Learning

ndamentals

Lecture 18: Decision Trees

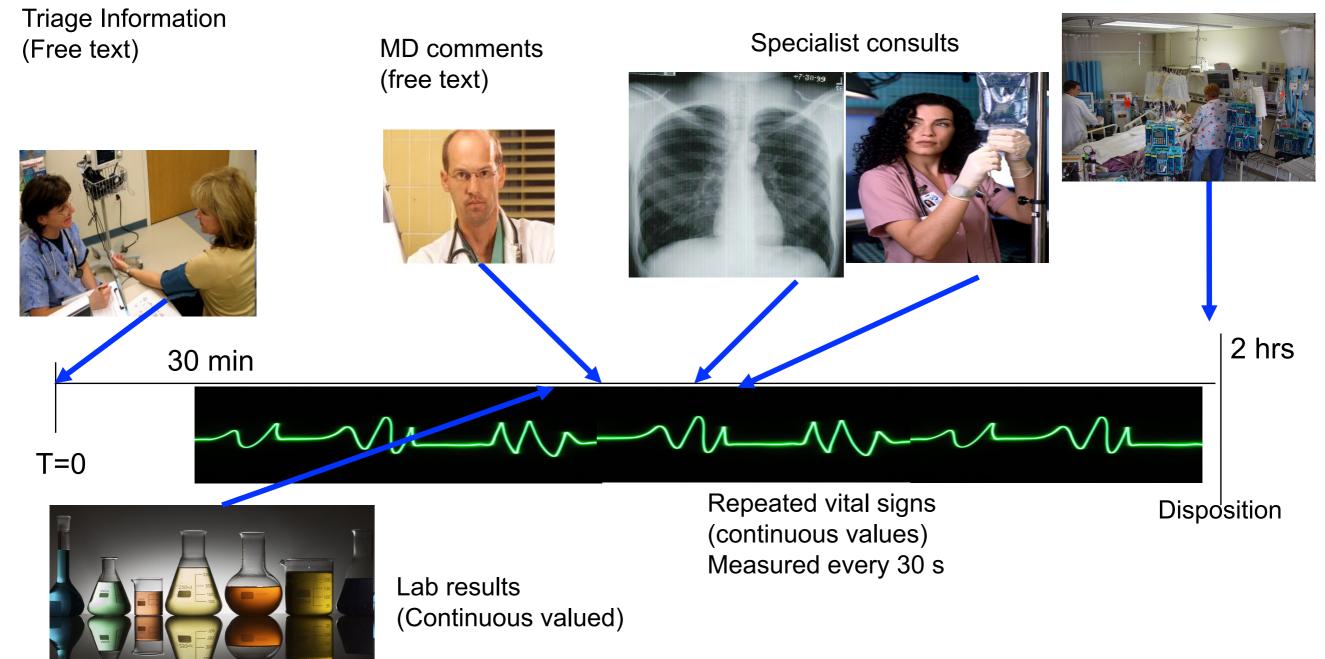
Erkut Erdem // Hacettepe University // Fall 2023

Today

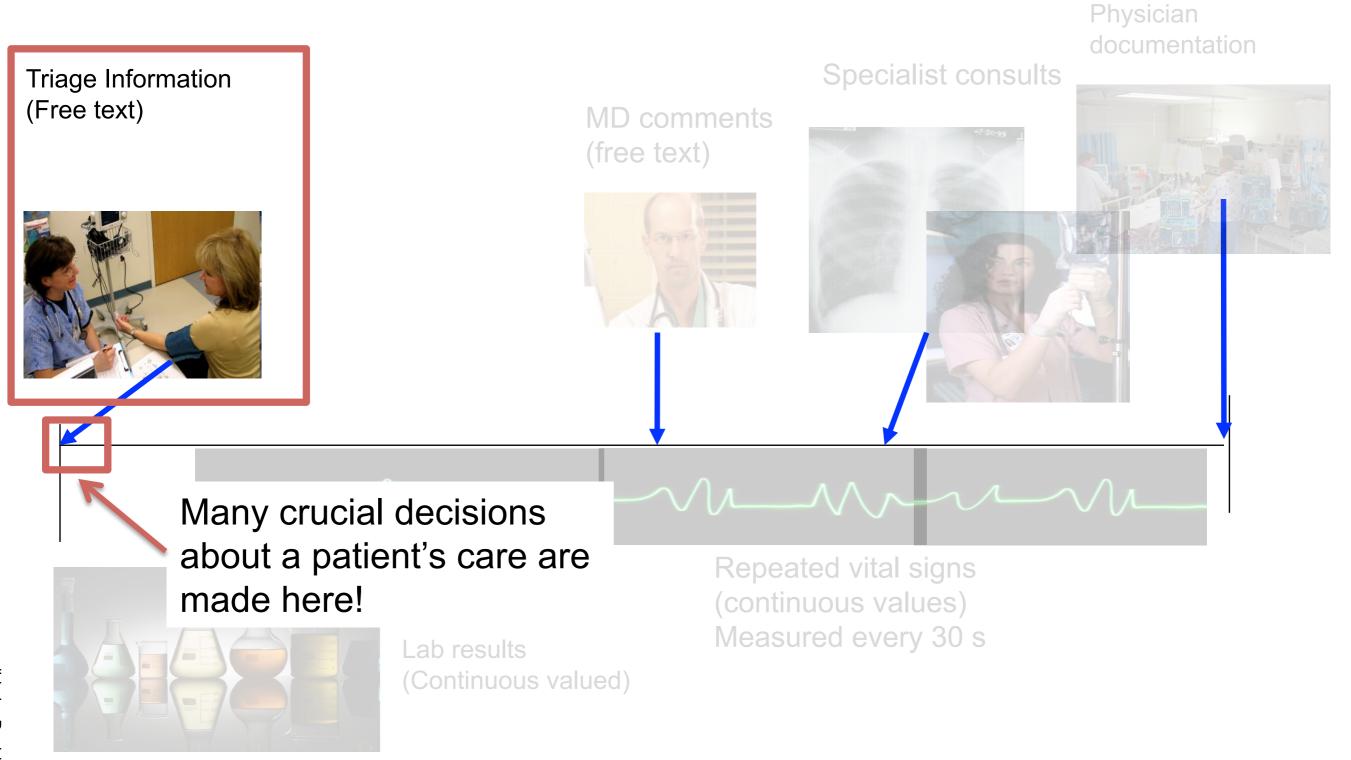
- Decision Trees
- Tree construction
- Overfitting
- Pruning
- Real-valued inputs

Machine Learning in the ER

Physician documentation

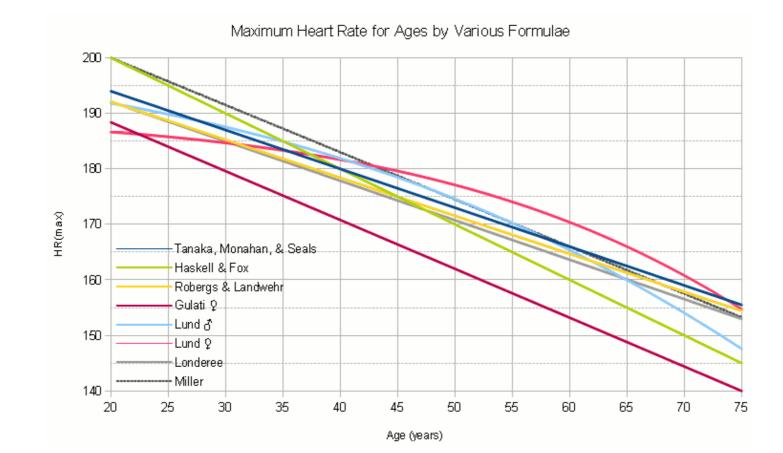


Can we predict infection?



