Illustration: Frank Rosenblatt's Perceptron
FIG. 1 - Organization of a biological brain. (Red areas indicate active cells, responding to the letter X .)

Association System (A-units)

Response Units
 ecture 10: Perceptron

Last time... Logistic Regression

Assumes the following functional form for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$:

$$
P(Y=1 \mid X)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

Logistic function applied to linear function of the data

Logistic function (or Sigmoid): $\overline{1+\exp (-z)}$

Z

Last time.. Logistic Regression vs. Gaussian Naïve Bayes

- LR is a linear classifier
- decision rule is a hyperplane
- LR optimized by maximizing conditional likelihood
- no closed-form solution
- concave! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
- Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
- NB: Features independent given class! assumption on $\mathrm{P}(\mathbf{X} \mid \mathrm{Y})$
- LR: Functional form of $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$, no assumption on $\mathrm{P}(\mathbf{X} \mid \mathrm{Y})$
- Convergence rates
- GNB (usually) needs less data
- LR (usually) gets to better solutions in the limit

Linear Discriminant Functions

Linear Discriminant Function

- Linear discriminant function for a vector \mathbf{x}

$$
y(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}
$$

where \mathbf{w} is called weight vector, and w_{0} is a bias.

- The classification function is

$$
C(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)
$$

where step function $\operatorname{sign}(\cdot)$ is defined as

$$
\operatorname{sign}(a)= \begin{cases}+1, & a \geqslant 0 \\ -1, & a<0\end{cases}
$$

Properties of Linear Discriminant Functions

- The decision surface, shown in red, is perpendicular to \mathbf{w}, and its displacement from the origin is controlled by the bias parameter w_{0}.
- The signed orthogonal distance of a general point \mathbf{x} from the decision surface is given by $y(\mathbf{x}) /\|\mathbf{w}\|$
- $y(\mathbf{x})$ gives a signed measure of the perpendicular distance r of the point \mathbf{x} from the decision surface
- $\mathbf{y}(\mathbf{x})=0$ for \mathbf{x} on the decision surface. The normal distance from the origin to the decision surface is

$$
\frac{\mathbf{w}^{T} \mathbf{x}}{\|\mathbf{w}\|}=-\frac{w_{0}}{\|\mathbf{w}\|}
$$

- So w_{0} determines the location of the decision surface.

Properties of Linear

Discriminant Functions

- Let

$$
\mathbf{x}=\mathbf{x}_{\perp}+r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

where \mathbf{x}_{\perp} is the projection \mathbf{x} on the decision surface. Then

$$
\begin{aligned}
\mathbf{w}^{T} \mathbf{x} & =\mathbf{w}^{T} \mathbf{x}_{\perp}+r \frac{\mathbf{w}^{T} \mathbf{w}}{\|\mathbf{w}\|} \\
\mathbf{w}^{T} \mathbf{x}+w_{0} & =\mathbf{w}^{T} \mathbf{x}_{\perp}+w_{0}+r\|\mathbf{w}\| \\
y(\mathbf{x}) & =r\|\mathbf{w}\| \\
r & =\frac{y(\mathbf{x})}{\|\mathbf{w}\|}
\end{aligned}
$$

- Simpler notion: define $\widetilde{\mathbf{w}}=\left(w_{0}, \mathbf{w}\right)$ and $\widetilde{\mathbf{x}}=(1, \mathbf{x})$ so that

$$
y(\mathbf{x})=\widetilde{\mathbf{w}}^{T} \widetilde{\mathbf{x}}
$$

Multiple Classes: Simple Extension

- One-versus-the-rest classifier: classify C_{k} and samples not in C_{k}. ($K-1$ classifiers)
- One-versus-one classifier: classify every pair of classes. K(K -1)/2 classifiers)

Multiple Classes: K-Class Discriminant

- A single K-class discriminant comprising K linear functions

$$
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k 0}
$$

- Decision function

$$
\mathcal{C}(\mathbf{x})=k, \text { if } y_{k}(\mathbf{x})>y_{j}(\mathbf{x}) \forall j \neq k
$$

- The decision boundary between class C_{k} and C_{j} is given by $y_{k}(\mathbf{x})=y_{j}(\mathbf{x})$

$$
\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right)^{T} \mathbf{x}+\left(w_{k 0}-w_{j 0}\right)=0
$$

Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant $y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k 0}$ are singly connected and convex.

Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant $y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k 0}$ are singly connected and convex.

If two points \mathbf{x}_{A} and \mathbf{x}_{B} both lie inside the same decision region R_{k}, then any point \mathbf{x} that lies on the line connecting these two points must also lie in R_{k}, and hence the decision region must be singly connected and convex.

