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Last time… Linear Discriminant Function

• Linear discriminant function for a vector x 
 
 
where w is called weight vector, and w0 is a bias. 


• The classification function is 
 
 
where step function sign(·) is defined as

2

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

slide by C
e Liu



Properties of Linear Discriminant Function
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y(x) = 0 for x on the decision surface. The normal distance from the origin to the
decision surface is

wTx
kwk = � w0

kwk
So w0 determines the location of the decision surface.
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• The decision surface, shown in red, 
is perpendicular to w, and its 
displacement from the origin is 
controlled by the bias parameter w0.  

• The signed orthogonal distance of 
a general point x from the decision 
surface is given by y(x)/||w|| 

• y(x) gives a signed measure of the 
perpendicular distance r of the 
point x from the decision surface
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Last time… Multiple Classes: Simple Extension
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Multiple Classes: Simple Extension

One-versus-the-rest classifier: classify Ck and samples not in Ck.

One-versus-one classifier: classify every pair of classes.
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• One-versus-the-rest classifier: classify Ck and samples 
not in Ck. 


• One-versus-one classifier: classify every pair of classes.
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Last time… Multiple Classes: K-Class 
Discriminant

• A single K-class discriminant comprising K linear functions


• Decision function


• The decision boundary between class Ck and Cj is given 
by yk(x) = yj(x)
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Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0
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Fisher’s Linear Discriminant
Pursue the optimal linear projection on which the two classes can be maximally
separated

y = wTx
The mean vectors of the two classes
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Last time…Fisher’s Linear Discriminant
• Pursue the optimal linear projection on which the two classes 

can be maximally separated 

• The mean vectors of the two classes 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A way to view a linear 
classification model is 
in terms of 
dimensionality 
reduction.

slide by C
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Fisher’s Linear Discriminant
Fisher criterion: maximize the ratio w.r.t. w

J(w) =
Between-class variance
Within-class variance

=
wTSBw
wTSWw

Recall the quotient rule: for f (x) = g(x)
h(x)

f
0(x) =

g
0(x)h(x)� g(x)h0(x)

h2(x)

Setting rJ(w) = 0, we obtain

(wTSBw)SWw = (wTSWw)SBw

(wTSBw)SWw = (wTSWw)(m2 � m1)
⇣
(m2 � m1)

Tw
⌘

Terms wTSBw, wTSWw and (m2 � m1)Tw are scalars, and we only care about
directions. So the scalars are dropped. Therefore

w / S�1
W

(m2 � m1)

Discriminant Functions – Fisher’s Linear Discriminant 12/16



Last time… Linear classification
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Last time… Linear classification
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Last time… Linear classification

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson 



Interactive web demo time….
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http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson 
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Last time… Perceptron
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f(x) =
X

i

wixi = hw, xi

x1 x2 x3 xn. . .

output

w1 wn

synaptic

weights

slide by Alex Sm
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• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products 

Last time… Perceptron
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initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b

slide by Alex Sm
ola



Last time… Perceptron on features

• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products 
13

Perceptron on Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 37

argument: X := {x1, . . . , xm} ⇢ X (data)
Y := {y1, . . . , ym} ⇢ {±1} (labels)

function (w, b) = Perceptron(X, Y, ⌘)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · �(xi) + b)  0 then

w0 = w + yi�(xi)
b0 = b + yi

until yi(w · �(xi) + b) > 0 for all i
end

Important detail
w =

X

j

yj�(xj) and hence f (x) =
P

j yj(�(xj) · �(x)) + bw =
X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b
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Today
• Multi-layer perceptron 

• Forward Pass

14



Introduction

15



A brief history of computers

16

1970s 1980s 1990s 2000s 2010s

Data 102 103 105 108 1011

RAM ? 1MB 100MB 10GB 1TB

CPU ? 10MF 1GF 100GF 1PF GPU

• Data grows 
at higher exponent


• Moore’s law (silicon) vs. Kryder’s law (disks)

• Early algorithms data bound, now CPU/RAM bound

deep

nets

kernel  
methods

deep

nets
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Not linearly separable data

• Some datasets are not linearly separable!

