
Erkut Erdem // Hacettepe University // Fall 2023

Lecture 14:

Deep Convolutional Networks

AIN311

Fundamentals of  
Machine Learning

Illustration:detail from the visualization of ResNet-50 conv2 // Graphcore

Last time… Three key ideas
• (Hierarchical) Compositionality

- Cascade of non-linear transformations
- Multiple layers of representations

• End-to-End Learning

- Learning (goal-driven) representations
- Learning to feature extract

• Distributed Representations

- No single neuron “encodes” everything
- Groups of neurons work together

slide by Dhruv Batra 2

3

Last time… Intro. to Deep Learning

slide by M
arc’Aurelio Ranzato, Yann LeCun

Last time… Intro. to Deep Learning

4

slide by M
arc’Aurelio Ranzato, Yann LeCun

Deep Convolutional  
Neural Networks

5

Convolutions

slide by Yisong Yue 6

Convolution Filters

7

slide by Yisong Yue

Gabor Filters

8

slide by Yisong Yue

Gaussian Blur Filters

9

slide by Yisong Yue

Convolutional Neural Networks

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

10

32

32

3

Convolution Layer

32x32x3 image

width

height

depth

11

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image

i.e. “slide over the image spatially,
computing dot products”

Convolution Layer

12

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image

i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Convolution Layer

13

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolution Layer

14

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Convolution Layer

15

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter
Convolution Layer

16

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6
separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

17

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3
28

28

6

CONV,

ReLU

e.g. 6
5x5x3
filters

Preview: ConvNet is a sequence of
Convolutional Layers, interspersed with
activation functions

18

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Preview: ConvNet is a sequence of
Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,

ReLU

e.g. 6
5x5x3
filters 28

28

6

CONV,

ReLU

e.g. 10
5x5x6
filters

CONV,

ReLU

….

10
24

24

19

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Preview [From recent Yann
LeCun slides]

20

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

[From recent Yann
LeCun slides]Preview

21

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

example 5x5 filters

(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication
and sum of a filter and the
signal (image)

one filter =>

one activation map

22

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

23

Preview

23

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

24

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

7

7

7x7 input (spatially)

assume 3x3 filter

25

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7
7x7 input (spatially)

assume 3x3 filter

7

26

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7
7x7 input (spatially)

assume 3x3 filter

7

27

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7
7x7 input (spatially)

assume 3x3 filter

7

28

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7x7 input (spatially)

assume 3x3 filter

=> 5x5 output

7

7

29

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

30

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

31

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7

7

7x7 input (spatially)

assume 3x3 filter

applied with stride 2
=> 3x3 output!

32

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

33

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

7

34

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

A closer look at spatial
dimensions:

N

N
F

F

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

35

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

In practice: Common to zero pad  
the border

0 0 0 0 0 0

0

0

0

0

36

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

37

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

In practice: Common to zero pad  
the border

e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding
with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

 F = 5 => zero pad with 2

 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

38

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

In practice: Common to zero pad  
the border

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters  
shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t
work well.

32

32

3

CONV,

ReLU

e.g. 6
5x5x3
filters 28

28

6

CONV,

ReLU

e.g. 10
5x5x6
filters

CONV,

ReLU

….

10
24

24

39

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Recap: Convolution Layer

(No padding, no strides)

Convolving a 3 × 3 kernel over a 4 × 4 input using unit strides  
(i.e., i = 4, k = 3, s = 1 and p = 0).

Image credit: Vincent Dumoulin and Francesco Visin 40

Computing the output values of a 2D discrete convolution  
i1 = i2 = 5, k1 = k2 = 3, s1 = s2 = 2, and p1 = p2 = 1

Image credit: Vincent Dumoulin and Francesco Visin 41

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

0

2

0

1

2

1

2

0

2

9.0

10.0

12.0

6.0

17.0

12.0

14.0

19.0

17.0

Figure 1.1: Computing the output values of a discrete convolution.

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

Figure 1.2: Computing the output values of a discrete convolution for N = 2,
i1 = i2 = 5, k1 = k2 = 3, s1 = s2 = 2, and p1 = p2 = 1.

7

Examples
time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

42

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Examples
time:

43

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples
time:

44

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

Examples
time:

45

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

46

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 5, S = 2, P = ? (whatever fits)

- F = 1, S = 1, P = 0

47

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV

with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

48

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

49

Example:  
CONV layer  
in PyTorch

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

PyTorch is licensed under BSD 3-clause.

The brain/neuron view of CONV
Layer

32

32

3

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)

50

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local
connectivity...

51

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

The brain/neuron view of CONV
Layer

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:

1. Each is connected to a small region in the input

2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

52

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

The brain/neuron view of CONV
Layer

32

32

3

28

28

E.g. with 5 filters,

CONV layer consists of
neurons arranged in a 3D grid

(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume5

53

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

The brain/neuron view of CONV
Layer

54

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Activation Functions

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

55

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

Activation Functions

56

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]

57

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice  
(e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

58

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

59

two more layers to go: POOL/FC

59

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Pooling layer

- makes the representations smaller and more manageable

- operates over each activation map independently:

60

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

6 8

3 4

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

61

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

62

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Common settings:

F = 2, S = 2

F = 3, S = 2

63

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

64

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

64

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

65

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

66

Case studies

67

Case Study: LeNet-5 [LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

68

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

69

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

70

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

71

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

72

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

73

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

74

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

...

