

Last time... Support Vector Machines

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

Last time... Support Vector Machines

optimization problem

Last time... Support Vector Machines

optimization problem
$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$

Last time... Support Vector Machines

$\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}$ subject to $y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right] \geq 1$

$$
w=\sum_{i} y_{i} \alpha_{i} x_{i}
$$

Last time... Large Margin Classifier

Today

- Soft margin classification
- Multi-class classification
- Introduction to kernels

Soft Margin Classification

Large Margin Classifier

$$
\begin{aligned}
& \text { linear function } \\
& f(x)=\langle w, x\rangle+b
\end{aligned}
$$

linear separator is impossible

Large Margin Classifier

minimum error separator
Theorem (Minsky \& Papert) is impossible
Finding the minimum error separating hyperplane is NP hard

Adding Slack Variables

minimize amount

Convex optimization problem

 of slack
Convex Programs for Dummies

- Primal optimization problem

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c_{i}(x) \leq 0
$$

- Lagrange function

$$
L(x, \alpha)=f(x)+\sum_{i} \alpha_{i} c_{i}(x)
$$

- First order optimality conditions in x

$$
\partial_{x} L(x, \alpha)=\partial_{x} f(x)+\sum_{i} \alpha_{i} \partial_{x} c_{i}(x)=0
$$

- Solve for x and plug it back into L $\underset{\alpha}{\operatorname{maximize}} L(x(\alpha), \alpha)$
(keep explicit constraints)

Adding Slack Variables

- Hard margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1
$$

- With slack variables

$$
\begin{aligned}
& \underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
& \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{aligned}
$$

Problem is always feasible. Proof: $w=0$ and $b=0$ and $\xi_{i}=1$ (also yields upper bound)

Dual Problem

- Primal optimization problem

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

- Lagrange function
$L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}$
Optimality in w, b, ξ is at saddle point with α, η
- Derivatives in w, b, ξ need to vanish

Dual Problem

- Lagrange function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left[y_{i}\left[\left\langle x_{i}, w\right\rangle+b\right]+\xi_{i}-1\right]-\sum_{i} \eta_{i} \xi_{i}
$$

- Derivatives in w, b need to vanish

$$
\begin{aligned}
\partial_{w} L(w, b, \xi, \alpha, \eta) & =w-\sum_{i} \alpha_{i} y_{i} x_{i}=0 \\
\partial_{b} L(w, b, \xi, \alpha, \eta) & =\sum_{i} \alpha_{i} y_{i}=0 \\
\partial_{\xi_{i}} L(w, b, \xi, \alpha, \eta) & =C-\alpha_{i}-\eta_{i}=0
\end{aligned}
$$

- Plugging terms back into L yields

Karush Kuhn Tucker Conditions

Solving the optimization problem

- Dual problem

$$
\begin{aligned}
& \underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i} \\
& \text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \in[0, C]
\end{aligned}
$$

- If problem is small enough (1000s of variables) we can use off-the-shelf solver (CVXOPT, CPLEX, OOQP, LOQO)
- For larger problem use fact that only SVs matter and solve in blocks (active set method).

Multi-class classification

Multi-class classification

Multi-class classification

One versus all classification

- Learn 3 classifiers:

- Predict label using:

$$
\hat{y} \leftarrow \arg \max _{k} w_{k} \cdot x+b_{k}
$$

- Any problems?
- Could we learn this dataset?

$$
\begin{array}{lll}
\bar{E} & \circ & \ddagger \\
= & \circ & \ddagger \\
= & \circ & \ddagger \\
= & \circ & \$
\end{array}
$$

Multi-class SVM

- Simultaneously learn 3 sets of weights:
- How do we guarantee the correct labels?
- Need new constraints!