- e.g. XOR problem 

• Nonlinear separation is trivial
17
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Addressing non-linearly 
separable data

• Two options:

- Option 1: Non-linear features

- Option 2: Non-linear classifiers

18
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Option 1 — Non-linear features

19

• Choose non-linear features, e.g.,

- Typical linear features: w0 + Σi wi xi

- Example of non-linear features: 

• Degree 2 polynomials, w0 + Σi wi xi  + Σij wij xi xj


• Classifier hw(x) still linear in parameters w 
- As easy to learn

- Data is linearly separable in higher dimensional 

spaces

- Express via kernels

slide by Dhruv Batra



Option 2 — Non-linear classifiers

20

• Choose a classifier hw(x) that is non-linear in 
parameters w, e.g.,


- Decision trees, neural networks,…


• More general than linear classifiers

• But, can often be harder to learn (non-convex 

optimization required)

• Often very useful (outperforms linear classifiers)

• In a way, both ideas are related

slide by Dhruv Batra



Biological Neurons
• Soma (CPU) 

Cell body - combines signals 

• Dendrite (input bus) 
Combines the inputs from  
several other nerve cells 

• Synapse (interface) 
Interface and parameter store between neurons 

• Axon (cable) 
May be up to 1m long and will transport the 
activation signal to neurons at different locations

21
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Recall: The Neuron Metaphor
• Neurons


- accept information from multiple inputs, 

- transmit information to other neurons.


• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each 

node

slide by Dhruv Batra 22



Types of Neuron
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Linear Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

y = ✓0 +
X

i

xi✓i
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Types of Neuron
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Linear Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

Perceptron

y = ✓0 +
X

i

xi✓i

y =

⇢
1 if z � 0
0 otherwise

z = ✓0 +
X

i

xi✓islide by Dhruv Batra



Types of Neuron
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Linear Neuron

Logistic Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)
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✓2

✓D

✓0

1

f(~x, ✓)

Perceptron

y = ✓0 +
X

i

xi✓i

y =

⇢
1 if z � 0
0 otherwise

z = ✓0 +
X

i

xi✓i

z = ✓0 +
X

i

xi✓i

y =
1

1 + e�z
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Types of Neuron

• Potentially more. Requires a convex 
loss function for gradient descent 
training.
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Linear Neuron

Logistic Neuron
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Limitation
• A single “neuron” is still a linear decision 

boundary


• What to do?


• Idea: Stack a bunch of them together! 

27
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Nonlinearities via Layers
• Cascade neurons together

• The output from one layer is the input to the next

• Each layer has its own sets of weights

28

y1i(x) = �(hw1i, xi)
y2(x) = �(hw2, y1i)

y1i = k(xi, x)

Kernels

Deep Nets
optimize


all weights

slide by Alex Sm
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Nonlinearities via Layers

29

y1i(x) = �(hw1i, xi)
y2i(x) = �(hw2i, y1i)
y3(x) = �(hw3, y2i)slide by Alex Sm

ola



Representational Power
• Neural network with at least one hidden layer is a universal 

approximator (can represent any function).  
Proof in: Approximation by Superpositions of Sigmoidal Function, 
Cybenko, paper 
 
 

• The capacity of the network increases with more hidden 
units and more hidden layers 30

slide by Raquel U
rtasun, Richard Zem
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A simple example
•Consider a neural network 
with two layers of neurons.

- neurons in the top layer 

represent known shapes.

- neurons in the bottom layer 

represent pixel intensities.  
•A pixel gets to vote if it has 
ink on it. 

- Each inked pixel can vote 

for several different shapes.  
•The shape that gets the 
most votes wins.

31

0   1   2   3   4   5   6   7   8   9

McCulloch & Pitts (1943) 

  

� A simplified neuron model: the Linear Threshold Unit. 

    𝑓(∑𝑤 𝑥 ) 

𝑥  

𝑥  

𝑥  

𝑥  

…
 

…
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How to display the weights

32

Give each output unit its own “map” of the input image and 
display the weight coming from each pixel in the location of 
that pixel in the map.

Use a black or white blob with the area representing the 
magnitude of the weight and the color representing the sign.

The input 
image

  1       2        3       4        5       6        7       8        9       0
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How to learn the weights

33

Show the network an image and increment the weights from 
active pixels to the correct class.

