
Erkut Erdem // Hacettepe University // Fall 2023

Lecture 11:

Multi-layer Perceptron

Forward Pass

AIN311

Fundamentals of  
Machine Learning

Image: Jose-Luis Olivares

Last time… Linear Discriminant Function

• Linear discriminant function for a vector x
 
 
where w is called weight vector, and w0 is a bias.

• The classification function is 
 
 
where step function sign(·) is defined as

2

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

Linear Discriminant Function

Linear discriminant function for a vector x

y(x) = wTx + w0

where w is called weight vector, and w0 is a bias.

The classification function is

C(x) = sign(wTx + w0)

where step function sign(·) is defined as

sign(a) =

(
+1, a > 0
�1, a < 0

Discriminant Functions – Two Classes 3/16

slide by C
e Liu

Properties of Linear Discriminant Function

x2

x1

w
x

y(x)
kwk

x?

�w0
kwk

y = 0
y < 0

y > 0

R2

R1

y(x) = 0 for x on the decision surface. The normal distance from the origin to the
decision surface is

wTx
kwk = � w0

kwk
So w0 determines the location of the decision surface.

Discriminant Functions – Two Classes 4/16

Last time… Properties of Linear
Discriminant Functions

• y(x) = 0 for x on the decision surface. The normal distance
from the origin to the decision surface is

• So w0 determines the location of the decision surface. 3

Properties of Linear Discriminant Function

x2

x1

w
x

y(x)
kwk

x?

�w0
kwk

y = 0
y < 0

y > 0

R2

R1

y(x) = 0 for x on the decision surface. The normal distance from the origin to the
decision surface is

wTx
kwk = � w0

kwk
So w0 determines the location of the decision surface.

Discriminant Functions – Two Classes 4/16

• The decision surface, shown in red,
is perpendicular to w, and its
displacement from the origin is
controlled by the bias parameter w0.

• The signed orthogonal distance of
a general point x from the decision
surface is given by y(x)/||w||

• y(x) gives a signed measure of the
perpendicular distance r of the
point x from the decision surface

slide by C
e Liu

Last time… Multiple Classes: Simple Extension

4

Multiple Classes: Simple Extension

One-versus-the-rest classifier: classify Ck and samples not in Ck.

One-versus-one classifier: classify every pair of classes.

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Discriminant Functions – Multiple Classes 6/16

• One-versus-the-rest classifier: classify Ck and samples
not in Ck.

• One-versus-one classifier: classify every pair of classes.

slide by C
e Liu

Last time… Multiple Classes: K-Class
Discriminant

• A single K-class discriminant comprising K linear functions

• Decision function

• The decision boundary between class Ck and Cj is given
by yk(x) = yj(x)

5

Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

Multiple Classes: K-Class Discriminant

A single K-class discriminant comprising K linear functions

yk(x) = wT

k
x + wk0

Decision function
C(x) = k, if yk(x) > yj(x) 8 j 6= k

The decision boundary between class Ck and Cj is given by yk(x) = yj(x)

(wk � wj)
Tx + (wk0 � wj0) = 0

Discriminant Functions – Multiple Classes 7/16

slide by C
e Liu

Fisher’s Linear Discriminant
Pursue the optimal linear projection on which the two classes can be maximally
separated

y = wTx
The mean vectors of the two classes

m1 =
1

N1

X

n2C1

xn, m2 =
1

N2

X

n2C2

xn

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Difference of means Fisher linear discriminant
Discriminant Functions – Fisher’s Linear Discriminant 10/16

Last time…Fisher’s Linear Discriminant
• Pursue the optimal linear projection on which the two classes

can be maximally separated 

• The mean vectors of the two classes 
 

6

Fisher’s Linear Discriminant
Pursue the optimal linear projection on which the two classes can be maximally
separated

y = wTx
The mean vectors of the two classes

m1 =
1

N1

X

n2C1

xn, m2 =
1

N2

X

n2C2

xn

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Difference of means Fisher linear discriminant
Discriminant Functions – Fisher’s Linear Discriminant 10/16

Difference of means Fisher’s Linear Discriminant

Fisher’s Linear Discriminant
Pursue the optimal linear projection on which the two classes can be maximally
separated

y = wTx
The mean vectors of the two classes

m1 =
1

N1

X

n2C1

xn, m2 =
1

N2

X

n2C2

xn

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Difference of means Fisher linear discriminant
Discriminant Functions – Fisher’s Linear Discriminant 10/16