Can we predict infection

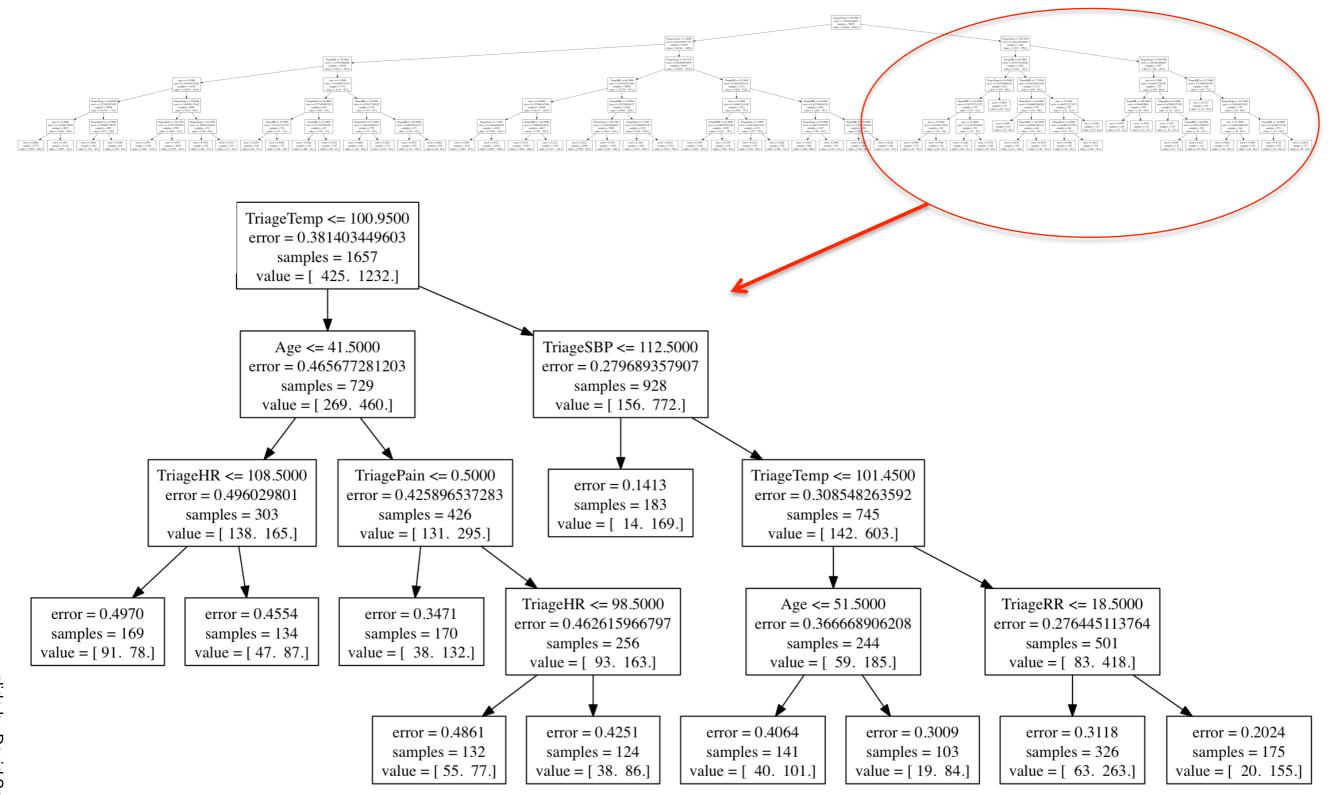
- Previous automatic approaches based on simple criteria:
 - Temperature < 96.8 °F or > 100.4 °F
 - Heart rate > 90 beats/min
 - Respiratory rate > 20 breaths/min
- Too simplified... e.g., heart rate depends on age!



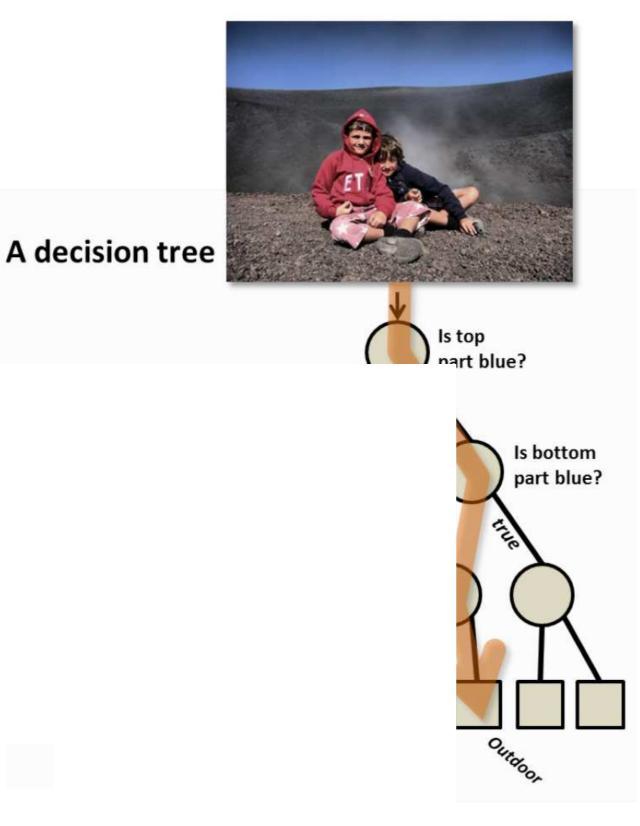
Can we predict infection?

- These are the attributes we have for each patient:
 - Temperature
 - Heart rate (HR)
 - Respiratory rate (RR)
 - Age
 - Acuity and pain level
 - Diastolic and systolic blood pressure (DBP, SBP)
 - Oxygen Saturation (SaO2)
- We have these attributes + label (infection) for 200,000 patients!
- Let's learn to classify infection

Predicting infection using decision trees



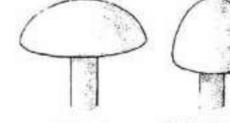
Example: Image Classification



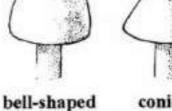
i et al, 2011]

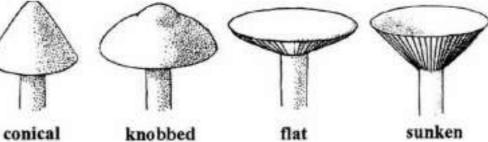
Example: Mushrooms

Mushroom cap shapes

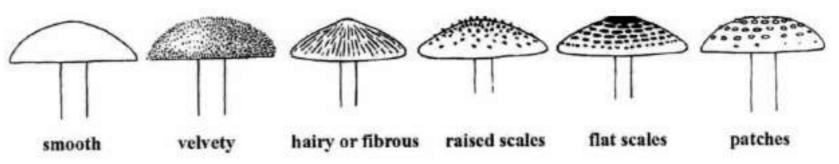


convex

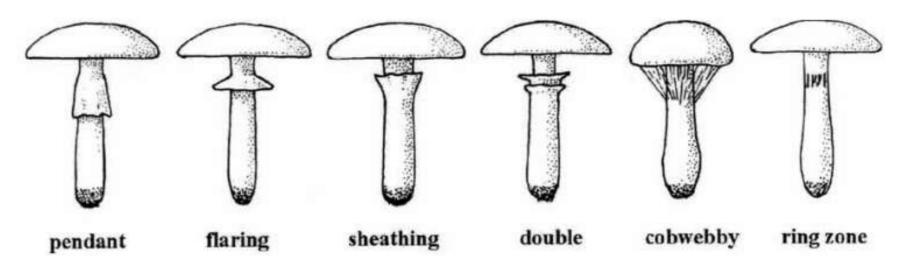




Mushroom cap surfaces



Annular rings



http://www.usask.ca/biology/fungi/

Mushroom features

- cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
- 2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
- 3. **cap-color:** brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p,purple=u, red=e, white=w, yellow=y
- 4. **bruises**?: bruises=t,no=f
- 5. **odor:** almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
- 6. gill-attachment: attached=a, descending=d, free=f, notched=n