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

75

Full (simplified) AlexNet architecture:

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

76

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU

- used Norm layers (not common
anymore)

- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

77

Case Study: ZFNet [Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

78

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

79

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

(not counting biases)

80

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

(not counting biases)

81

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases) Note:

Most memory is in
early CONV

 

 
 

Most params are

in late FC

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

82

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: GoogLeNet

83

Slide from Kaiming He’s recent presentation https://www.youtube.com/
watch?v=1PGLj-uKT1w

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

ILSVRC 2015 winner
(3.6% top 5 error)

Case Study: ResNet [He et al., 2015]

https://www.youtube.com/watch?v=1PGLj-uKT1w
https://www.youtube.com/watch?v=1PGLj-uKT1w
https://www.youtube.com/watch?v=1PGLj-uKT1w

84

ILSVRC 2015 winner
(3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training
on 8 GPU machine

at runtime: faster
than a VGGNet! (even
though it has 8x
more layers)slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: ResNet [He et al., 2015]

85

224x224x3

spatial dimension
only 56x56!

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Case Study: ResNet [He et al., 2015]

86

Case Study Bonus: DeepMind’s  
AlphaGo

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

87

policy network:
[19x19x48] Input

CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

88

Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
challenge this paradigm

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

89

Understanding ConvNets

http://www.image-net.org/

Input
ImageInput

ImageInput
Image

96
filters

RGB Input Image

224 x 224 x 3

7x7x3 Convolution

3x3 Max Pooling

Down Sample 4x

55 x 55 x 96

256
filters

5x5x96 Convolution

3x3 Max Pooling

Down Sample 4x

13 x 13 x 256

354
filters

3x3x256 Convolution

13 x 13 x 354

354
filters

3x3x354 Convolution

13 x 13 x 354

256
filters

3x3x354 Convolution

3x3 Max Pooling

Down Sample 2x

6 x 6 x 256

Standard

4096 Units

Standard

4096 Units

Logistic

Regression

≈1000 Classes

slide by Yisong Yue

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 1)

slide by Yisong Yue 91

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 2)

Top Image PatchesPart that Triggered Filter

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

slide by Yisong Yue 92

Visualizing CNN (Layer 3)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 93

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 4)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 94

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 5)

Top Image PatchesPart that Triggered Filter

slide by Yisong Yue 95

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

96

97

Tips and Tricks

98

• Shuffle the training samples

• Use Dropoout and Batch
Normalization for regularization

99

Input representation

• Centered (0-mean) RGB values.

slide by Alex Krizhevsky

“Given a rectangular image, we first rescaled
the image such that the shorter side was of
length 256, and then cropped out the central
256×256 patch from the resulting image”

100

Data Augmentation
• The neural net has 60M  

real-valued parameters and
650,000 neurons

• It overfits a lot. Therefore, they
train on 224x224 patches
extracted randomly from
256x256 images, and also
their horizontal reflections.

slide by Alex Krizhevsky

“This increases the size of our training set
by a factor of 2048, though the resulting
training examples are, of course, highly
inter- dependent.” [Krizhevsky et al. 2012]

101

Data Augmentation
• Alter the intensities of the

RGB channels in training
images.

slide by Alex Krizhevsky

“Specifically, we perform PCA on the set of
RGB pixel values throughout the ImageNet
training set. To each training image, we add
multiples of the found principal components,
with magnitudes proportional to the corres.
ponding eigenvalues times a random variable
drawn from a Gaussian with mean zero and
standard deviation 0.1…This scheme
approximately captures an important property
of natural images, namely, that object identity
is invariant to changes in the intensity and
color of the illumination. This scheme reduces
the top-1 error rate by over 1%.”

[Krizhevsky et al. 2012]

102

Data Augmentation

Horizontal flips

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

103

Data Augmentation

Get creative!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, … (go crazy)

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

104

Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1. Train on

Imagenet

105

Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1. Train on

Imagenet

2. Small dataset:

feature extractor

Freeze
these

Train
this

106

Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1. Train on

Imagenet

2. Small dataset:

feature extractor

Freeze
these

Train
this

3. Medium dataset:

finetuning
more data = retrain more of
the network (or all of it)

Freeze these

Train this

107

Transfer Learning with ConvNets

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1. Train on

Imagenet

2. Small dataset:

feature extractor

Freeze
these

Train
this

3. Medium dataset:

finetuning
more data = retrain more of
the network (or all of it)

Freeze these

Train this

tip: use only ~1/10th of
the original learning rate
in finetuning top layer,
and ~1/100th on
intermediate layers

108

 
Today ConvNets are everywhere

[Krizhevsky 2012]

Classification Retrieval

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

109

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

110

NVIDIA Tegra X1

self-driving cars

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

111

[Taigman et al. 2014]

[Simonyan et al. 2014] [Goodfellow 2014]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

112

[Toshev, Szegedy 2014]

[Mnih 2013]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

113

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

114

[Denil et al. 2014]

[Turaga et al., 2010]

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

115

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

116

[Vinyals et al., 2015]

Image
Captioning

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

117

[Mask R-CNN: He, Gkioxari, Dollár, Girshick 2017]

Detection + Segmentation = Semantic Segmentation

 
Today ConvNets are everywhere

self-driving cars

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s

118

[DensePose: Güler, Neverova, Kokkinos 2018]

Pose estimation

 
Today ConvNets are everywhere

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s

119

[McKinney et al. 2020]

Cancer detection

 
Today ConvNets are everywhere

https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s

120

Open challenges for remote sensing

 
Today ConvNets are everywhere

https://spacenet.ai/
https://www.youtube.com/watch?v=OOT3UIXZztE&t=40s

121

reddit.com/r/deepdream

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

 
Today ConvNets are everywhere

Next Lecture:
Support Vector Machines

122

