AIN311

 Madamentals of 2,0W)

Lecture 145:3 Deep Convolutional Networks

Last time... Three key ideas

- (Hierarchical) Compositionality
- Cascade of non-linear transformations
- Multiple layers of representations
- End-to-End Learning
- Learning (goal-driven) representations
- Learning to feature extract
- Distributed Representations
- No single neuron "encodes" everything
- Groups of neurons work together

Last time... Intro. to Deep Learning

Last time... Intro. to Deep Learning

- "Shallow" models

- Deep models

Deep Convolutional Neural Networks

Convolutions

- Images typically have invariant patterns - E.g., directional gradients are translational invariant:

- Apply convolution to local sliding windows

Convolution Filters

- Applies to an image patch x
- Converts local window into single value
- Slide across image

Local Image Patch

Left-to-Right
Edge Detector

-1	0	+1	
-1	0	+1	
-1	0	+1	
W			

Gabor Filters

- Most common low-level convolutions for computer vision

http://en.wikipedia.org/wiki/Gabor filter

Gaussian Blur Filters

- Weights decay according to Gaussian Distribution - Variance term controls radius

Example W:

Apply per RGB Channel

http://en.wikipedia.org/wiki/Gaussian blur

Convolutional Neural Networks

Convolution Layer

$32 \times 32 \times 3$ image

Convolution Layer

32x32x3 image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Filters always extend the full depth of the input volume

$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

32
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

Convolution Layer

consider a second, green filter

32x32x3 image $5 \times 5 \times 3$ filter
convolve (slide) over all spatial locations
activation maps

For example, if we had $65 x 5$ filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

one filter =>

one activation map

example 5×5 filters

 (32 total)We call the layer convolutional because it is related to convolution of two signals:
$f[x, y] * g[x, y]=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} f\left[n_{1}, n_{2}\right] \cdot g\left[x-n_{1}, y-n_{2}\right]$
elementwise multiplication and sum of a filter and the signal (image)

Preview

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter
=> 5×5 output

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 2

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 2
=> 3×3 output!

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride $\mathbf{3}$?

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter applied with stride 3 ?
doesn't fit! cannot apply 3×3 filter on 7×7 input with stride 3.

N

Output size:
($\mathrm{N}-\mathrm{F}$) / stride +1
e.g. $N=7, F=3$:
$\mathrm{N} \quad$ stride $1=>(7-3) / 1+1=5$ stride $2=>(7-3) / 2+1=3$
stride $3=>(7-3) / 3+1=2.33: \backslash$

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
(recall:)
$(\mathrm{N}-\mathrm{F}) /$ stride +1

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border $=>$ what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with ($F-1$)/2. (will preserve size spatially)
e.g. $F=3=>$ zero pad with 1
$F=5 \Rightarrow>$ zero pad with 2
F $=7 \Rightarrow>$ zero pad with 3

Remember back to...

E.g. 32×32 input convolved repeatedly with 5×5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Recap: Convolution Layer

$$
f=W x
$$

$$
W=
$$

$$
\left(\begin{array}{ccccccccccccccc}
w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\
0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} \\
0 & 0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} \\
w_{2,2}
\end{array}\right)
$$

(No padding, no strides)
Convolving a 3×3 kernel over a 4×4 input using unit strides (i.e., $i=4, k=3, s=1$ and $p=0$).

Computing the output values of a 2D discrete convolution

 $\mathrm{i}_{1}=\mathrm{i}_{2}=5, \mathrm{k}_{1}=\mathrm{k}_{2}=3, \mathrm{~s}_{1}=\mathrm{s}_{2}=2$, and $\mathrm{p}_{1}=\mathrm{p}_{2}=1$| 0_{0} | 0_{1} | ${ }_{2}$ | (1) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O_{2} | 32 | 30 | 2 | 1 | 0 | 0 ' |
| 0_{0} | 0_{1} | O_{2} | 1 | 3 | 1 | 0 |
| 0 | 3 | 1 | 2 | 2 | 3 | 0 I |
| 0 | 2 | 0 | 0 | 2 | 2 | 0 |
| 0 | 2 | 0 | 0 | 0 | 1 | |
| | | | | | | |

$\begin{array}{lllllll}0 & \mathbf{~} & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}$

-0	3	3	2	1	0	0	
0_{0}	0_{1}	0_{2}	1	3	1	0	
0_{2}	3_{2}	1_{0}	2	2	3	0	
0_{0}	2_{1}	0_{2}	0	2	2	0	
	0	2	0	0	0	1	0
	0	0	0	0	0	0	0
1							

0	1	2
2	2	0
0	1	2

Examples time:

Input volume: 32x32x3

105×5 filters with stride 1 , pad 2
Output volume size: ?