Two mushrooms

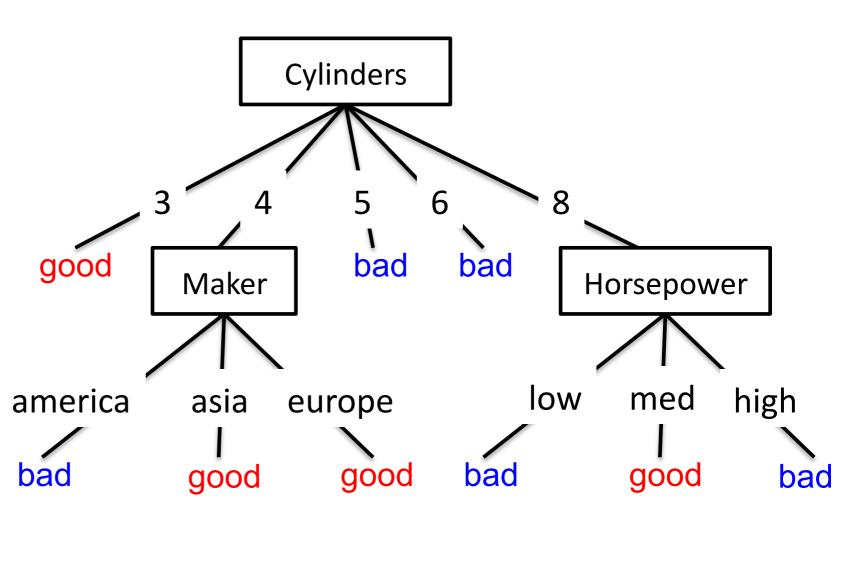
- x₁=x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u
- y₁=p
- x₂=x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g
- y₂=e
- cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- 3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y

Example: Automobile Miles-pergallon prediction

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	•	:	:		:	:	•
:	•	:	:	•	:	:	•
:	•	:	:	•	:	•	•
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value x_i=v
- Each leaf assigns a class y
- To classify input *x*: traverse the tree from root to leaf, output the labeled y

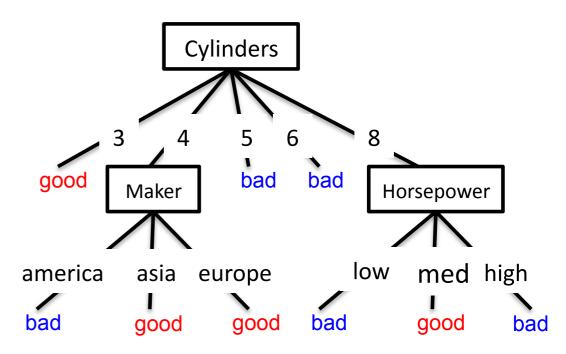


Human interpretable!

Hypothesis space

- How many possible hypotheses?
- What functions can be represented?

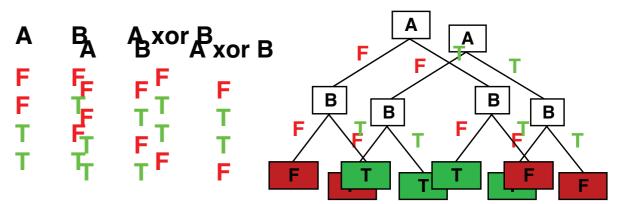
mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
					1	754 70	
good		low	low	low	high	75to78	asia
bad		medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good		low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe



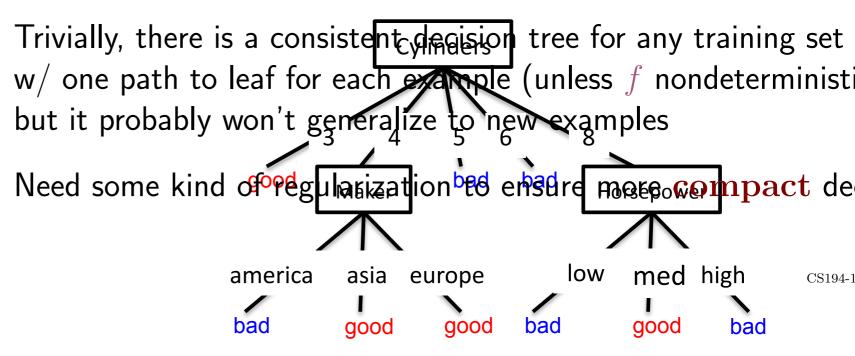
What functions_can digrees out of the spin of the spin

– E.g., for Boolean functions, truth table row \rightarrow path to le

 Decision trees can represent any function of the input attributes!



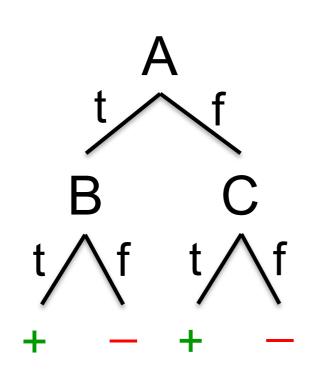
- For Boolean functions, Cpathous-input, continuous-output cfigure from Stuart Russell) to leaf gives truth table row an approximate any function arbitrarily closely
- But, could require exponentially many nodes...



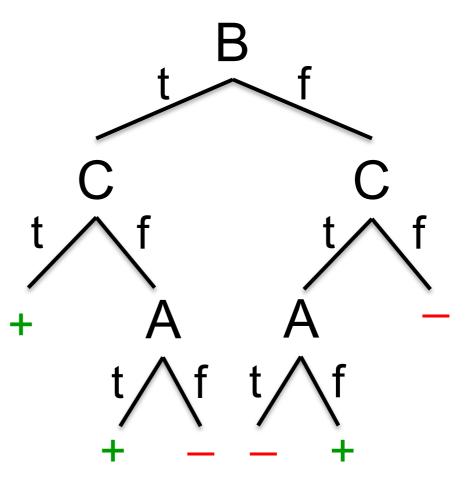
cyl=3 v (cyl=4 ^ (maker=asia v maker=europe)) v ...

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size
 - e.g., φ =(A \land B) \lor (\neg A \land C) ((A and B) or (not A and C))



Which tree do we prefer?