Fisher's Linear Discriminant

- Pursue the optimal linear projection on which the two classes can be maximally separated

$$
y=\mathbf{w}^{T} \mathbf{x}
$$

- The mean vectors of the two classes

$$
\mathbf{m}_{1}=\frac{1}{N_{1}} \sum_{n \in \mathcal{C}_{1}} \mathbf{x}_{n}, \quad \mathbf{m}_{2}=\frac{1}{N_{2}} \sum_{n \in \mathcal{C}_{2}} \mathbf{x}_{n}
$$

A way to view a linear classification model is in terms of dimensionality reduction.

Difference of means

Fisher's Linear Discriminant

What's a Good Projection?

- After projection, the two classes are separated as much as possible. Measured by the distance between projected center

$$
\begin{aligned}
\left(\mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right)^{2} & =\mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \mathbf{w} \\
& =\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}
\end{aligned}
$$

where $\mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T}$ is called between-class covariance matrix.

- After projection, the variances of the two classes are as small as possible. Measured by the within-class covariance
where

$$
\begin{gathered}
\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w} \\
\mathbf{S}_{W}=\sum_{n \in \mathcal{C}_{1}}\left(\mathbf{x}_{n}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{1}\right)^{T}+\sum_{n \in \mathcal{C}_{2}}\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)^{T}
\end{gathered}
$$

Fisher's Linear Discriminant

- Fisher criterion: maximize the ratio w.r.t. w

$$
J(\mathbf{w})=\frac{\text { Between-class variance }}{\text { Within-class variance }}=\frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}}
$$

- Recall the quotient rule: for $f(x)=\frac{g(x)}{h(x)}$

$$
f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h^{2}(x)}
$$

- Setting $\nabla J(\boldsymbol{w})=0$, we obtain

$$
\begin{aligned}
& \left(\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}\right) \mathbf{S}_{W} \mathbf{w}=\left(\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}\right) \mathbf{S}_{B} \mathbf{w} \\
& \left(\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}\right) \mathbf{S}_{W} \mathbf{w}=\left(\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T} \mathbf{w}\right)
\end{aligned}
$$

- Terms $\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}, \mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}$ and $\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T} \mathbf{w}$ are scalars, and we only care about directions. So the scalars are dropped. Therefore

$$
\mathbf{w} \propto \mathbf{S}_{W}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

From Fisher's Linear Discriminant to Classifiers

- Fisher's Linear Discriminant is not a classifier; it only decides on an optimal projection to convert high-dimensional classification problem to 1D.
- A bias (threshold) is needed to form a linear classifier (multiple thresholds lead to nonlinear classifiers). The final classifier has the form

$$
y(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)
$$

where the nonlinear activation function $\operatorname{sign}(\cdot)$ is a step function

$$
\operatorname{sign}(a)= \begin{cases}+1, & a \geqslant 0 \\ -1, & a<0\end{cases}
$$

- How to decide the bias w_{0} ?

Perceptron

early theories of the brain

Biology and Learning

- Basic Idea
- Good behavior should be rewarded, bad behavior punished (or not rewarded). This improves system fitness.
- Killing a sabertooth tiger should be rewarded ...
- Correlated events should be combined.
- Pavlov's salivating dog.
- Training mechanisms
- Behavioral modification of individuals (learning) Successful behavior is rewarded (e.g. food).
- Hard-coded behavior in the genes (instinct) The wrongly coded animal does not reproduce.

Neurons

- Soma (CPU) Cell body - combines signals
- Dendrite (input bus) Combines the inputs from several other nerve cells
- Synapse (interface)
 Interface and parameter store between neurons
- Axon (cable) May be up to 1 m long and will transport the activation signal to neurons at different locations

Neurons

output

$$
f(x)=\sum_{i} w_{i} x_{i}=\langle w, x\rangle
$$

Perceptron

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

$$
f(x)=\sigma(\langle w, x\rangle+b)
$$

- Linear separating hyperplanes (spam/ham, novel/typical, click/no click)
- Learning

Estimating the parameters w and b

Perceptron

The Perceptron

initialize $w=0$ and $b=0$
repeat

$$
\begin{aligned}
& \text { if } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \leq 0 \text { then } \\
& w \leftarrow w+y_{i} x_{i} \text { and } b \leftarrow b+y_{i}
\end{aligned}
$$

end if
until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} x_{i}$ inner products $f(x)=\sum_{i \in I} y_{i}\left\langle x_{i}, x\right\rangle+b$

Convergence Theorem

- If there exists some $\left(w^{*}, b^{*}\right)$ with unit length and

$$
y_{i}\left[\left\langle x_{i}, w^{*}\right\rangle+b^{*}\right] \geq \rho \text { for all } i
$$

then the perceptron converges to a linear separator after a number of steps bounded by

$$
\left(b^{* 2}+1\right)\left(r^{2}+1\right) \rho^{-2} \text { where }\left\|x_{i}\right\| \leq r
$$

- Dimensionality independent
- Order independent (i.e. also worst case) Scales with 'difficulty' of problem

Consequences

- Only need to store errors.

This gives a compression bound for perceptron.