Examples time:

Input volume: 32x32x3

105×5 filters with stride 1 , pad 2
Output volume size:
$\left(32+2^{*} 2-5\right) / 1+1=32$ spatially, so $32 \times 32 \times 10$

Examples time:

Input volume: 32x32x3

105×5 filters with stride 1 , pad 2
Number of parameters in this layer?

Examples time:

Input volume: 32x32x3

105×5 filters with stride 1 , pad 2
Number of parameters in this layer?
each filter has $5 * 5 * 3+1=76$ params (+1 for bias
=> $76 * 10=760$

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$

$$
\begin{aligned}
\mathrm{K} & = \\
- & \text { (powers of } 2 \text {, e.g. } 32,64,128,512) \\
- & =3, S=1, P=1 \\
- & F=5, S=1, P=2 \\
- & F=5, S=2, P=? \text { (whatever fits) } \\
- & F=1, S=1, P=0
\end{aligned}
$$

- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1x1 convolution layers make perfect sense)

Example: CONV layer in PyTorch

CONV2D

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size $\left(N, C_{\text {in }}, H, W\right)$ and output $\left(N, C_{\text {out }}, H_{\text {out }}, W_{\text {out }}\right)$ can be precisely described as:

$$
\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{\text {in }}-1} \operatorname{weight}\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)
$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

This module supports TensorFloat32.

- stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit padding on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
- At groups=1, all inputs are convolved to all outputs.
- At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels and producing half the output channels, and both subsequently concatenated.
- At groups= in_channels, each input channel is convolved with its own set of filters (of size $\frac{\text { out_channels }}{\text { in_channels }}$).

The parameters kernel_size, stride, padding, dilation can either be:

- a single int - in which case the same value is used for the height and width dimension
- a tuple of two ints - in which case, the first int is used for the height

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

28 An activation map is a 28×28 sheet of neuron outputs:

1. Each is connected to a small region in the input
2. All of them share parameters
" 5×5 filter" -> " 5×5 receptive field for each neuron"

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Activation Functions

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

$\boldsymbol{t a n h} \tanh (x)$

Activation Functions

$\sigma(x)=1 /\left(1+e^{-x}\right)$

- \quad Squashes numbers to range $[0,1]$

- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zerocentered
3. $\exp ()$ is a bit compute expensive

Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(
[LeCun et al., 1991]

Activation Functions - Computes $\mathbf{f}(\mathbf{x})=\boldsymbol{\operatorname { m a x }}(\mathbf{0}, \mathbf{x})$

- Does not saturate (in +region)

- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU
 (Rectified Linear Unit)

two more layers to go: POOL/FC

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling

Single depth slice

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires three hyperparameters:
- their spatial extent F,
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Common settings:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$

$$
\begin{aligned}
& F=2, S=2 \\
& F=3, S=2
\end{aligned}
$$

- Requires three hyperparameters:
- their spatial extent F,
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case studies

Case Study: LeNet-5 ${ }^{\text {[Lecun etal, 1998] }}$

Conv filters were 5×5, applied at stride 1
Subsampling (Pooling) layers were $2 x 2$ applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 9611×11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: $(227-11) / 4+1=55$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 9611×11 filters applied at stride 4
=>
Output volume [55x55x96]
Q: What is the total number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 9611×11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: $\left(11^{*} 11^{*} 3\right)^{*} 96=35 K$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: $227 \times 227 \times 3$ images
After CONV1: 55x55x96

Second layer (POOL1): 3×3 filters applied at stride 2
Q: what is the output volume size? Hint: $(55-3) / 2+1=27$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: $227 \times 227 \times 3$ images
After CONV1: 55x55x96

