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Lecture 14:

Deep Convolutional Networks

AIN311

Fundamentals of   
Machine Learning

Illustration:detail from the visualization of ResNet-50 conv2 // Graphcore



Last time… Three key ideas
• (Hierarchical) Compositionality


- Cascade of non-linear transformations 
- Multiple layers of representations 

• End-to-End Learning

- Learning (goal-driven) representations 
- Learning to feature extract 

• Distributed Representations

- No single neuron “encodes” everything 
- Groups of neurons work together

slide by Dhruv Batra 2
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Last time… Intro. to Deep Learning

slide by M
arc’Aurelio Ranzato, Yann LeCun



Last time… Intro. to Deep Learning
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Deep Convolutional  
Neural Networks
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Convolutions

slide by Yisong Yue 6



Convolution Filters
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Gabor Filters
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Gaussian Blur Filters
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Convolutional Neural Networks

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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32

32

3

Convolution Layer

32x32x3 image

width

height

depth
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32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image

i.e. “slide over the image spatially, 
computing dot products”

Convolution Layer
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32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image

i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

Convolution Layer
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32

32

3

32x32x3 image

5x5x3 filter

1 number:  
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolution Layer
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32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Convolution Layer
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32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
Convolution Layer
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 
separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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32

32

3
28

28

6

CONV,

ReLU

e.g. 6 
5x5x3 
filters

Preview: ConvNet is a sequence of 
Convolutional Layers, interspersed with 
activation functions
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Preview: ConvNet is a sequence of 
Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,

ReLU

e.g. 6 
5x5x3 
filters 28

28

6

CONV,

ReLU

e.g. 10 
5x5x6 
filters

CONV,

ReLU

….

10
24

24
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Preview [From recent Yann 
LeCun slides]
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[From recent Yann 
LeCun slides]Preview
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example 5x5 filters

(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

elementwise multiplication 
and sum of a filter and the 
signal (image)

one filter => 

one activation map
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Preview
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A closer look at spatial 
dimensions:

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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7

7

7x7 input (spatially)

assume 3x3 filter
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A closer look at spatial 
dimensions:



7
7x7 input (spatially)

assume 3x3 filter


7
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A closer look at spatial 
dimensions:



7
7x7 input (spatially)

assume 3x3 filter


7
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A closer look at spatial 
dimensions:



7
7x7 input (spatially)

assume 3x3 filter


7
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A closer look at spatial 
dimensions:



7x7 input (spatially)

assume 3x3 filter


=> 5x5 output

7

7
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A closer look at spatial 
dimensions:



7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

30

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

A closer look at spatial 
dimensions:



7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7
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A closer look at spatial 
dimensions:



7

7

7x7 input (spatially)

assume 3x3 filter

applied with stride 2 
=> 3x3 output! 
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A closer look at spatial 
dimensions:



7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7
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A closer look at spatial 
dimensions:



7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

doesn’t fit!  
cannot apply 3x3 filter on 
7x7 input with stride 3.

7
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A closer look at spatial 
dimensions:



N


N
F


F


Output size:

(N - F) / stride + 1 

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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e.g. input 7x7

3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output?


(recall:)

(N - F) / stride + 1

In practice: Common to zero pad  
the border

0 0 0 0 0 0

0

0

0

0

36
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e.g. input 7x7

3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 

7x7 output! 

0 0 0 0 0 0

0

0

0

0

37
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In practice: Common to zero pad  
the border



e.g. input 7x7

3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 

7x7 output! 
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding 
with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

       F = 5 => zero pad with 2

       F = 7 => zero pad with 3


0 0 0 0 0 0

0

0

0

0

38
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In practice: Common to zero pad  
the border



Remember back to…  
E.g. 32x32 input convolved repeatedly with 5x5 filters  
shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t 
work well.

32

32

3

CONV,

ReLU

e.g. 6 
5x5x3 
filters 28

28

6

CONV,

ReLU

e.g. 10 
5x5x6 
filters

CONV,

ReLU

….

10
24

24

39
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Recap: Convolution Layer

(No padding, no strides) 

Convolving a 3 × 3 kernel over a 4 × 4 input using unit strides  
(i.e., i = 4, k = 3, s = 1 and p = 0). 