- Stochastic gradient descent on hinge loss

$$
l\left(x_{i}, y_{i}, w, b\right)=\max \left(0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]\right)
$$

- Fails with noisy data
do NOT train your avatar with perceptrons

Hardness: margin vs. size

Concepts \& version space

- Realizable concepts
- Some function exists that can separate data and is included in the concept space
- For perceptron - data is linearly separable
- Unrealizable concept
- Data not separable
- We don't have a suitable function class (often hard to distinguish)

Minimum error separation

- XOR - not linearly separable
- Nonlinear separation is trivial
- Caveat (Minsky \& Papert) Finding the minimum error linear separator is NP hard (this killed Neural Networks in the 70s).

Nonlinear Features

- Regression

We got nonlinear functions by preprocessing

- Perceptron
- Map data into feature space $x \rightarrow \phi(x)$
- Solve problem in this space
- Query replace $\left\langle x, x^{\prime}\right\rangle$ by $\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$ for code
- Feature Perceptron
- Solution in span of $\phi\left(x_{i}\right)$

Quadratic Features

- Separating surfaces are Circles, hyperbolae, parabolae

Constructing Features (very naive OCR system)

	1	2	3	4	5	6	7	8	9	0
Loops	0	0	0	1	0	1	0	2	1	1
3 Joints	0	0	0	0	0	1	0	0	1	0
4 Joints	0	0	0	1	0	0	0	1	0	0
Angles	0	1	1	1	1	0	1	0	0	0
Ink	1	2	2	2	2	2	1	3	2	2

Delivered-To: alex.smola@gmail.com
Received: by 10.216 .47 .73 with SMTP id s51cs361171web;
Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Return-Path: alex+caf_=alex.smola=gmail.com@smola.org
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51 (version=TLSv1/SSLv3 cipher=OTHER),
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) clientip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of
alex+caf_=alex.smola=gmail.com@smola.org)
smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; dkim=pass (test mode)
header.i=@googlemail.com
Received: by eaal1 with SMTP id 11so15092746eaa. 6
for alex.smola@gmail.com; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received: by 10.205 .135 .18 with SMTP id ie18mr5325064bkc.72.1325629071362
Tue, 03 Jan 2012 14:17:51-0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204 .65 .198 with SMTP id k6cs206093bki;
Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52 .88 .179 with SMTP id bh19mr10729402vdb.38.1325629068795; Tue, 03 Jan 2012 14:17:48-0800 (PST)
Return-Path: althoff.tim@googlemail.com
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179]) by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48 (version=TLSv1/SSLv3 cipher=0THER); Tue, 03 Jan 2012 14:17:48-0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 209.85.220.179 as permitted sender) client-ip=209.85.220.179;

Received: by vcbf13 with SMTP id f13so11295098vcb. 10
for alex@smola.org; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: $\mathrm{v}=1$; $a=r$ sa-sha256; $\mathrm{c}=$ relaxed/relaxed;
d=googlemail.com; s=gamma;
$h=m i m e-v e r s i o n:$ sender:date:x-google-sender-auth:message-id:subject :from:to:content-type;
bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=;
b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60 7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxS0Cx5ZRgY+7qX uIbbdna4lUDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
Tue, 03 Jan 2012 14:17:47-0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47-0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47-0800
X-Google-Sender-Auth: 6bwi6D17HjZIkx0Eol38NZzyeHs
Message-ID: CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoG0-WC7osg@mail.gmail.com
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff althoff@eecs.berkeley.edu
To: alex@smola.org
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a
--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1

Feature Engineering for Spam Filtering

- bag of words
- pairs of words
- date \& time
- recipient path
- IP number
- sender
- encoding
- links
- ... secret sauce

More feature engineering

- Two Interlocking Spirals

Transform the data into a radial and angular part

$$
\left(x_{1}, x_{2}\right)=(r \sin \phi, r \cos \phi)
$$

- Handwritten Japanese Character Recognition
- Break down the images into strokes and recognize it
- Lookup based on stroke order
- Medical Diagnosis
- Physician's comments
- Blood status / ECG / height / weight / temperature ...
- Medical knowledge
- Preprocessing
- Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
- Probability integral transform (inverse CDF) as alternative

The Perceptron on features

initialize $w, b=0$ repeat

Pick $\left(x_{i}, y_{i}\right)$ from data

$$
\text { if } \begin{gathered}
y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right) \leq 0 \text { then } \\
w^{\prime}=w+y_{i} \Phi\left(x_{i}\right) \\
b^{\prime}=b+y_{i}
\end{gathered}
$$

until $y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right)>0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum y_{i} \phi\left(x_{i}\right)$
- Classifier is linear combination of $\quad \sum_{i \in I}$
inner products $f(x)=\sum_{i \in I} y_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle+b$

Problems

- Problems
- Need domain expert (e.g. Chinese OCR)
- Often expensive to compute
- Difficult to transfer engineering knowledge
- Shotgun Solution
- Compute many features
- Hope that this contains good ones
- Do this efficiently

Solving XOR

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Next Lecture:
 Multi-layer Perceptron