Second layer (POOL1): 3×3 filters applied at stride 2 Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3×3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: $227 \times 227 \times 3$ images
After CONV1: $55 \times 55 \times 96$
After POOL1: 27x27x96

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27×27×96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[$13 \times 13 \times 384$] CONV4: 3843×3 filters at stride 1, pad 1
[$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27×27×96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 3843×3 filters at stride 1, pad 1
[13x13x384] CONV4: 3843×3 filters at stride 1, pad 1
[$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay $5 \mathrm{e}-4$
- 7 CNN ensemble: 18.2\% -> 15.4\%

Case Study: ZFNet

Input Image

AlexNet but:
CONV1: change from (11×11 stride 4) to (7×7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3×3 CONV stride 1, pad 1 and 2×2 MAX POOL stride 2

best model

11.2\% top 5 error in ILSVRC 2013
 ->
 7.3\% top 5 error

ConvNet Configuration					
A	A-LRN	B	C	D	E
$\begin{gathered} \hline 11 \text { weight } \\ \text { layers } \end{gathered}$	11 weight layers	$\begin{gathered} 13 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \end{gathered}$	$\begin{gathered} 19 \text { weight } \\ \text { layers } \end{gathered}$
input (224×224 RGB imag $)$					
conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { LRN } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool					
conv3-128	conv3-128	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	conv3-256 conv3-256	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-25 } \\ & \hline \text { conv1-256 } \end{aligned}$	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv1-512	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv1-512	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

(not counting biases)

INPUT: [224x224x3] memory: $224^{*} 224^{*} 3=150 \mathrm{~K}$ params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3^{*} 3\right)^{*} 64=1,728$
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$ POOL2: [112x112x64] memory: $112 * 112 * 64=800 \mathrm{~K}$ params: 0
CONV3-128: [112x112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: $[112 \times 112 \times 128]$ memory: $112^{* 112 * 128=1.6 \mathrm{M}}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$ POOL2: [56x56x128] memory: $56 * 56 * 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$ POOL2: [28x28x256] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ POOL2: [14×14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: $14^{* 14 * 512=100 K ~ p a r a m s: ~}(3 * 3 * 512)^{*} 512=2,359,296$ CONV3-512: [14x14×512] memory: $14^{* 1} 4^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ CONV3-512: [14x14x512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ POOL2: [7x7x512] memory: $7^{*} 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7 * 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

ConvNet Configuration			
B	C	D	
13 weight layers	16 weight layers	16 weight layers	19
put (224 $\times 224$ RGB image			
$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	conv3-64 conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	cc
maxpool			
$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	co co
maxpool			
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	co co co
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	co co co
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	co
maxpool			
FC-4096			
FC-4096			
FC-1000			
soft-max			

(not counting biases)

INPUT: [224x224x3] memory: $224 * 224 * 3=150 \mathrm{~K}$ params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3^{*} 3\right)^{*} 64=1,728$
CONV3-64: [224x224x64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$ POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [112x112x128] memory: $112^{* 112} 2^{* 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$ POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28x256] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ POOL2: [14×14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: $14^{* 14 * 512=100 K ~ p a r a m s: ~}(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14×512] memory: $14^{* 1} 4^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$

ConvNet Configuration			
B	C	D	
13 weight	16 weight	16 weight	19
put (224 $\times 224 \mathrm{RGB}$ image			
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	
maxpool			
conv3-128	conv3-128	conv3-128	co:
conv3-128	conv3-128	conv3-128	
maxpool			
conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	
	conv1-256	conv3-256	
maxpool			
${ }_{\text {conver }}$ conv3-512	conv3-512	conv3-512	
	conv3-512	conv3-512	
	conv1-512	conv3-512	
maxpool			
conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	o
	conv1-512	conv3-512	
maxpool			
FC-4096			
FC-4096			
FC-1000			

