X

n2C1

xn, m2 =
1

N2

X

n2C2

xn

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Difference of means Fisher linear discriminant
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can be maximally separated 

• The mean vectors of the two classes 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A way to view a linear 
classification model is in 
terms of dimensionality 
reduction.
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What is a Good Projection?

After projection, the two classes are separated as much as possible. Measured by the
distance between projected center

⇣
wT(m1 � m2)

⌘2
= wT(m1 � m2)(m1 � m2)

Tw

= wTSBw

where SB = (m1 � m2)(m1 � m2)T is called between-class covariance matrix.

After projection, the variances of the two classes are as small as possible. Measured
by the within-class covariance

wTSWw

where
SW =

X

n2C1

(xn � m1)(xn � m1)
T +

X

n2C2

(xn � m2)(xn � m2)
T
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where SB = (m1 − m2)(m1 − m2)T is called between-class covariance 
matrix.


• After projection, the variances of the two classes are as small as 
possible. Measured by the within-class covariance  
 
where 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Fisher’s Linear Discriminant
• Fisher criterion: maximize the ratio w.r.t. w


• Recall the quotient rule: for


• Setting ∇J(w) = 0, we obtain


• Terms wTSBw, wTSWw and (m2−m1)Tw are scalars, and we only care 
about directions. So the scalars are dropped. Therefore
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Fisher’s Linear Discriminant
Fisher criterion: maximize the ratio w.r.t. w

J(w) =
Between-class variance
Within-class variance

=
wTSBw
wTSWw

Recall the quotient rule: for f (x) = g(x)
h(x)

f
0(x) =

g
0(x)h(x)� g(x)h0(x)

h2(x)

Setting rJ(w) = 0, we obtain

(wTSBw)SWw = (wTSWw)SBw

(wTSBw)SWw = (wTSWw)(m2 � m1)
⇣
(m2 � m1)

Tw
⌘

Terms wTSBw, wTSWw and (m2 � m1)Tw are scalars, and we only care about
directions. So the scalars are dropped. Therefore

w / S�1
W

(m2 � m1)
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From Fisher’s Linear Discriminant to 
Classifiers

• Fisher’s Linear Discriminant is not a classifier; it only decides 
on an optimal projection to convert high-dimensional 
classification problem to 1D.


• A bias (threshold) is needed to form a linear classifier (multiple 
thresholds lead to nonlinear classifiers). The final classifier has 
the form  
 
 
where the nonlinear activation function sign(·) is a step 
function


• How to decide the bias w0?
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Perceptron
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early theories 
of the brain
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Biology and Learning
• Basic Idea


- Good behavior should be rewarded, bad behavior 
punished (or not rewarded). This improves system fitness.


- Killing a sabertooth tiger should be rewarded ...

- Correlated events should be combined.

- Pavlov’s salivating dog. 

• Training mechanisms

- Behavioral modification of individuals (learning) 

Successful behavior is rewarded (e.g. food). 

- Hard-coded behavior in the genes (instinct) 

The wrongly coded animal does not reproduce.

19
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Neurons
• Soma (CPU) 

Cell body - combines signals 

• Dendrite (input bus) 
Combines the inputs from  
several other nerve cells 

• Synapse (interface) 
Interface and parameter store between neurons 

• Axon (cable) 
May be up to 1m long and will transport the activation 
signal to neurons at different locations

20
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Neurons
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f(x) =
X

i

wixi = hw, xi

x1 x2 x3 xn. . .

output

w1 wn

synaptic

weights
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Perceptron
• Weighted linear 

combination

• Nonlinear  

decision function

• Linear offset (bias) 
 

• Linear separating hyperplanes  
(spam/ham, novel/typical, click/no click)


• Learning  
Estimating the parameters w and b

22

x1 x2 x3 xn. . .

output

w1 wn

synaptic

weights

f(x) = � (hw, xi+ b)
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Perceptron
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Spam
Ham
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Perceptron

Rosenblatt
Widom
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• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of  

inner products 

The Perceptron

25

initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b
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Convergence Theorem
• If there exists some             with unit length and  
 
then the perceptron converges to a linear 
separator after a number of steps bounded by  
 
 

• Dimensionality independent

• Order independent (i.e. also worst case)

• Scales with ‘difficulty’ of problem

26

(w⇤, b⇤)

yi [hxi, w
⇤i+ b⇤] � ⇢ for all i

⇣
b⇤2 + 1

⌘ �
r2 + 1

�
⇢�2 where kxik  r
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Consequences

27
Black & White

• Only need to store errors.  
This gives a compression bound for perceptron.