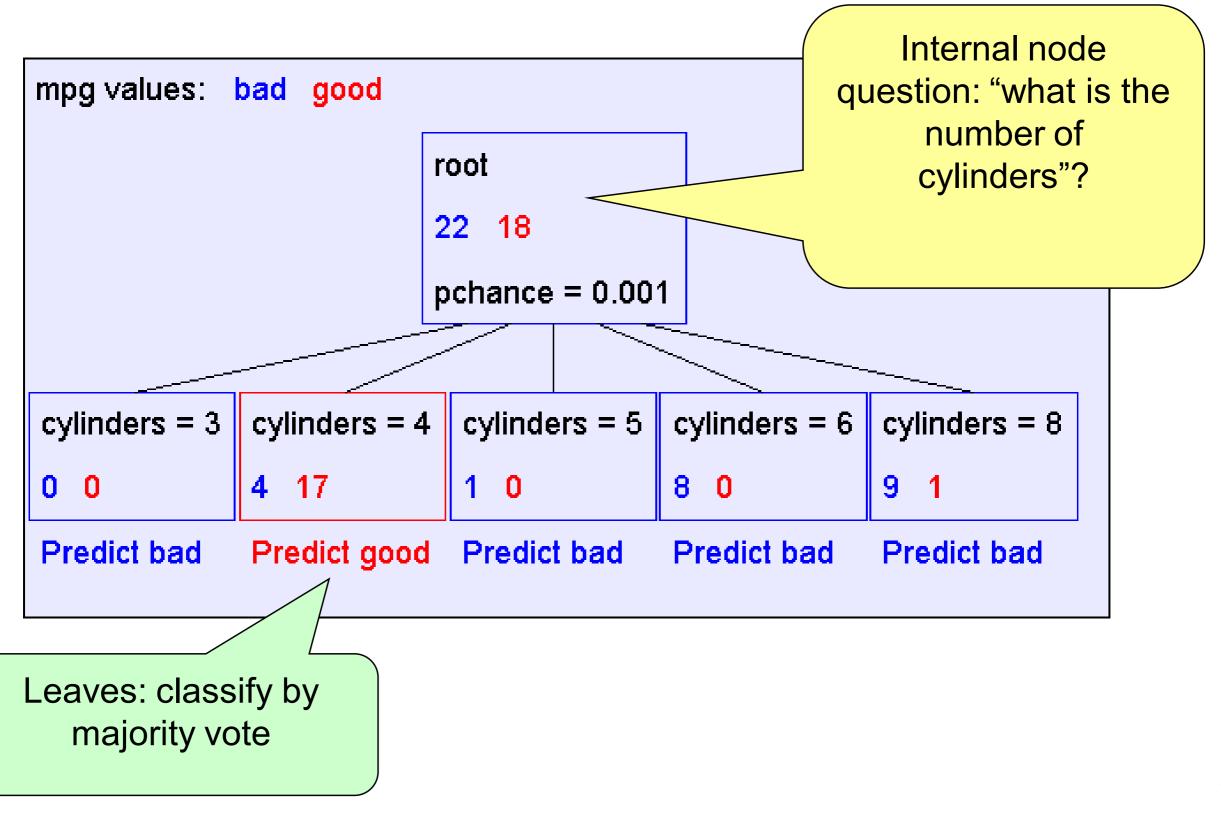


slide by David Sontag

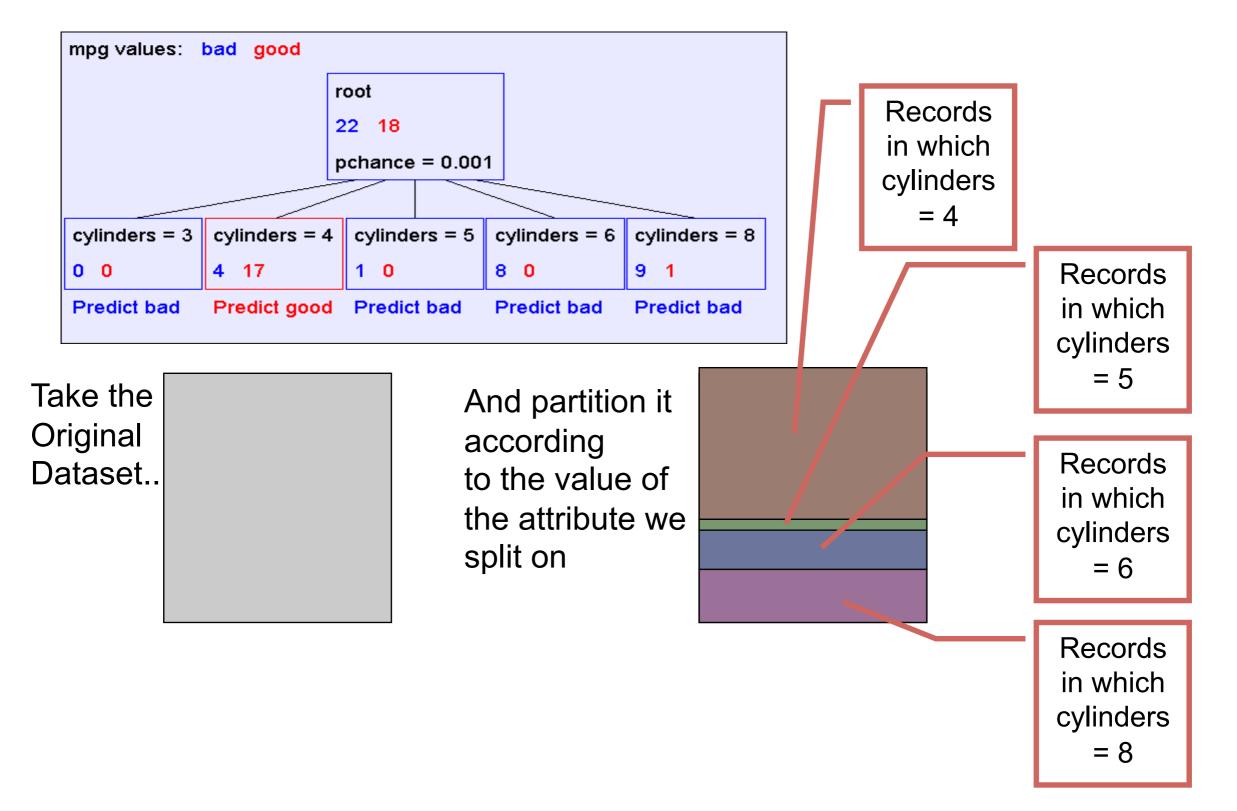
Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