INPUT: [224x224x3] memory: $224^{*} 224 * 3=150 \mathrm{~K}$ params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3^{*} 3\right)^{*} 64=1,728$
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params. (($\left.^{*} \mathbf{J}^{*} 64\right)^{*} 64=36,864$ POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$ CONV3-128: [112x112x128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$ POOL2: [56x56x128] memory: $56 * 56 * 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3 * 3^{*} 128\right) * 256=294,912$ CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$ CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$ POOL2: [28x28x256] memory: $28^{*} 28 * 256=200 \mathrm{~K}$ params: 0 CONV3-512: [28x28×512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$ CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3 * 512\right)^{*} 512=2,359,296$ CONV3-512: [28x28x512] memory: $28^{* 2} 88^{* 512=400 \mathrm{~K} \text { params: }\left(3^{*} 3 * 512\right)^{*} 512=2,359,296, ~}$ POOL2: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: 0 CONV3-512: [14x14x512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3 * 512\right)^{*} 512=2,359,296$ CONV3-512: [14x14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

Case Study: GoogLeNet ${ }^{[\text {Sregeged etal, } 2014]}$

Case Study: ResNet [He et al, 2015] ILSVRC 2015 winner (3.6\% top 5 error)

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11\% better than 2nd
- COCO Segmentation: 12\% better than 2nd

Slide from Kaiming He's recent presentation https://www.youtube.com/ watch?v=1PGLj-uKT1w

Case Study: ResNet [He et al, 2015] ILSVRC 2015 winner (3.6\% top 5 error)

2-3 weeks of training on 8 GPU machine
at runtime: faster than a VGGNet! (even though it has $8 x$ more layers)
(slide from Kaiming He's recent presentation)

Case Study: ResNet [He et al., 2015]

34-layer residual

spatial dimension only 56×56 !

Case Study Bonus: DeepMind's AlphaGo

b Tree evaluation from value net

c Tree evaluation from rollouts

d
Policy network

e Percentage of simulations

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5 $\times 5$ with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1 , again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 , with a different bias for each position, and applies a softmax function. The match version of AlphaGo used $k=192$ filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with $k=128,256$ and 384 filters.

policy network:

[19x19x48] Input
CONV1: 1925×5 filters, stride 1, pad $2=>[19 \times 19 \times 192]$
CONV2..12: 1923×3 filters, stride 1, pad $1=>$ [19×19×192]
CONV: 11×1 filter, stride 1 , pad $0=>$ [19x19] (probability map of promising moves)

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like
[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to $\sim 5, \mathrm{M}$ is large, $0<=\mathrm{K}<=2$.
- but recent advances such as ResNet/GoogLeNet challenge this paradigm

Understanding ConvNets

http://www.image-net.org/ http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 1)

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 2)

Part that Triggered Filter

Top Image Patches
http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 3)

Part that Triggered Filter

Top Image Patches
http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 4)

Part that Triggered Filter

Top Image Patches
http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Visualizing CNN (Layer 5)

Part that Triggered Filter

Top Image Patches
http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

Deep Visualization Toolbox

yosinski.com/deepvis

\#deepvis

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

Tips and Tricks

- Shuffle the training samples

- Use Dropoout and Batch Normalization for regularization

Input representation

"Given a rectangular image, we first rescaled the image such that the shorter side was of length 256, and then cropped out the central 256×256 patch from the resulting image"

- Centered (0-mean) RGB values.

-

An input image (256x256)
Minus sign
The mean input image

Data Augmentation

- The neural net has 60M real-valued parameters and 650,000 neurons
- It overfits a lot. Therefore, they train on 224×224 patches extracted randomly from 256×256 images, and also their horizontal reflections.

"This increases the size of our training set by a factor of 2048, though the resulting training examples are, of course, highly inter- dependent."

Data Augmentation

- Alter the intensities of the RGB channels in training images.
"Specifically, we perform PCA on the set of RGB pixel values throughout the ImageNet training set. To each training image, we add multiples of the found principal components, with magnitudes proportional to the corres. ponding eigenvalues times a random variable drawn from a Gaussian with mean zero and standard deviation 0.1...This scheme approximately captures an important property of natural images, namely, that object identity is invariant to changes in the intensity and color of the illumination. This scheme reduces the top- 1 error rate by over 1%."