The "score" of the correct class must be better than
 the "score" of wrong classes:

$$
w^{\left(y_{j}\right)} \cdot x_{j}+b^{\left(y_{j}\right)}>w^{(y)} \cdot x_{j}+b^{(y)} \quad \forall j, y \neq y_{j}
$$

Multi-class SVM

- As for the SVM, we introduce slack variables and maximize margin:

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{w}, b} \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)}+C \sum_{j} \xi_{j} \\
& \mathbf{w}^{\left(y_{j}\right)} \cdot \mathbf{x}_{j}+b^{\left(y_{j}\right)} \geq \mathbf{w}^{\left(y^{\prime}\right)} \cdot \mathbf{x}_{j}+b^{\left(y^{\prime}\right)}+1-\xi_{j}, \forall y^{\prime} \neq y_{j}, \quad \forall j \\
& \xi_{j} \geq 0, \quad \forall j
\end{aligned}
$$

> To predict, we use:
> $\hat{y} \leftarrow \arg \max _{k} w_{k} \cdot x+b_{k}$

Now can we learn it? \rightarrow

Kernels

Non-linear features

- Regression

We got nonlinear functions by preprocessing

- Perceptron
- Map data into feature space $x \rightarrow \phi(x)$
- Solve problem in this space
- Query replace $\left\langle x, x^{\prime}\right\rangle$ by $\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$ for code
- Feature Perceptron
- Solution in span of $\phi\left(x_{i}\right)$

Non-linear features

- Separating surfaces are Circles, hyperbolae, parabolae

Solving XOR

$\left(x_{1}, x_{2}\right)$

$$
\left(x_{1}, x_{2}, x_{1} x_{2}\right)
$$

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Quadratic Features

Quadratic Features in \mathbb{R}^{2}

$$
\Phi(x):=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

Dot Product

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\left\langle\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right),\left(x_{1}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime 2}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle^{2}
\end{aligned}
$$

Insight

Trick works for any polynomials of order via $\left\langle x, x^{\prime}\right\rangle^{d}$.

SVM with a polynomial Kernel visualization

> Created by:
> Udi Aharoni

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to $5 \cdot 10^{5}$ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works ...
Definition
A kernel function $k: X \times X \rightarrow \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle \text { for some feature map } \Phi .
$$

If $k\left(x, x^{\prime}\right)$ is much cheaper to compute than $\Phi(x) \ldots$

Recap: The Perceptron

initialize $w=0$ and $b=0$
repeat

$$
\begin{aligned}
& \text { if } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \leq 0 \text { then } \\
& \quad w \leftarrow w+y_{i} x_{i} \text { and } b \leftarrow b+y_{i}
\end{aligned}
$$

end if
until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} x_{i}$
- Classifier is linear combination of inner products $f(x)=\sum_{i \in I} y_{i}\left\langle x_{i}, x\right\rangle+b$

Recap: The Perceptron on features

initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data

$$
\text { if } \begin{gathered}
y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right) \leq 0 \text { then } \\
w^{\prime}=w+y_{i} \Phi\left(x_{i}\right) \\
b^{\prime}=b+y_{i}
\end{gathered}
$$

until $y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right)>0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} \phi\left(x_{i}\right)$
- Classifier is linear combination of

The Kernel Perceptron

initialize $f=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data
if $y_{i} f\left(x_{i}\right) \leq 0$ then

$$
f(\cdot) \leftarrow f(\cdot)+y_{i} k\left(x_{i}, \cdot\right)+y_{i}
$$

until $y_{i} f\left(x_{i}\right)>0$ for all i

- Nothing happens if classified correctly
- Weight vector is linear combination $w=\sum_{i \in I} y_{i} \phi\left(x_{i}\right)$
- Classifier is linear combination of inner products

$$
f(x)=\sum_{i \in I} y_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle+b=\sum_{i \in I} y_{i} k\left(x_{i}, x\right)+b
$$

Processing Pipeline

- Original data
- Data in feature space (implicit)
- Solve in feature space using kernels

Polynomial Kernels

Idea

- We want to extend $k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle^{2}$ to

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d} \text { where } c>0 \text { and } d \in \mathbb{N} .
$$

- Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum given by the kernel, i.e.

$$
k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d}=\sum_{i=0}^{m}\binom{d}{i}\left(\left\langle x, x^{\prime}\right\rangle\right)^{i} c^{d-i}
$$

Individual terms $\left(\left\langle x, x^{\prime}\right\rangle\right)^{i}$ are dot products for some $\Phi_{i}(x)$.