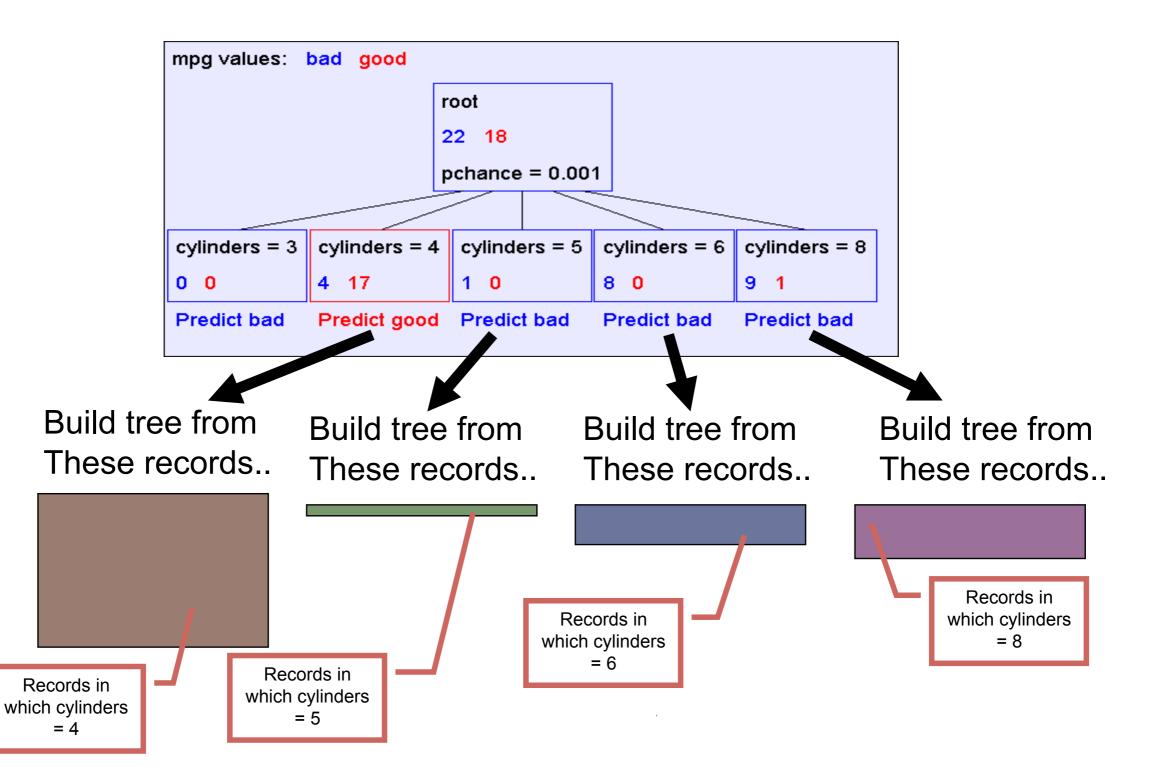
A Decision Stump



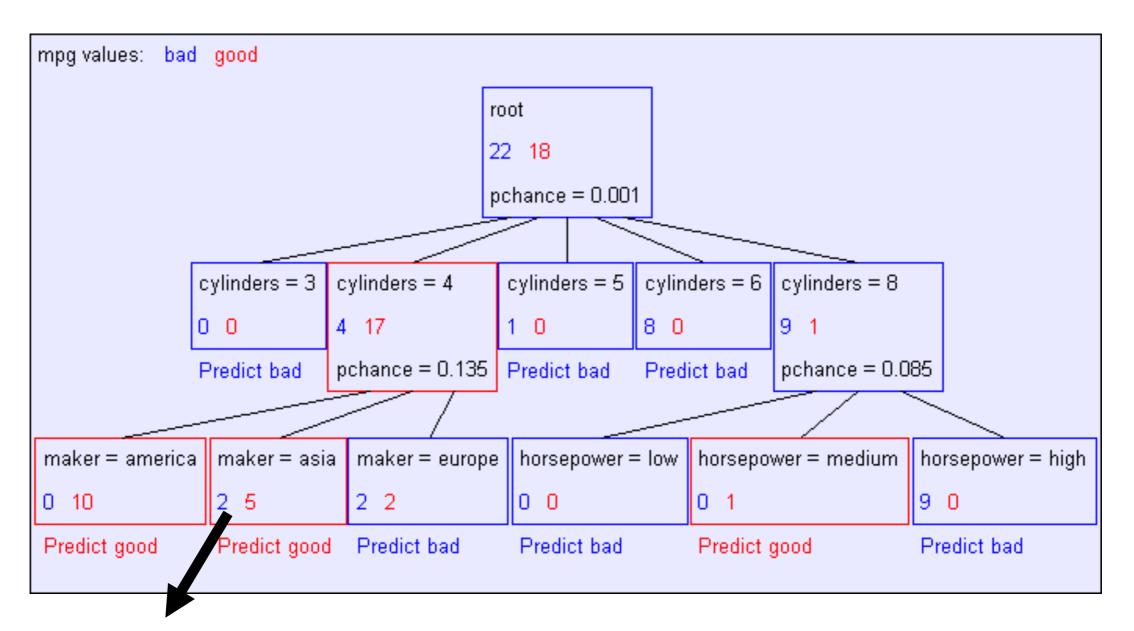
Key idea: Greedily learn trees using recursion



Recursive Step

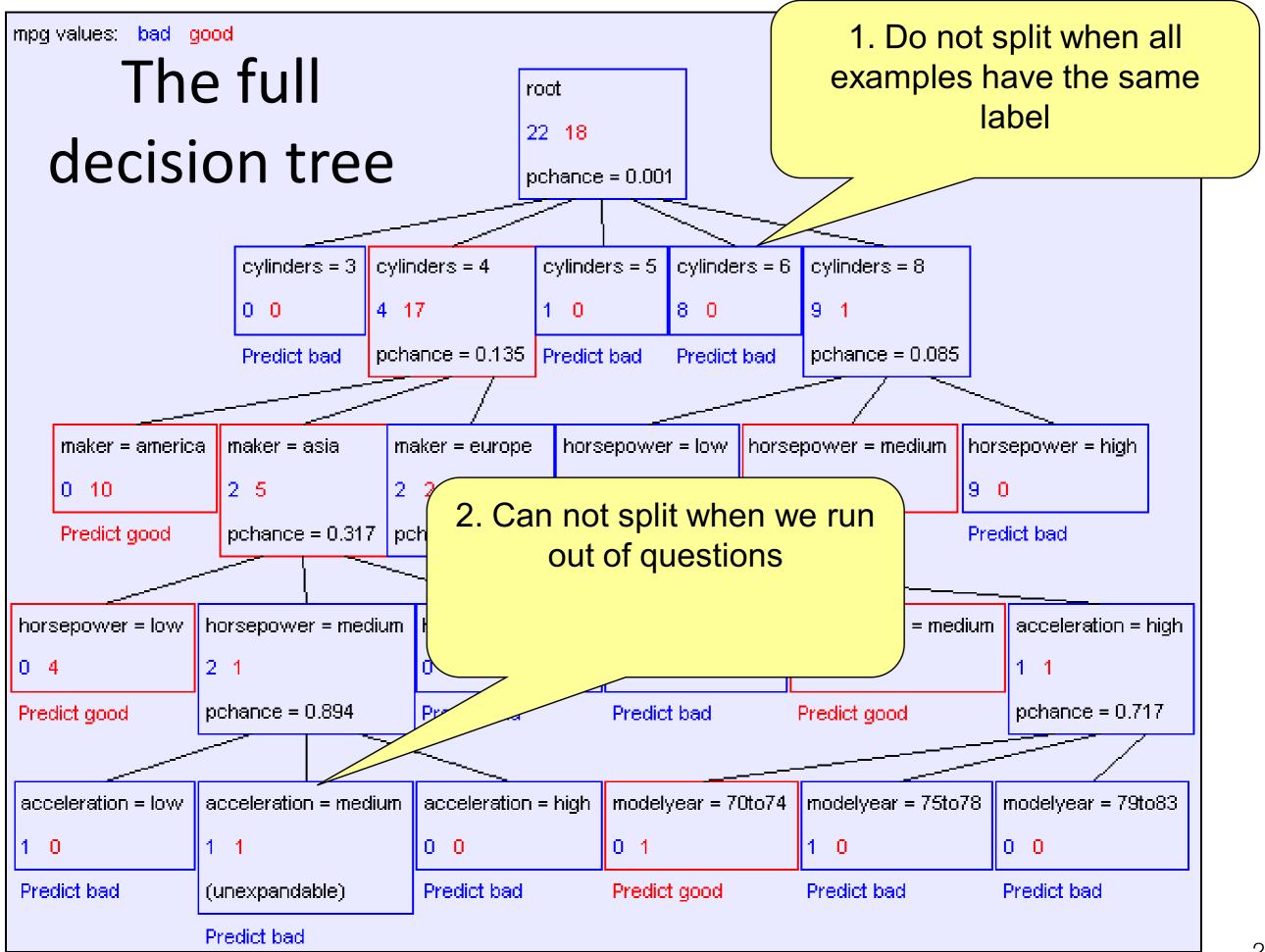


Second level of tree



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

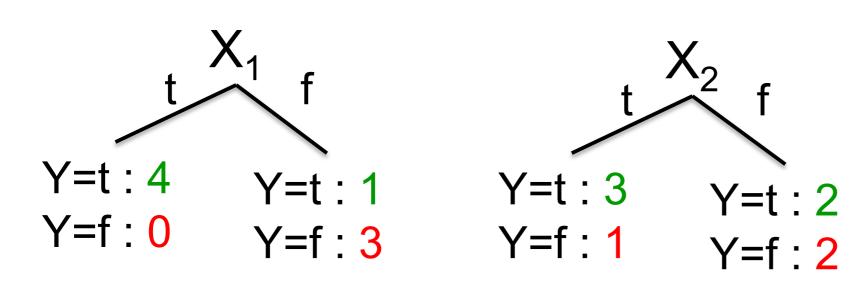
(Similar recursion in the other cases)

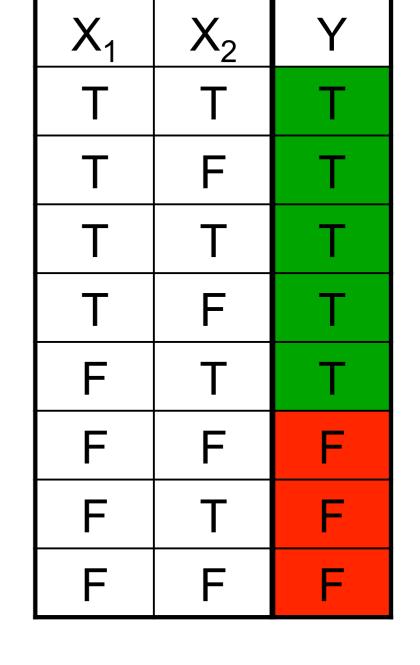


slide by Jerry Zhu

Splitting: Choosing a good attribute

Would we prefer to split on X₁ or X₂?





Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

$$P(Y=A) = 1/2$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/8$ $P(Y=D) = 1/8$

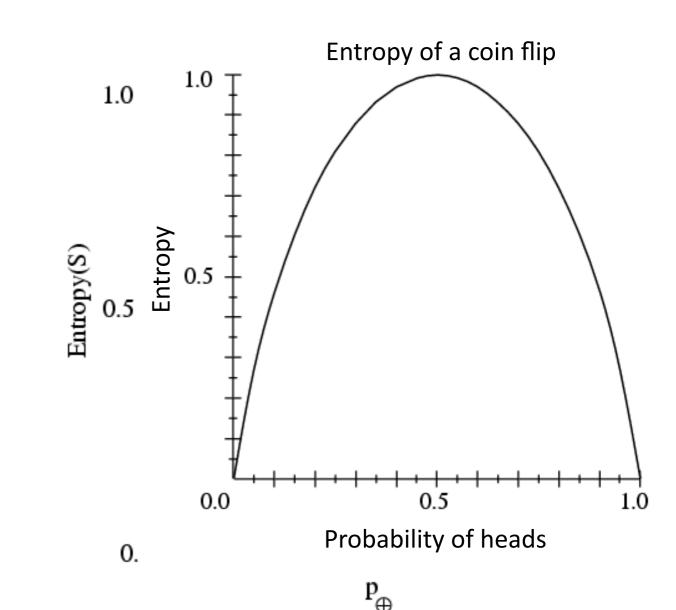
$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$

• Entropy H(Y) of

H(Y) =

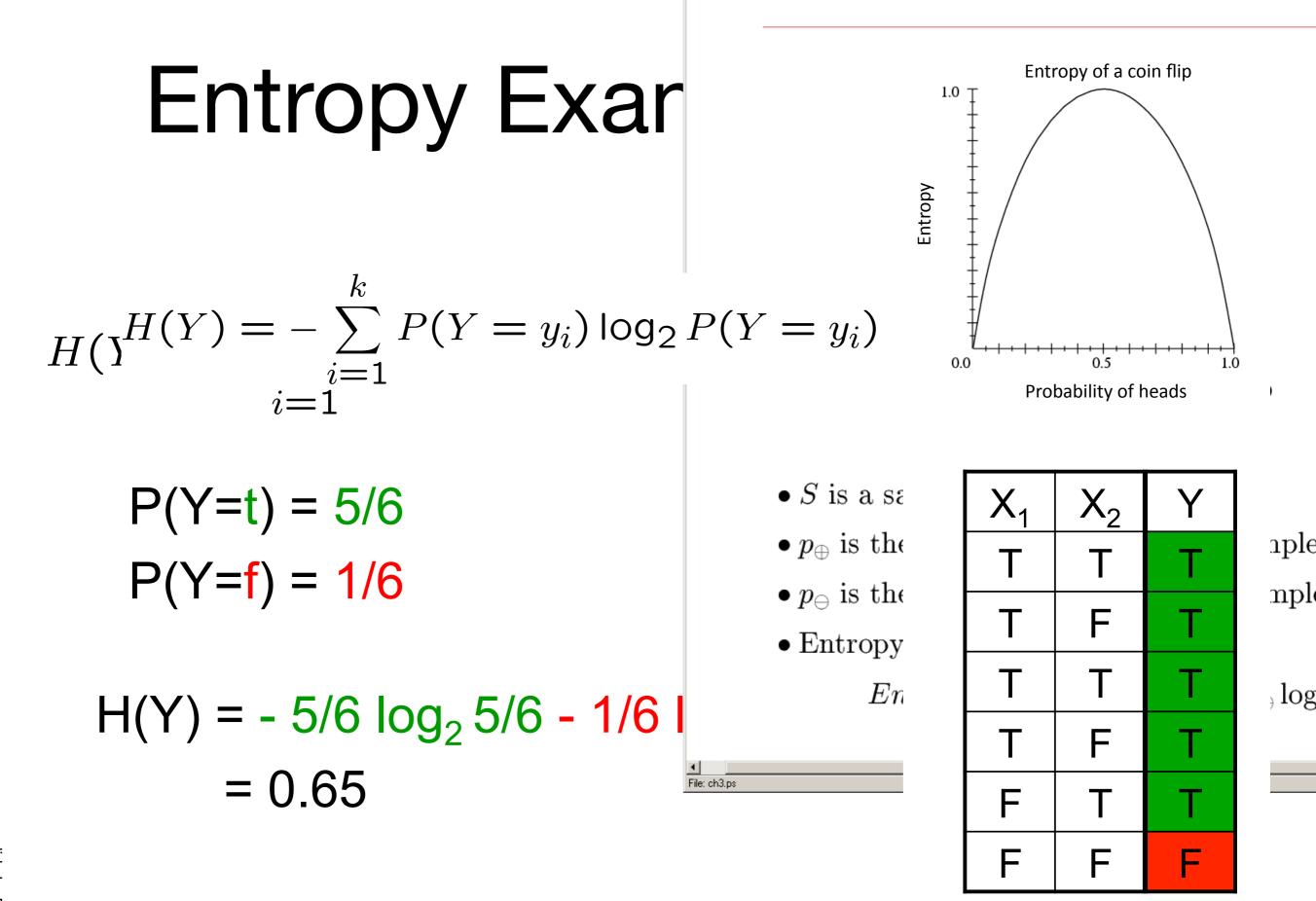
Entropy

- More uncertai
- Information The H(Y) is the expension bits needed to drawn value of efficient code)



High, Low Entropy

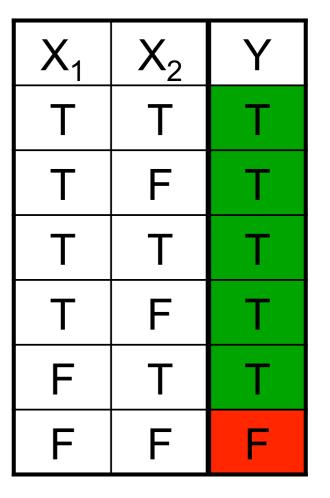
- "High Entropy"
 - Y is from a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy"
 - Y is from a varied (peaks and valleys) distribution
 - Histogram has many lows and highs
 - Values sampled from it are more predictable



Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$



$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$

- 2/6 (1/2 log₂ 1/2 + 1/2 log₂ 1/2)
= 2/6

Information gain

Decrease in entropy (uncertainty) after splitting

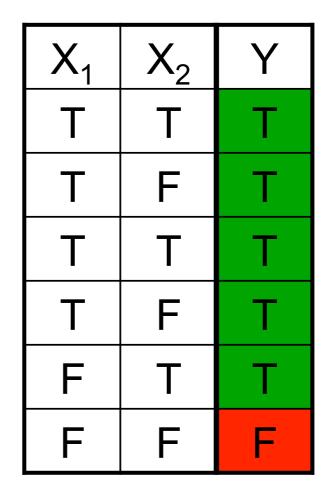
$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!