A way to view a linear
classification model is
in terms of
dimensionality
reduction.

slide by C
e Liu

Fisher’s Linear Discriminant
Fisher criterion: maximize the ratio w.r.t. w

J(w) =
Between-class variance
Within-class variance

=
wTSBw
wTSWw

Recall the quotient rule: for f (x) = g(x)
h(x)

f
0(x) =

g
0(x)h(x)� g(x)h0(x)

h2(x)

Setting rJ(w) = 0, we obtain

(wTSBw)SWw = (wTSWw)SBw

(wTSBw)SWw = (wTSWw)(m2 � m1)
⇣
(m2 � m1)

Tw
⌘

Terms wTSBw, wTSWw and (m2 � m1)Tw are scalars, and we only care about
directions. So the scalars are dropped. Therefore

w / S�1
W

(m2 � m1)

Discriminant Functions – Fisher’s Linear Discriminant 12/16

Last time… Linear classification

7

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

8

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Last time… Linear classification

9

Last time… Linear classification

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Interactive web demo time….

10

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Last time… Perceptron

11

f(x) =
X

i

wixi = hw, xi

x1 x2 x3 xn. . .

output

w1 wn

synaptic

weights

slide by Alex Sm
ola

• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products

Last time… Perceptron

12

initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b] 0 then
w w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b

slide by Alex Sm
ola

Last time… Perceptron on features

• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products
13

Perceptron on Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 37

argument: X := {x1, . . . , xm} ⇢ X (data)
Y := {y1, . . . , ym} ⇢ {±1} (labels)

function (w, b) = Perceptron(X, Y, ⌘)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · �(xi) + b) 0 then

w0 = w + yi�(xi)
b0 = b + yi

until yi(w · �(xi) + b) > 0 for all i
end

Important detail
w =

X

j

yj�(xj) and hence f (x) =
P

j yj(�(xj) · �(x)) + bw =
X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b

slide by Alex Sm
ola

Today
• Multi-layer perceptron 

• Forward Pass

14

Introduction

15

A brief history of computers

16

1970s 1980s 1990s 2000s 2010s

Data 102 103 105 108 1011

RAM ? 1MB 100MB 10GB 1TB

CPU ? 10MF 1GF 100GF 1PF GPU

• Data grows 
at higher exponent

• Moore’s law (silicon) vs. Kryder’s law (disks)

• Early algorithms data bound, now CPU/RAM bound

deep

nets

kernel  
methods

deep

nets

slide by Alex Sm
ola

Not linearly separable data

• Some datasets are not linearly separable!

- e.g. XOR problem 

• Nonlinear separation is trivial
17

slide by Alex Sm
ola

Addressing non-linearly
separable data

• Two options:

- Option 1: Non-linear features

- Option 2: Non-linear classifiers

18

slide by Dhruv Batra

Option 1 — Non-linear features

19

• Choose non-linear features, e.g.,

- Typical linear features: w0 + Σi wi xi

- Example of non-linear features:

• Degree 2 polynomials, w0 + Σi wi xi + Σij wij xi xj

• Classifier hw(x) still linear in parameters w
- As easy to learn

- Data is linearly separable in higher dimensional

spaces

- Express via kernels

slide by Dhruv Batra

Option 2 — Non-linear classifiers

20

• Choose a classifier hw(x) that is non-linear in
parameters w, e.g.,

- Decision trees, neural networks,…

• More general than linear classifiers

• But, can often be harder to learn (non-convex

optimization required)

• Often very useful (outperforms linear classifiers)

• In a way, both ideas are related

slide by Dhruv Batra

Biological Neurons
• Soma (CPU) 

Cell body - combines signals 

• Dendrite (input bus) 
Combines the inputs from  
several other nerve cells 

• Synapse (interface) 
Interface and parameter store between neurons 

• Axon (cable) 
May be up to 1m long and will transport the
activation signal to neurons at different locations

21

slide by Alex Sm
ola

Recall: The Neuron Metaphor
• Neurons

- accept information from multiple inputs,

- transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each

node

slide by Dhruv Batra 22

Types of Neuron

23

Linear Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

y = ✓0 +
X

i

xi✓i

slide by Dhruv Batra

Types of Neuron

24

Linear Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

Perceptron

y = ✓0 +
X

i

xi✓i

y =

⇢
1 if z � 0
0 otherwise

z = ✓0 +
X

i

xi✓islide by Dhruv Batra

Types of Neuron

25

Linear Neuron

Logistic Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

Perceptron

y = ✓0 +
X

i

xi✓i

y =

⇢
1 if z � 0
0 otherwise

z = ✓0 +
X

i

xi✓i

z = ✓0 +
X

i

xi✓i

y =
1

1 + e�z

slide by Dhruv Batra

Types of Neuron

• Potentially more. Requires a convex
loss function for gradient descent
training.

