

Last time... Soft-margin Classifier

minimum error separator
Theorem (Minsky \& Papert) is impossible
Finding the minimum error separating hyperplane is NP hard

Last time... Adding Slack Variables

$\xi_{i} \geq 0$
$\langle w, x\rangle+b \leq-1+\xi$

Last time... Adding Slack Variables

- for $0<\xi \leq 1$ point is between the margin and correctly classified
- for $\xi_{i} \geq 0$ point is misclassified *

$$
\langle w, x\rangle+b \leq-1+\xi
$$

minimize amount
Convex optimization problem

Last time... Adding Slack Variables

- Hard margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1
$$

- With slack variables

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

Problem is always feasible. Proof: $w=0$ and $b=0$ and $\xi_{i}=1$ (also yields upper bound)

Soft-margin classifier

- Optimization problem:

$$
\begin{array}{ll}
\underset{w, b}{\operatorname{minimize}} & \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{array}
$$

C is a regularization parameter:

- small C allows constraints to be easily ignored \rightarrow large margin
- large C makes constraints hard to ignore \rightarrow narrow margin
- $C=\infty$ enforces all constraints: hard margin

Last time... Multi-class SVM

- Simultaneously learn 3 sets of weights:
- How do we guarantee the correct labels?
- Need new constraints!

The "score" of the correct class must be better than
 the "score" of wrong classes:

$$
w^{\left(y_{j}\right)} \cdot x_{j}+b^{\left(y_{j}\right)}>w^{(y)} \cdot x_{j}+b^{(y)} \quad \forall j, y \neq y_{j}
$$

Last time... Multi-class SVM

- As for the SVM, we introduce slack variables and maximize margin:

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{w}, b} \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)}+C \sum_{j} \xi_{j} \\
& \mathbf{w}^{\left(y_{j}\right)} \cdot \mathbf{x}_{j}+b^{\left(y_{j}\right)} \geq \mathbf{w}^{\left(y^{\prime}\right)} \cdot \mathbf{x}_{j}+b^{\left(y^{\prime}\right)}+1-\xi_{j}, \forall y^{\prime} \neq y_{j}, \quad \forall j \\
& \xi_{j} \geq 0, \quad \forall j
\end{aligned}
$$

> To predict, we use:
> $\hat{y} \leftarrow \arg \max _{k} w_{k} \cdot x+b_{k}$

Now can we learn it? \rightarrow

Last time... Kernels

- Original data
- Data in feature space (implicit)
- Solve in feature space using kernels

Last time... Quadratic Features

Quadratic Features in \mathbb{R}^{2}

$$
\Phi(x):=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

Dot Product

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\left\langle\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right),\left(x_{1}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime 2}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle^{2} .
\end{aligned}
$$

Insight

Trick works for any polynomials of order via $\left\langle x, x^{\prime}\right\rangle^{d}$.

Last time.. Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to $5 \cdot 10^{5}$ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works ...
Definition
A kernel function $k: X \times X \rightarrow \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle \text { for some feature map } \Phi .
$$

If $k\left(x, x^{\prime}\right)$ is much cheaper to compute than $\Phi(x) \ldots$

Last time.. Example kernels

Examples of kernels $k\left(x, x^{\prime}\right)$
Linear
$\left\langle x, x^{\prime}\right\rangle$
Laplacian RBF
Gaussian RBF
Polynomial
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|\right)$
$\exp \left(-\lambda\left\|x-x^{\prime}\right\|^{2}\right)$
$\left.\left(\left\langle x, x^{\prime}\right\rangle+c\right\rangle\right)^{d}, c \geq 0, d \in \mathbb{N}$
B-Spline
$B_{2 n+1}\left(x-x^{\prime}\right)$
Cond. Expectation $\quad \mathbf{E}_{c}\left[p(x \mid c) p\left(x^{\prime} \mid c\right)\right]$

Simple trick for checking Mercer's condition Compute the Fourier transform of the kernel and check that it is nonnegative.