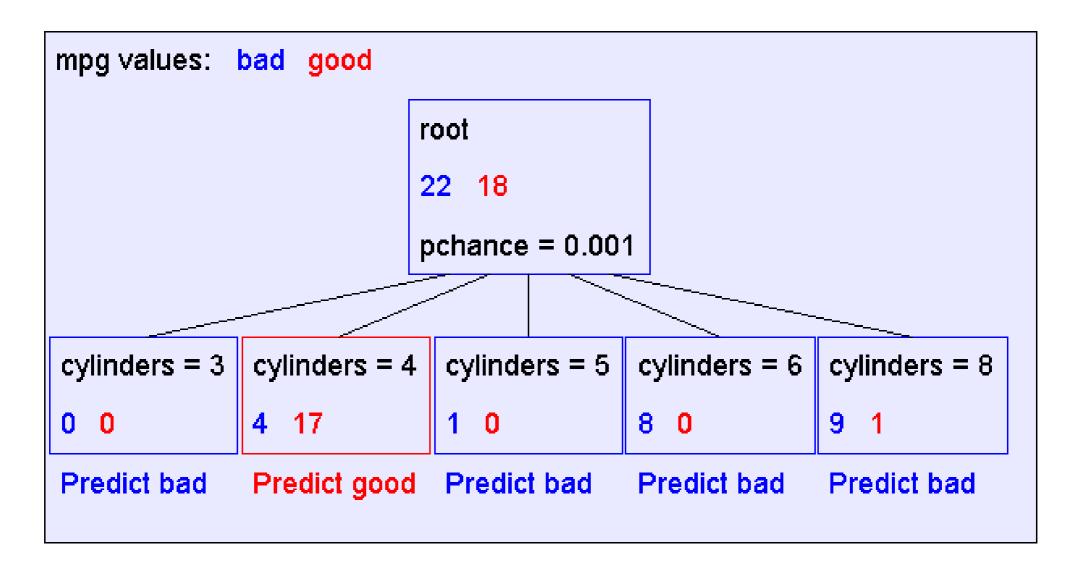
Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

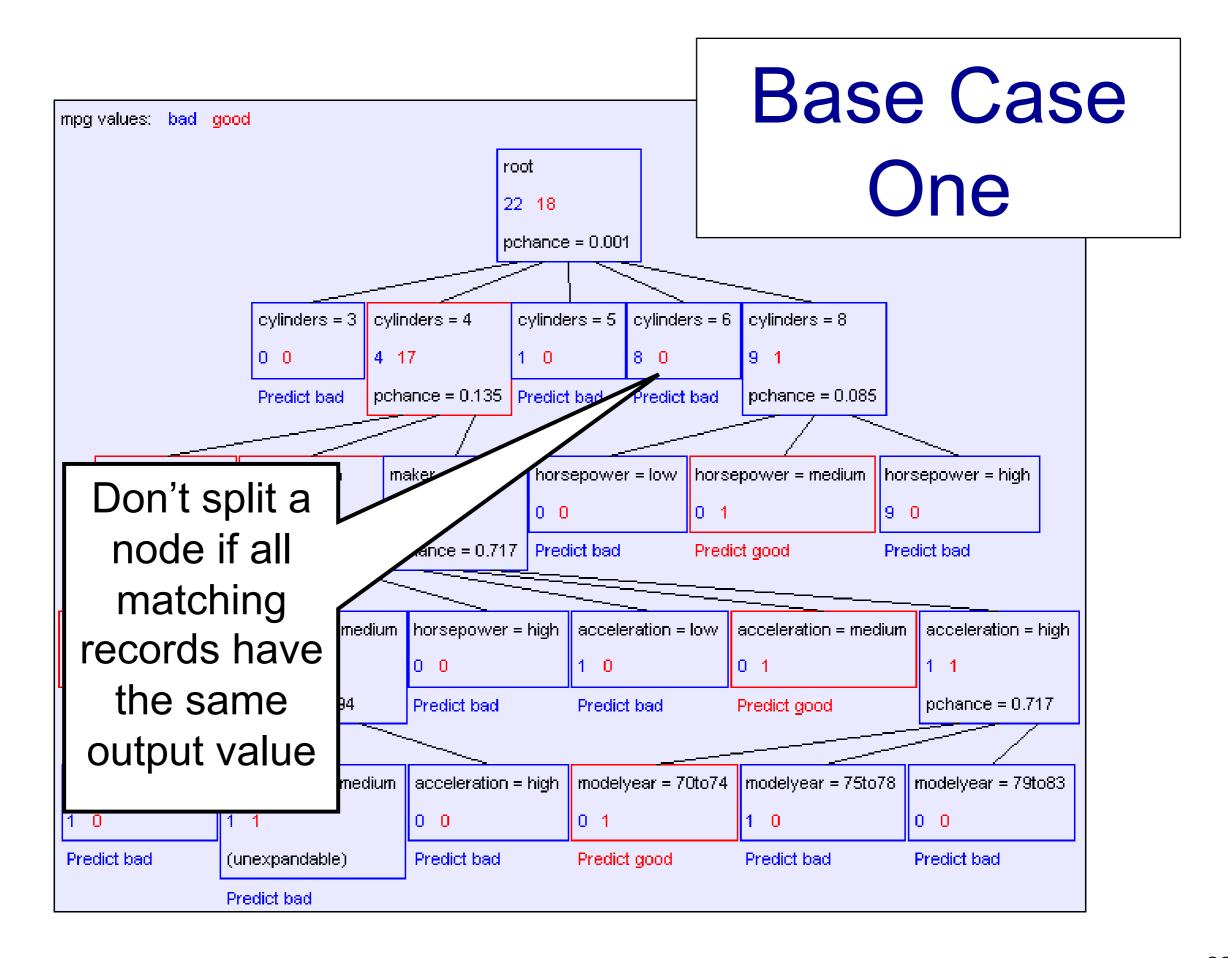
$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