Kernel Conditions

Computability

We have to be able to compute $k\left(x, x^{\prime}\right)$ efficiently (much cheaper than dot products themselves).
"Nice and Useful" Functions
The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.
Symmetry
Obviously $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$ due to the symmetry of the dot product $\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=\left\langle\Phi\left(x^{\prime}\right), \Phi(x)\right\rangle$.
Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?

Mercer's Theorem

The Theorem

For any symmetric function $k: X \times X \rightarrow \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and which satisfies

$$
\int_{x_{\times x}} k\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) d x d x^{\prime} \geq 0 \text { for all } f \in L_{2}(X)
$$

there exist $\phi_{i}: X \rightarrow \mathbb{R}$ and numbers $\lambda_{i} \geq 0$ where

$$
k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right) \text { for all } x, x^{\prime} \in \mathcal{X}
$$

Interpretation

Double integral is the continuous version of a vector-matrix-vector multiplication. For positive semidefinite matrices we have

$$
\sum \sum k\left(x_{i}, x_{j}\right) \alpha_{i} \alpha_{j} \geq 0
$$

Properties

Distance in Feature Space

Distance between points in feature space via

$$
\begin{aligned}
d\left(x, x^{\prime}\right)^{2} & :=\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2} \\
& =\langle\Phi(x), \Phi(x)\rangle-2\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle+\left\langle\Phi\left(x^{\prime}\right), \Phi\left(x^{\prime}\right)\right\rangle \\
& =k(x, x)+k\left(x^{\prime}, x^{\prime}\right)-2 k\left(x^{\prime}, x\right)
\end{aligned}
$$

Kernel Matrix
To compare observations we compute dot products, so we study the matrix K given by

$$
K_{i j}=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)
$$

where x_{i} are the training patterns.

Similarity Measure

The entries $K_{i j}$ tell us the overlap between $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{j}\right)$, so $k\left(x_{i}, x_{j}\right)$ is a similarity measure.

Properties

K is Positive Semidefinite
Claim: $\alpha^{\top} K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^{m}$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$
\begin{aligned}
\sum_{i, j}^{m} \alpha_{i} \alpha_{j} K_{i j} & =\sum_{i, j}^{m} \alpha_{i} \alpha_{j}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle \\
& =\left\langle\sum_{i}^{m} \alpha_{i} \Phi\left(x_{i}\right), \sum_{j}^{m} \alpha_{j} \Phi\left(x_{j}\right)\right\rangle=\left\|\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right)\right\|^{2}
\end{aligned}
$$

Kernel Expansion

If w is given by a linear combination of $\Phi\left(x_{i}\right)$ we get

$$
\langle w, \Phi(x)\rangle=\left\langle\sum_{i=1}^{m} \alpha_{i} \Phi\left(x_{i}\right), \Phi(x)\right\rangle=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) .
$$

Examples

Examples of kernels $k\left(x, x^{\prime}\right)$
Linear
$\left\langle x, x^{\prime}\right\rangle$
Laplacian RBF
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|\right)$
Gaussian RBF
Polynomial
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|^{2}\right)$
$\left.\left(\left\langle x, x^{\prime}\right\rangle+c\right\rangle\right)^{d}, c \geq 0, d \in \mathbb{N}$
B-Spline
$B_{2 n+1}\left(x-x^{\prime}\right)$
Cond. Expectation $\quad \mathbf{E}_{c}\left[p(x \mid c) p\left(x^{\prime} \mid c\right)\right]$

Simple trick for checking Mercer's condition Compute the Fourier transform of the kernel and check that it is nonnegative.

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B_{3} Spline Kernel

Kernels in Computer Vision

- Features $x=$ histogram (of color, texture, etc)
- Common Kernels
- Intersection Kernel
- Chi-square Kernel

$$
\begin{aligned}
K_{\text {intersect }}(\boldsymbol{u}, \boldsymbol{v}) & =\sum_{i} \min \left(u_{i}, v_{i}\right) \\
K_{\chi^{2}}(\boldsymbol{u}, \boldsymbol{v}) & =\sum_{i} \frac{2 u_{i} v_{i}}{u_{i}+v_{i}}
\end{aligned}
$$

$K_{\text {linear }}(x, y)=x y$

Image credit: Subhransu Maji

Next Lecture:
 Kernel Trick for SVMs, Support Vector Regression