• Stochastic gradient descent on hinge loss  

• Fails with noisy data
l(xi, yi, w, b) = max (0, 1� yi [hw, xii+ b])

do NOT train your  
avatar with perceptrons
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Hardness: margin vs. size

28

hard easy
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Concepts & version space
• Realizable concepts


- Some function exists that can separate data and is included in 
the concept space


- For perceptron - data is linearly separable

• Unrealizable concept


- Data not separable

- We don’t have a suitable function class (often hard to distinguish)

41
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Minimum error separation

• XOR - not linearly separable

• Nonlinear separation is trivial

• Caveat (Minsky & Papert)  

Finding the minimum error linear separator  
is NP hard (this killed Neural Networks in the 70s).

42
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Nonlinear Features
• Regression 

We got nonlinear functions by preprocessing

• Perceptron


- Map data into feature space

- Solve problem in this space

- Query replace            by                     for code


• Feature Perceptron

- Solution in span of 

43

x ! �(x)

hx, x0i h�(x),�(x0)i

�(xi)
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Quadratic Features

• Separating surfaces are 
Circles, hyperbolae, parabolae

44
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Constructing Features  
(very naive OCR system)

45

Constructing Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 35

Idea
Construct features manually. E.g. for OCR we could use
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Feature Engineering 
for Spam Filtering

• bag of words

• pairs of words

• date & time

• recipient path

• IP number

• sender

• encoding

• links

• ... secret sauce ...

46

Delivered-To: alex.smola@gmail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
        Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=gmail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
        by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best 
guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither 
permitted nor denied by best guess record for domain of 
alex+caf_=alex.smola=gmail.com@smola.org) 
smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; dkim=pass (test mode) 
header.i=@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
        for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
        Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@googlemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
        by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
        for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d=googlemail.com; s=gamma;
        h=mime-version:sender:date:x-google-sender-auth:message-id:subject
         :from:to:content-type;
        bh=WCbdZ5sXac25dpH02XcRyDOdts993hKwsAVXpGrFh0w=;
        b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjyOQsIHeAP9Yssxp6O
         7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxSOCx5ZRgY+7qX
         uIbbdna4lUDXj6UFe16SpLDCkptd8OZ3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
 Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkeley.edu>
To: alex@smola.org
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a

--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1
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More feature engineering
• Two Interlocking Spirals 

Transform the data into a radial and angular part


• Handwritten Japanese Character Recognition 

- Break down the images into strokes and recognize it

- Lookup based on stroke order 


• Medical Diagnosis

- Physician’s comments

- Blood status / ECG / height / weight / temperature ...

- Medical knowledge


• Preprocessing

- Zero mean, unit variance to fix scale issue (e.g. weight vs. 

income)

- Probability integral transform (inverse CDF) as alternative

47

(x1, x2) = (r sin�, r cos�)
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The Perceptron on features

• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products 
48

Perceptron on Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 37

argument: X := {x1, . . . , xm} ⇢ X (data)
Y := {y1, . . . , ym} ⇢ {±1} (labels)

function (w, b) = Perceptron(X, Y, ⌘)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · �(xi) + b)  0 then

w0 = w + yi�(xi)
b0 = b + yi

until yi(w · �(xi) + b) > 0 for all i
end

Important detail
w =

X

j

yj�(xj) and hence f (x) =
P

j yj(�(xj) · �(x)) + bw =
X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b
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Problems
• Problems


- Need domain expert (e.g. Chinese OCR)

- Often expensive to compute

- Difficult to transfer engineering knowledge


• Shotgun Solution

- Compute many features

- Hope that this contains good ones

- Do this efficiently

49
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Solving XOR

• XOR not linearly separable

• Mapping into 3 dimensions makes it easily solvable

50

(x1, x2) (x1, x2, x1x2)
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Next Lecture: 
Multi-layer Perceptron
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