Today

- The Kernel Trick for SVMs
- Risk and Loss
- Support Vector Regression

The Kernel Trick for SVMs

The Kernel Trick for SVMs

- Linear soft margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

$$
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
$$

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}
$$

$$
\text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \in[0, C]
$$

- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle+b
$$

The Kernel Trick for SVMs

- Linear soft margin problem

$$
\begin{aligned}
& \underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
& \text { subject to } y_{i}\left[\left\langle w, \phi\left(x_{i}\right)\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{aligned}
$$

- Dual problem

$$
\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(x_{i}, x_{j}\right)+\sum_{i} \alpha_{i}
$$

$$
\text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \text { and } \alpha_{i} \in[0, C]
$$

- Support vector expansion

$$
f(x)=\sum_{i} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b
$$

And now with a narrower kernel

And now with a very wide kernel

Nonlinear Separation

- Increasing C allows for more nonlinearities
- Decreases number of errors
- SV boundary need not be contiguous
- Kernel width adjusts function class

Overfitting?

- Huge feature space with kernels: should we worry about overfitting?
- SVM objective seeks a solution with large margin
- Theory says that large margin leads to good generalization (we will see this in a couple of lectures)
- But everything overfits sometimes!!!
- Can control by:
- Setting C
- Choosing a better Kernel
- Varying parameters of the Kernel (width of Gaussian, etc.)

Risk and Loss

Loss function point of view

- Constrained quadratic program

$$
\begin{aligned}
& \underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \\
& \text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{aligned}
$$

- Risk minimization setting

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \frac{\max \left[0,1-y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right]\right]}{\text { empirical risk }}
$$

Follows from finding minimal slack variable for given (w, b) pair.

Soft margin as proxy for binary

- Soft margin loss max $(0,1-y f(x))$
- Binary loss $\{y f(x)<0\}$
binary loss function

convex upper bound

margin

More loss functions

- Huberized loss

$$
\begin{cases}0 & \text { if } f(x)>1 \\ \frac{1}{2}(1-f(x))^{2} & \text { if } f(x) \in[0,1] \\ \frac{1}{2}-f(x) & \text { if } f(x)<0\end{cases}
$$

- Soft margin

$$
\max (0,1-f(x))
$$

Risk minimization view

- Find function f minimizing classification error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[\{y f(x)>0\}]
$$

- Compute empirical average

$$
R_{\mathrm{emp}}[f]:=\frac{1}{m} \sum_{i=1}^{m}\left\{y_{i} f\left(x_{i}\right)>0\right\}
$$

- Minimization is nonconvex
- Overfitting as we minimize empirical error
- Compute convex upper bound on the loss
- Add regularization for capacity control
regularization

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Support Vector Regression

Regression Estimation

- Find function f minimizing regression error

$$
R[f]:=\mathbf{E}_{x, y \sim p(x, y)}[l(y, f(x))]
$$

- Compute empirical average

$$
R_{\text {emp }}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)
$$

Overfitting as we minimize empirical error

- Add regularization for capacity control

$$
R_{\mathrm{reg}}[f]:=\frac{1}{m} \sum_{i=1}^{m} l\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega[f]
$$

Squared loss

I1 loss

ε-insensitive Loss

allow some deviation without a penalty

Penalized least mean squares

- Optimization problem
- Solution $\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle x_{i}, w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}$

$$
\begin{aligned}
\partial_{w}[\ldots] & =\frac{1}{m} \sum_{i=1}^{m}\left[x_{i} x_{i}^{\top} w-x_{i} y_{i}\right]+\lambda w \\
& =\left[\frac{1}{m} X X^{\top}+\lambda \mathbf{1}\right] w-\frac{1}{m} X y=0 \\
\text { hence } w & =\left[X X^{\top}+\lambda m \mathbf{1}\right]^{-1} X y
\end{aligned}
$$

Penalized least mean squares ... now with kernels

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle\phi\left(x_{i}\right), w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Representer Theorem (Kimeldorf \& Wahba, 1971)

Penalized least mean squares ... now with kernels

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle\phi\left(x_{i}\right), w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Representer Theorem (Kimeldorf \& Wahba, 1971)
- Optimal solution is in span of data $w=\sum \alpha_{i} \phi\left(x_{i}\right)$
- Proof - risk term only depends on data vía $\phi\left(x_{i}\right)$
- Regularization ensures that orthogonal part is 0
- Optimization problem in terms of w

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\sum_{j} K_{i j} \alpha_{j}\right)^{2}+\frac{\lambda}{2} \sum_{i, j} \alpha_{i} \alpha_{j} K_{i j}
$$

solve for $\alpha=(K+m \lambda \mathbf{1})^{-1} y$ as linear system

Penalized least mean squares ... now with kernels

- Optimization problem

$$
\underset{w}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\left\langle\phi\left(x_{i}\right), w\right\rangle\right)^{2}+\frac{\lambda}{2}\|w\|^{2}
$$