26

Linear Neuron

Logistic Neuron

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

✓1

✓2

✓D

✓0

1

f(~x, ✓)

Perceptron

y = ✓0 +
X

i

xi✓i

y =

⇢
1 if z � 0
0 otherwise

z = ✓0 +
X

i

xi✓i

z = ✓0 +
X

i

xi✓i

y =
1

1 + e�z

slide by Dhruv Batra

Limitation
• A single “neuron” is still a linear decision

boundary

• What to do?

• Idea: Stack a bunch of them together!

27

slide by Dhruv Batra

Nonlinearities via Layers
• Cascade neurons together

• The output from one layer is the input to the next

• Each layer has its own sets of weights

28

y1i(x) = �(hw1i, xi)
y2(x) = �(hw2, y1i)

y1i = k(xi, x)

Kernels

Deep Nets
optimize

all weights

slide by Alex Sm
ola

Nonlinearities via Layers

29

y1i(x) = �(hw1i, xi)
y2i(x) = �(hw2i, y1i)
y3(x) = �(hw3, y2i)slide by Alex Sm

ola

Representational Power
• Neural network with at least one hidden layer is a universal

approximator (can represent any function).  
Proof in: Approximation by Superpositions of Sigmoidal Function,
Cybenko, paper 
 
 

• The capacity of the network increases with more hidden
units and more hidden layers 30

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

A simple example
•Consider a neural network
with two layers of neurons.

- neurons in the top layer

represent known shapes.

- neurons in the bottom layer

represent pixel intensities.  
•A pixel gets to vote if it has
ink on it.

- Each inked pixel can vote

for several different shapes.  
•The shape that gets the
most votes wins.

31

0 1 2 3 4 5 6 7 8 9

McCulloch & Pitts (1943)

� A simplified neuron model: the Linear Threshold Unit.

 𝑓(∑𝑤 𝑥)

𝑥

𝑥

𝑥

𝑥

…

…

slide by G
eoffrey H

inton

How to display the weights

32

Give each output unit its own “map” of the input image and
display the weight coming from each pixel in the location of
that pixel in the map.

Use a black or white blob with the area representing the
magnitude of the weight and the color representing the sign.

The input
image

 1 2 3 4 5 6 7 8 9 0

slide by G
eoffrey H

inton

How to learn the weights

33

Show the network an image and increment the weights from
active pixels to the correct class.

Then decrement the weights from active pixels to whatever
class the network guesses.

The image

 1 2 3 4 5 6 7 8 9 0

slide by G
eoffrey H

inton

34

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

35

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

36

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

37

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

38

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

The learned weights

39

 1 2 3 4 5 6 7 8 9 0

The image

slide by G
eoffrey H

inton

Why insufficient
•A two layer network with a single winner in the top
layer is equivalent to having a rigid template for
each shape.

- The winner is the template that has the biggest

overlap with the ink. 

•The ways in which hand-written digits vary are
much too complicated to be captured by simple
template matches of whole shapes.

- To capture all the allowable variations of a digit we

need to learn the features that it is composed of.

40

slide by G
eoffrey H

inton

Multilayer Perceptron

41

• Layer Representation

• (typically) iterate between 
linear mapping Wx and  
nonlinear function

• Loss function 
to measure quality of 
estimate so far

yi = Wixi

xi+1 = �(yi)

x1

x2

x3

x4

y

W1

W2

W3

W4

l(y, yi)

slide by Alex Sm
ola

Forward Pass

42

Forward Pass: What does the Network Compute?

• Output of the network can be written as:

 (j indexing hidden units, k indexing the output units, D number of inputs)

• Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

43

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

Forward Pass: What does the Network Compute?

Output of the network can be written as:

hj(x) = f (vj0 +
DX

i=1

xivji)

ok(x) = g(wk0 +
JX

j=1

hj(x)wkj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

�(z) =
1

1 + exp(�z)
, tanh(z) =

exp(z)� exp(�z)

exp(z) + exp(�z)
, ReLU(z) = max(0, z)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 16 / 62

Forward Pass: What does the Network Compute?