Then decrement the weights from active pixels to whatever 
class the network guesses.

The image

  1       2        3       4        5       6        7       8        9       0
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The learned weights

39

  1       2        3       4        5       6        7       8        9       0

The image
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Why insufficient
•A two layer network with a single winner in the top 
layer is equivalent to having a rigid template for 
each shape.

- The winner is the template that has the biggest 

overlap with the ink. 

•The ways in which hand-written digits vary are 
much too complicated to be captured by simple 
template matches of whole shapes.

- To capture all the allowable variations of a digit we 

need to learn the features that it is composed of.

40
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Multilayer Perceptron

41

• Layer Representation


• (typically) iterate between 
linear mapping Wx and  
nonlinear function


• Loss function 
to measure quality of 
estimate so far 

yi = Wixi

xi+1 = �(yi)

x1

x2

x3

x4

y

W1

W2

W3

W4

l(y, yi)
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Forward Pass

42



Forward Pass: What does the Network Compute? 

• Output of the network can be written as: 


  (j indexing hidden units, k indexing the output units, D number of inputs) 

• Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU) 

43
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Forward Pass: What does the Network Compute?

Output of the network can be written as:

hj(x) = f (vj0 +
DX

i=1

xivji )

ok(x) = g(wk0 +
JX

j=1

hj(x)wkj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

�(z) =
1

1 + exp(�z)
, tanh(z) =

exp(z)� exp(�z)

exp(z) + exp(�z)
, ReLU(z) = max(0, z)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 16 / 62
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Forward Pass in Python
• Example code for a forward pass for a 3-layer network in Python:  
 
 
 

• Can be implemented efficiently using matrix operations 

• Example above: W1 is matrix of size 4 × 3, W2 is 4 × 4. What about 

biases and W3?
44

slide by Raquel U
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http://cs231n.github.io/neural-networks-1/


Special Case
• What is a single layer (no hiddens) network with a sigmoid act. 

function? 


• Network:


• Logistic regression! 
45
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Special Case

What is a single layer (no hiddens) network with a sigmoid act. function?

Network:
ok(x) =

1

1 + exp(�zk)

zk = wk0 +
JX

j=1

xjwkj

Logistic regression!

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 18 / 62



Example
• Classify image of handwritten digit (32x32 pixels): 4 vs non-4 


• How would you build your network?

• For example, use one hidden layer and the sigmoid activation function: 


• How can we train the network, that is, adjust all the parameters w? 

46

Example&applica3on&
•  Consider!trying!to!classify!image!of!handwritten!digit:!32x32!
pixels!

•  Single!output!units!–!it!is!a!4!(one!vs.!all)?!
•  Use!the!sigmoid!output!function:!

•  Can!train!the!network,!that!is,!adjust!all!the!parameters!w,!to!
optimize!the!training!objective,!but!this!is!a!complicated!
function!of!the!parameters!!

ok =
1

1+ exp(−zk )

zk = (wk0 + hj (x)vkj )
j=1

J

∑

Example Application

Classify image of handwritten digit (32x32 pixels): 4 vs non-4

How would you build your network?

For example, use one hidden layer and the sigmoid activation function:

ok(x) =
1

1 + exp(�zk)

zk = wk0 +
JX

j=1

hj(x)wkj

How can we train the network, that is, adjust all the parameters w?

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 19 / 62
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Training Neural Networks

Find weights:

w⇤ = argmin
w

NX

n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
P

k
1
2 (o

(n)
k � t(n)k )2

I Cross-entropy loss: �
P

k t
(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)
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Training Neural Networks
• Find weights:  
 
 
 
where o = f(x;w) is the output of a neural network 


• Define a loss function, e.g.:

- Squared loss: 

- Cross-entropy loss:


• Gradient descent:  
 
 
 
where η is the learning rate (and E is error/loss) 
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(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)
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Useful derivatives
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Useful Derivatives

name function derivative

Sigmoid �(z) = 1
1+exp(�z) �(z) · (1� �(z))

Tanh tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z) 1/ cosh2(z)

ReLU ReLU(z) = max(0, z)

(
1, if z > 0

0, if z  0
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Next Lecture:  
 

Backpropagation
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