- Representer Theorem (Kimeldorf \& Wahbą, 1971)
- Optimal solution is in span of data $w=\sum \alpha_{i} \phi\left(x_{i}\right)$
- Proof - risk term only depends on datavia $\psi\left(x_{i}\right)$
- Regularization ensures that orthogonal part is 0
- Optimization problem in terms of w

$$
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2 m} \sum_{i=1}^{m}\left(y_{i}-\sum_{j} K_{i j} \alpha_{j}\right)^{2}+\frac{\lambda}{2} \sum_{i, j} \alpha_{i} \alpha_{j} K_{i j}
$$

solve for $\alpha=(K+m \lambda \mathbf{1})^{-1} y$ as linear system

SVM Regression (e-insensitive loss)

don't care about deviations within the tube

SVM Regression (ϵ-insensitive loss)

- Optimization Problem (as constrained QP)

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right]
$$

$$
\text { subject to }\left\langle w, x_{i}\right\rangle+b \leq y_{i}+\epsilon+\xi_{i} \text { and } \xi_{i} \geq 0
$$

- Lagrange Function

$$
\left\langle w, x_{i}\right\rangle+b \geq y_{i}-\epsilon-\xi_{i}^{*} \text { and } \xi_{i}^{*} \geq 0
$$

$$
\begin{aligned}
L= & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{m}\left[\xi_{i}+\xi_{i}^{*}\right]-\sum_{i=1}^{m}\left[\eta_{i} \xi_{i}+\eta_{i}^{*} \xi_{i}^{*}\right]+ \\
& \sum_{i=1}^{m} \alpha_{i}\left[\left\langle w, x_{i}\right\rangle+b-y_{i}-\epsilon-\xi_{i}\right]+\sum_{i=1}^{m} \alpha_{i}^{*}\left[y_{i}-\epsilon-\xi_{i}^{*}-\left\langle w, x_{i}\right\rangle-b\right]
\end{aligned}
$$

SVM Regression (ϵ-insensitive loss)

- First order conditions

$$
\begin{aligned}
\partial_{w} L & =0=w+\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] x_{i} \\
\partial_{b} L & =0=\sum_{i}\left[\alpha_{i}-\alpha_{i}^{*}\right] \\
\partial_{\xi_{i}} L=0 & =C-\eta_{i}-\alpha_{i} \\
\partial_{\xi_{i}^{*}} L & =0=C-\eta_{i}^{*}-\alpha_{i}^{*}
\end{aligned}
$$

- Dual problem

$$
\begin{array}{ll}
\underset{\alpha, \alpha^{*}}{\operatorname{minimize}} & \frac{1}{2}\left(\alpha-\alpha^{*}\right)^{\top} K\left(\alpha-\alpha^{*}\right)+\epsilon 1^{\top}\left(\alpha+\alpha^{*}\right)+y^{\top}\left(\alpha-\alpha^{*}\right) \\
\text { subject to } 1^{\top}\left(\alpha-\alpha^{*}\right)=0 \text { and } \alpha_{i}, \alpha_{i}^{*} \in[0, C]
\end{array}
$$

Properties

- Ignores 'typical' instances with small error
- Only upper or lower bound active at any time
- QP in $2 n$ variables as cheap as SVM problem
- Robustness with respect to outliers
- l_{1} loss yields same problem without epsilon
- Huber's robust loss yields similar problem but with added quadratic penalty on coefficients

Regression example

Regression example

Regression example

Regression example

Support Vectors

Huber's robust loss

$$
l(y, f(x))= \begin{cases}\frac{1}{2}(y-f(x))^{2} & \text { if }|y-f(x)|<1 \\ |y-f(x)|-\frac{1}{2} & \text { otherwise }\end{cases}
$$

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)
- Disadvantages:
- Must choose kernel parameters
- Very large problems computationally intractable
- Batch algorithm

Software

- SVM1ight: one of the most widely used SVM packages. Fast optimization, can handle very large datasets, C++ code.
- LIBSVM
- Both of these handle multi-class, weighted SVM for unbalanced data, etc.
- There are several new approaches to solving the SVM objective that can be much faster:
- Stochastic subgradient method (discussed in a few lectures)
- Distributed computation (also to be discussed)
- See http: / /mloss.org, "machine learning open source software"

Next Lecture: Decision Trees