Data Augmentation

Horizontal flips

Data Augmentation

Get creative!
Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Transfer Learning with ConvNets

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

Transfer Learning with ConvNets

image	1. Train on Imagenet	image	feature extractor
conve 6		conv64	
${ }_{\text {couvve }}$		${ }_{\text {cosves }}$	
conv.128		conv128	
- ${ }^{\text {conv-128 }}$		${ }^{\text {convil28 }}$	
conv256			
conv26		conv256	
maxpol		maxpol	¢ Freeze
conv.512		convsi2	these
		convsin maxpool	
conv.512		conv.512	
${ }_{\text {maxpool }}^{\text {ecase }}$		${ }_{\text {maxalog }}$)
${ }^{\text {FCa4096 }}$		fram96)
(r.1000		Fsciliou	Tra
			this

Transfer Learning with ConvNets

image	1. Train on Imagenet	image	2. Small dataset: feature extractor	$\mathrm{imge}^{\text {ma }}$	3. Medium dataset:
${ }^{\text {conv. } 64}$		conv64		${ }^{\text {conve } 64}$	finetuning
conv6a		Comve ${ }^{\text {maxpol }}$		Conves	more data = retrain more of
convile		(eomvile		comver	the network (or all of it)
convil28 maxpool		conv128 maxpol		Comv128	the network (or all
conv256		conv25		Comv236	Freeze these
conve26		convers		conv26	
conv.512		conv.512	theese	conv.512	
conv:512		convsil		conv512	
conves12		maxpoil			
conv 512		convsis		comvisi2	
maxpol		maxpol		maxpool	
		+6.096)		
		-frc-1000 sotmax	Train	\%r.1000	- Train this
			this		

Transfer Learning with ConvNets

Today ConvNets are everywhere

Classification

Retrieval

[Krizhevsky 2012]

Today ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

[Farabet et al., 2012]

Today ConvNets are everywhere

NVIDIA Tegra X1
self-driving cars

Today ConvNets are everywhere

Today ConvNets are everywhere

[Toshev, Szegedy 2014]

[Mnih 2013]

Today ConvNets are everywhere

目鷘暂赞垅脏葬遭
诉摘而宅叐债塞
谌绽樟章新漳张
照罩兆策召遮折哲
针人员枕疸诊震振镇
郑佂芝枝支吱蜘知
止趾只面纸志挚

［Ciresan et al．2013］

［Sermanet et al．2011］ ［Ciresan et al．］

Today ConvNets are everywhere

[Turaga et al., 2010]

C caught this movie on the Sci-Fichannel recently. It actually turned out to be prety decent as far as B -list horrofsuspense films go. Two guys (one naive and one

1 just saw uis on a local independent station in the New York City area. The cast showed promise but when I saw the director, George Cosmotos, I became

 fate of social security, 47 mili
tuly, stunningly idiotic film.
Graphics is far from the best part of the game. This is the number one best TH game in the series. Next to Underground. It deserves strong love. It is an insane is ame. There are massive levels, massive unlockable characters.. it's just a massive game. Waste your money on this game. This is the kind of money that is

The first was good and original. I was a not bad horortcomedy movie. So I heard a second one was made and I had to watch it. What really makes this movie work
is sudd Neson's character and the sometimes clever script A A prety good seript tor a person who wrote the Final Destination flims and the direction was okay.

[Denil et al. 2014]

Today ConvNets are everywhere

Whale recognition, Kaggle Challenge

Mnih and Hinton, 2010

Today ConvNets are everywhere

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes with minor errors

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Somewhat related to the image

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the side of the road.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Image Captioning
[Vinyals et al., 2015]

Today ConvNets are everywhere

Detection + Segmentation $=$ Semantic Segmentation

self-driving cars
[Mask R-CNN: He, Gkioxari, Dollár, Girshick 2017]

Today ConvNets are everywhere

Pose estimation

DensePose:

Dense Human Pose Estimation In The Wild

Rıza Alp Güler * Natalia Neverova lasonas Kokkinos
INRIA, CentraleSupélec
Facebook Al Research
Facebook Al Research

[^0][DensePose: Güler, Neverova, Kokkinos 2018]

Today ConvNets are everywhere

Cancer detection

[McKinney et al. 2020]

Today ConvNets are everywhere

Open challenges for remote sensing

Today ConvNets are everywhere

reddit.com/r/deepdream

Next Lecture: Support Vector Machines

[^0]: * Riza Alp Güler was with Facebook Al Research during this work.