Image credit: Vincent Dumoulin and Francesco Visin 40



Computing the output values of a 2D discrete convolution  
i1  = i2  = 5, k1 = k2 = 3, s1 = s2 = 2, and p1 = p2 = 1 

Image credit: Vincent Dumoulin and Francesco Visin 41
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Figure 1.1: Computing the output values of a discrete convolution.
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Figure 1.2: Computing the output values of a discrete convolution for N = 2,
i1 = i2 = 5, k1 = k2 = 3, s1 = s2 = 2, and p1 = p2 = 1.
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Examples 
time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2


Output volume size: ?

42
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Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2


Output volume size: 

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Examples 
time:

43
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Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2


Number of parameters in this layer?

Examples 
time:

44
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Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2


Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params     (+1 for bias)


=> 76*10 = 760

Examples 
time:
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Common settings:


K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 5, S = 2, P = ? (whatever fits)

- F = 1, S = 1, P = 0

47
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(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV

with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

48
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49

Example:  
CONV layer  
in PyTorch 

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
PyTorch is licensed under BSD 3-clause. 



The brain/neuron view of CONV 
Layer

32

32

3

32x32x3 image

5x5x3 filter

1 number:  
the result of taking a dot product between 
the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)

50
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32

32

3

32x32x3 image

5x5x3 filter

1 number:  
the result of taking a dot product between 
the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local 
connectivity... 

51
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The brain/neuron view of CONV 
Layer



32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:

1. Each is connected to a small region in the input

2. All of them share parameters


“5x5 filter” -> “5x5 receptive field for each neuron”28

28

52
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The brain/neuron view of CONV 
Layer



32

32

3

28

28

E.g. with 5 filters,

CONV layer consists of 
neurons arranged in a 3D grid

(28x28x5)


There will be 5 different 
neurons all looking at the same 
region in the input volume5
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The brain/neuron view of CONV 
Layer
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slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Activation Functions



Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

55
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Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron


3 problems:

1. Saturated neurons “kill” the 
gradients


2. Sigmoid outputs are not zero-
centered


3. exp() is a bit compute expensive

Activation Functions

56
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x) 

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice  
(e.g. 6x)

ReLU 
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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59

two more layers to go: POOL/FC

59
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Pooling layer

- makes the representations smaller and more manageable 

- operates over each activation map independently:


60
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Max Pooling


6 8

3 4

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4
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Common settings:


F = 2, S = 2

F = 3, S = 2
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64

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks


64
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Case studies
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Case Study: LeNet-5 [LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Input: 227x227x3 images


First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images


First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96] 

Q: What is the total number of parameters in this layer?

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images


First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images

After CONV1: 55x55x96


Second layer (POOL1): 3x3 filters applied at stride 2


Q: what is the output volume size? Hint: (55-3)/2+1 = 27

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images

After CONV1: 55x55x96


Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96


Q: what is the number of parameters in this layer?

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images

After CONV1: 55x55x96


Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

...

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Full (simplified) AlexNet architecture:

[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: AlexNet
[Krizhevsky et al. 2012]
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

Details/Retrospectives:  
- first use of ReLU

- used Norm layers (not common 
anymore)

- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Case Study: ZFNet [Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1

and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

(not counting biases)
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

(not counting biases)
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

(not counting biases) Note:


Most memory is in 
early CONV


 

 
 

Most params are

in late FC

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters
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[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)


slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: GoogLeNet
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Slide from Kaiming He’s recent presentation https://www.youtube.com/
watch?v=1PGLj-uKT1w 

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

ILSVRC 2015 winner 
(3.6% top 5 error)


Case Study: ResNet [He et al., 2015]

https://www.youtube.com/watch?v=1PGLj-uKT1w
https://www.youtube.com/watch?v=1PGLj-uKT1w
https://www.youtube.com/watch?v=1PGLj-uKT1w
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ILSVRC 2015 winner 
(3.6% top 5 error)


(slide from Kaiming He’s recent presentation)

2-3 weeks of training 
on 8 GPU machine


at runtime: faster 
than a VGGNet! (even 
though it has 8x 
more layers)slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: ResNet [He et al., 2015]
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224x224x3

spatial dimension 
only 56x56!

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

Case Study: ResNet [He et al., 2015]
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Case Study Bonus: DeepMind’s  
AlphaGo

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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policy network: 
[19x19x48] Input

CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Summary


- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like 


[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX 
      where N is usually up to ~5, M is large, 0 <= K <= 2.