Output of the network can be written as:

hj(x) = f (vj0 +
DX

i=1

xivji)

ok(x) = g(wk0 +
JX

j=1

hj(x)wkj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

�(z) =
1

1 + exp(�z)
, tanh(z) =

exp(z)� exp(�z)

exp(z) + exp(�z)
, ReLU(z) = max(0, z)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 16 / 62

Forward Pass: What does the Network Compute?

Output of the network can be written as:

hj(x) = f (vj0 +
DX

i=1

xivji)

ok(x) = g(wk0 +
JX

j=1

hj(x)wkj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

�(z) =
1

1 + exp(�z)
, tanh(z) =

exp(z)� exp(�z)

exp(z) + exp(�z)
, ReLU(z) = max(0, z)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 16 / 62

Forward Pass in Python
• Example code for a forward pass for a 3-layer network in Python:  
 
 
 

• Can be implemented efficiently using matrix operations

• Example above: W1 is matrix of size 4 × 3, W2 is 4 × 4. What about

biases and W3?
44

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler [http://cs231n.github.io/neural-networks-1/]

http://cs231n.github.io/neural-networks-1/

Special Case
• What is a single layer (no hiddens) network with a sigmoid act.

function?

• Network:

• Logistic regression!
45

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

Special Case

What is a single layer (no hiddens) network with a sigmoid act. function?

Network:
ok(x) =

1

1 + exp(�zk)

zk = wk0 +
JX

j=1

xjwkj

Logistic regression!

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 18 / 62

Example
• Classify image of handwritten digit (32x32 pixels): 4 vs non-4

• How would you build your network?

• For example, use one hidden layer and the sigmoid activation function:

• How can we train the network, that is, adjust all the parameters w?

46

Example&applica3on&
•  Consider!trying!to!classify!image!of!handwritten!digit:!32x32!
pixels!

•  Single!output!units!–!it!is!a!4!(one!vs.!all)?!
•  Use!the!sigmoid!output!function:!

•  Can!train!the!network,!that!is,!adjust!all!the!parameters!w,!to!
optimize!the!training!objective,!but!this!is!a!complicated!
function!of!the!parameters!!

ok =
1

1+ exp(−zk)

zk = (wk0 + hj (x)vkj)
j=1

J

∑

Example Application

Classify image of handwritten digit (32x32 pixels): 4 vs non-4

How would you build your network?

For example, use one hidden layer and the sigmoid activation function:

ok(x) =
1

1 + exp(�zk)

zk = wk0 +
JX

j=1

hj(x)wkj

How can we train the network, that is, adjust all the parameters w?

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 19 / 62

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

Training Neural Networks

Find weights:

w⇤ = argmin
w

NX

n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
P

k
1
2 (o

(n)
k � t(n)k)2

I Cross-entropy loss: �
P

k t
(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 20 / 62

Training Neural Networks

Find weights:

w⇤ = argmin
w

NX

n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
P

k
1
2 (o

(n)
k � t(n)k)2

I Cross-entropy loss: �
P

k t
(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 20 / 62

Training Neural Networks
• Find weights:  
 
 
 
where o = f(x;w) is the output of a neural network

• Define a loss function, e.g.:

- Squared loss:

- Cross-entropy loss:

• Gradient descent:  
 
 
 
where η is the learning rate (and E is error/loss)

47

Training Neural Networks

Find weights:

w⇤ = argmin
w

NX

n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
P

k
1
2 (o

(n)
k � t(n)k)2

I Cross-entropy loss: �
P

k t
(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 20 / 62

Training Neural Networks

Find weights:

w⇤ = argmin
w

NX

n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
P

k
1
2 (o

(n)
k � t(n)k)2

I Cross-entropy loss: �
P

k t
(n)
k log o(n)

k

Gradient descent:

wt+1 = wt � ⌘
@E

@wt

where ⌘ is the learning rate (and E is error/loss)

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 20 / 62

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

Useful derivatives

48

Useful Derivatives

name function derivative

Sigmoid �(z) = 1
1+exp(�z) �(z) · (1� �(z))

Tanh tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z) 1/ cosh2(z)

ReLU ReLU(z) = max(0, z)

(
1, if z > 0

0, if z 0

Urtasun, Zemel, Fidler (UofT) CSC 411: 10-Neural Networks I Feb 10, 2016 21 / 62

slide by Raquel U
rtasun, Richard Zem

el, Sanja Fidler

Next Lecture:  
 

Backpropagation

49

