Photo by Arthur Gretton, CMU Machine Learning Protestors at G20

Announcement

- Midterm exam will be held on Nov 29, 2023 at 09:40 (D1).
- No class next Monday, will use it as an office hour.

Last time...

AlexNet [Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[$55 \times 55 \times 96$] CONV1: 96 11x11 filters at stride 4, pad 0 [$27 \times 27 \times 96$] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13×13×256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 3843×3 filters at stride 1, pad 1 [13x13x384] CONV4: 3843×3 filters at stride 1, pad 1 [13x13x256] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2\% -> 15.4\%

Last time.. Understanding ConvNets

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

Last time... Data Augmentation

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,

- lens distortions, ...

Last time... Transfer Learning with Convolutional Networks

image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096
FC-1000
softmax

1. Train on Imagenet

image	2. Small dataset: feature extractor
conve 64	
maves ${ }^{\text {coseal }}$	
Conv128	
Conver ${ }^{\text {a }}$	
conv236	
Conv256	
conv.512	Freeze these
Conv: 512	
conv.512	
convsis	
maxpool	
(fC.096	
	- Train
	this

Today

- Support Vector Machines
- Large Margin Separation
- Optimization Problem
- Support Vectors

Recap: Binary Classification Problem

- Training data: sample drawn i.i.d. from set $X \subseteq \mathbb{R}^{N}$ according to some distribution D,

$$
S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right) \in X \times\{-1,+1\} .
$$

- Problem: find hypothesis $h: X \mapsto\{-1,+1\}$ in H (classifier) with small generalization error $R_{D}(h)$.
- Linear classification:
- Hypotheses based on hyperplanes.
- Linear separation in high-dimensional space.

Example: Spam

- Imagine 3 features (spam is "positive" class): 1. free (number of occurrences of "free")

2. money (occurrences of "money")
3. BIAS (intercept, always has value 1)

Binary Decision Rule

- In the space of feature vectors
- Examples are points
- Any weight vector is a hyperplane
- One side corresponds to $\mathrm{Y}=+1$
- Other corresponds to $Y=-1$

The perceptron algorithm

- Start with weight vector $=\overrightarrow{0}$
- For each training instance $\left(x_{i}, y_{i}^{*}\right)$:
- Classify with current weights

$$
y_{1}= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e. $y=y_{i}^{*}$), no change!
- If wrong: update

$$
w=w+y_{i}^{*} f\left(x_{i}\right)
$$

Properties of the perceptron algorithm

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is linearly separable, perceptron will eventually converge

Separable

Non-Separable

Problems with the perceptron algorithm

- Noise: if the data isn't linearly separable, no guarantees of convergence or accuracy

- Frequently the training data is linearly separable! Why?
- When the number of features is much larger than the number of data points, there is lots of flexibility
- As a result, Perceptron can significantly overfit the data
- Averaged perceptron is an algorithmic modification that helps with both issues
- Averages the weight vectors across all

 iterations

Linear Separators

-Which of these linear separators is optimal?

Support Vector Machines

Linear Separator

Large Margin Classifier

Review: Normal to a plane

Scale invariance

Scale invariance

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

Large Margin Classifier

$$
\frac{\left\langle x_{+}-x_{-}, w\right\rangle}{2\|w\|}=\frac{1}{2\|w\|}\left[\left[\left\langle x_{+}, w\right\rangle+b\right]-\left[\left\langle x_{-}, w\right\rangle+b\right]\right]=\frac{1}{\|w\|}
$$

Large Margin Classifier

$\langle w, x\rangle+b=-1$

optimization problem

$$
\underset{w, b}{\operatorname{maximize}} \frac{1}{\|w\|} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

Large Margin Classifier

optimization problem
$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$

Convex Programs for Dummies

- Primal optimization problem

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c_{i}(x) \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=f(x)+\sum_{i} \alpha_{i} c_{i}(x)
$$

- First order optimality conditions in x

$$
\partial_{x} L(x, \alpha)=\partial_{x} f(x)+\sum_{i} \alpha_{i} \partial_{x} c_{i}(x)=0
$$

- Solve for x and plug it back into L $\underset{\alpha}{\operatorname{maximize}} L(x(\alpha), \alpha)$
(keep explicit constraints)

Dual Problem

- Primal optimization problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]-1\right]
$$

Optimality in w, b is at saddle point with α

- Derivatives in w, b need to vanish

Dual Problem

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]-1\right]
$$

- Derivatives in w, b need to vanish

$$
\begin{aligned}
\partial_{w} L(w, b, a) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
\partial_{b} L(w, b, a) & =\sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Plugging terms back into L yields

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to $\sum_{i} \alpha_{i} y_{i}=0$ and $\alpha_{i} \geq 0$

Support Vector Machines

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

Support Vectors

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1
$$

Karush Kuhn Tucker Optimality condition

$$
\begin{aligned}
& \alpha_{i}=0 \\
& \alpha_{i}>0 \Longrightarrow y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]=1
\end{aligned}
$$

$$
\alpha_{i}\left[y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]-1\right]=0
$$

Properties

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
- Quadratic program
- We can replace the inner product by a kernel
- Keeps instances away from the margin

Example

Example

Number of Support Vectors: 3 (-ve: 2,+ve: 1) Total number of points: 15

Why Large Margins?

- Maximum robustness relative to uncertainty
- Symmetry breaking
- Independent of correctly classified instances
- Easy to find for easy problems

Watch: Patrick Winston, Support Vector Machines

https://www.youtube.com/watch?v= PwhiWxHK80

Next Lecture:
 Soft Margin Classification, Multi-class SVMs