- but recent advances such as ResNet/GoogLeNet 
challenge this paradigm

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 



89

Understanding ConvNets



http://www.image-net.org/

Input 
ImageInput 

ImageInput 
Image

96 
filters

RGB Input Image

224 x 224 x 3

7x7x3 Convolution

3x3 Max Pooling

Down Sample 4x


55 x 55 x 96

256 
filters

5x5x96 Convolution

3x3 Max Pooling

Down Sample 4x


13 x 13 x 256

354 
filters

3x3x256 Convolution

13 x 13 x 354

354 
filters

3x3x354 Convolution

13 x 13 x 354

256 
filters

3x3x354 Convolution

3x3 Max Pooling

Down Sample 2x


6 x 6 x 256

Standard

4096 Units

Standard

4096 Units

Logistic

Regression


≈1000 Classes

slide by Yisong Yue

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf



Visualizing CNN (Layer 1)

slide by Yisong Yue 91

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf



Visualizing CNN (Layer 2)

Top Image PatchesPart that Triggered Filter

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

slide by Yisong Yue 92



Visualizing CNN (Layer 3)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 93

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf



Visualizing CNN (Layer 4)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 94

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf



Visualizing CNN (Layer 5)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 95

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
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Tips and Tricks
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• Shuffle the training samples


• Use Dropoout and Batch 
Normalization for regularization
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Input representation

• Centered (0-mean) RGB values. 

slide by Alex Krizhevsky

“Given a rectangular image, we first rescaled 
the image such that the shorter side was of 
length 256, and then cropped out the central 
256×256 patch from the resulting image”
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Data Augmentation
• The neural net has 60M  

real-valued parameters and 
650,000 neurons 


• It overfits a lot. Therefore, they 
train on 224x224 patches 
extracted randomly from 
256x256 images, and also 
their horizontal reflections. 

slide by Alex Krizhevsky

“This increases the size of our training set 
by a factor of 2048, though the resulting 
training examples are, of course, highly 
inter- dependent.” [Krizhevsky et al. 2012]
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Data Augmentation
• Alter the intensities of the 

RGB channels in training 
images. 

slide by Alex Krizhevsky

“Specifically, we perform PCA on the set of 
RGB pixel values throughout the ImageNet 
training set. To each training image, we add 
multiples of the found principal components, 
with magnitudes proportional to the corres. 
ponding eigenvalues times a random variable 
drawn from a Gaussian with mean zero and 
standard deviation 0.1…This scheme 
approximately captures an important property 
of natural images, namely, that object identity 
is invariant to changes in the intensity and 
color of the illumination. This scheme reduces 
the top-1 error rate by over 1%.”


[Krizhevsky et al. 2012]
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Data Augmentation

Horizontal flips

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Data Augmentation

Get creative!


Random mix/combinations of :

- translation

- rotation

- stretching

- shearing, 

- lens distortions, …  (go crazy)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

1. Train on 

Imagenet
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Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

1. Train on 

Imagenet

2. Small dataset:

feature extractor 

Freeze 
these


Train 
this
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Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

1. Train on 

Imagenet

2. Small dataset:

feature extractor 

Freeze 
these


Train 
this


3. Medium dataset:

finetuning 
more data = retrain more of 
the network (or all of it)

Freeze these


Train this
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Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

1. Train on 

Imagenet

2. Small dataset:

feature extractor 

Freeze 
these


Train 
this


3. Medium dataset:

finetuning 
more data = retrain more of 
the network (or all of it)

Freeze these


Train this


tip: use only ~1/10th of 
the original learning rate 
in finetuning top layer, 
and ~1/100th on 
intermediate layers
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Today ConvNets are everywhere

[Krizhevsky 2012]

Classification Retrieval

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 
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[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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NVIDIA Tegra X1

self-driving cars

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Taigman et al. 2014]

[Simonyan et al. 2014] [Goodfellow 2014]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Toshev, Szegedy 2014]

[Mnih 2013]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Ciresan et al. 2013] [Sermanet et al. 2011] 
[Ciresan et al.]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Denil et al. 2014]

[Turaga et al., 2010]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Vinyals et al., 2015]

Image 
Captioning

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere
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[Mask R-CNN: He, Gkioxari, Dollár, Girshick 2017]

Detection + Segmentation = Semantic Segmentation

 
Today ConvNets are everywhere

self-driving cars

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s
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[DensePose: Güler, Neverova, Kokkinos 2018]

Pose estimation

 
Today ConvNets are everywhere

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s
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[McKinney et al. 2020]

Cancer detection

 
Today ConvNets are everywhere

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s
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Open challenges for remote sensing

 
Today ConvNets are everywhere

https://spacenet.ai/
https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s
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reddit.com/r/deepdream

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

 
Today ConvNets are everywhere



Next Lecture: 
Support Vector Machines

122