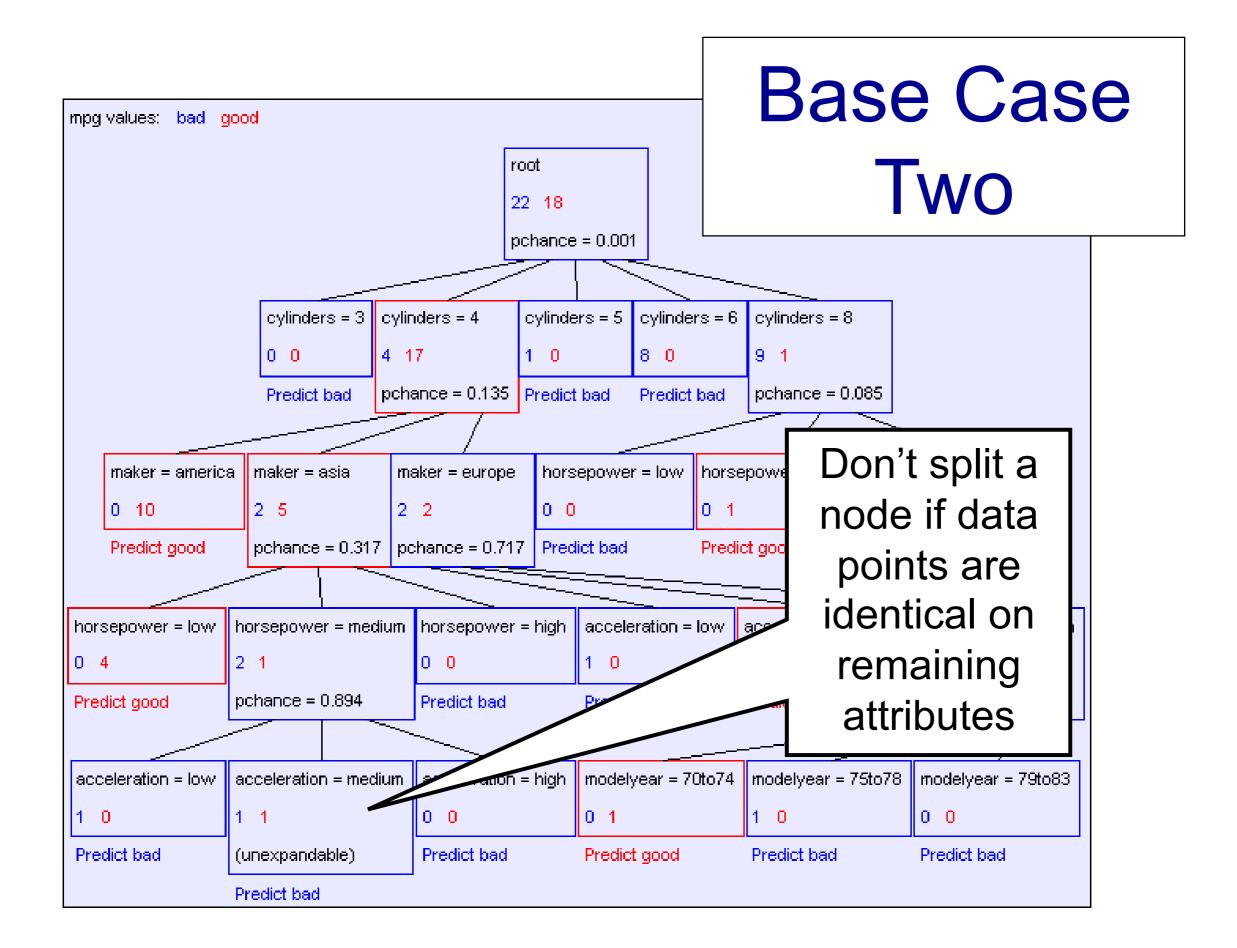
Recurse

When to stop?



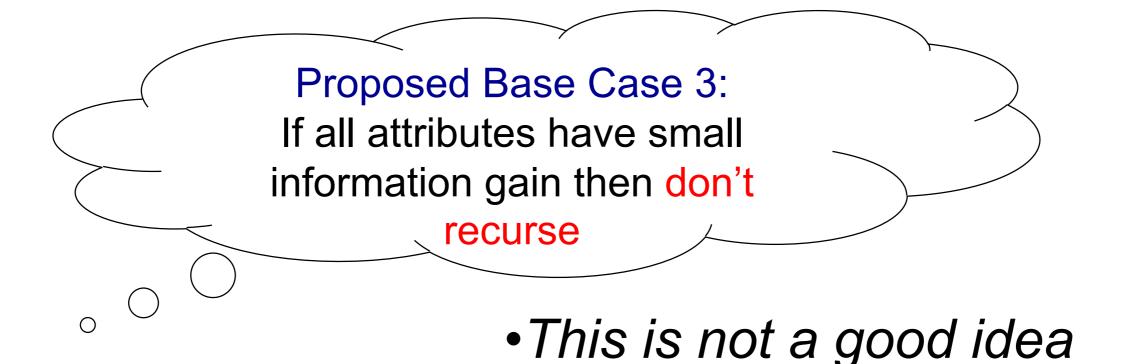
First split looks good! But, when do we stop?





Base Cases: An idea

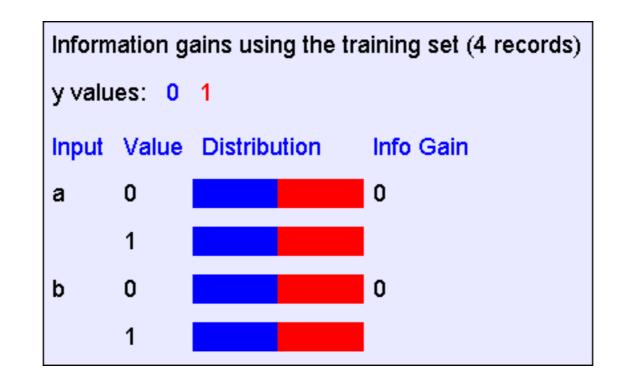
- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse



The problem with proposed case 3

$$\begin{array}{c|cccc} a & b & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \end{array}$$

The information gains:

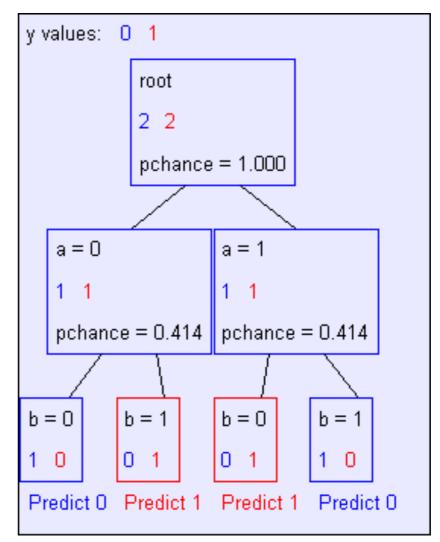


If we omit proposed case 3:

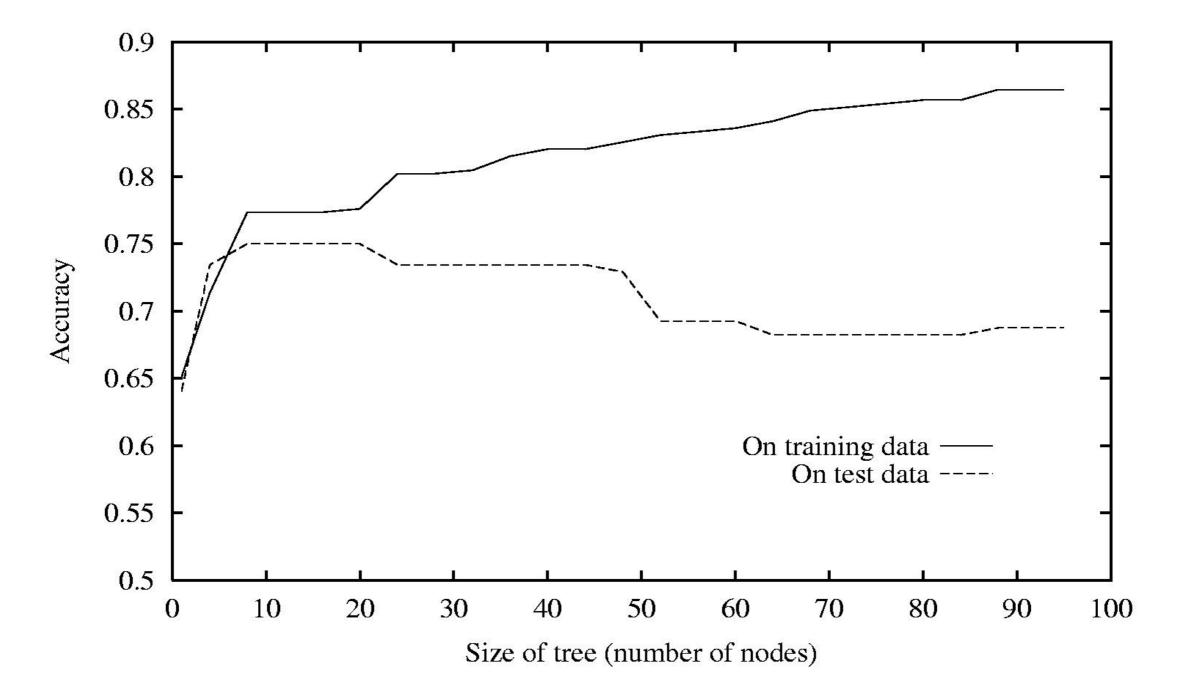
y = a XOR bb У а 0 0 Ο 1 1 0 1 1 0 1 1 0

Instead, perform **pruning** after building a tree

The resulting decision tree:



Decision trees will overfit



Decision trees will overfit

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Fixed number of leaves
- Random forests

Real-valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:		:	:	:	:	:	:
:		:	:	:	:	:	:
:	• •	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

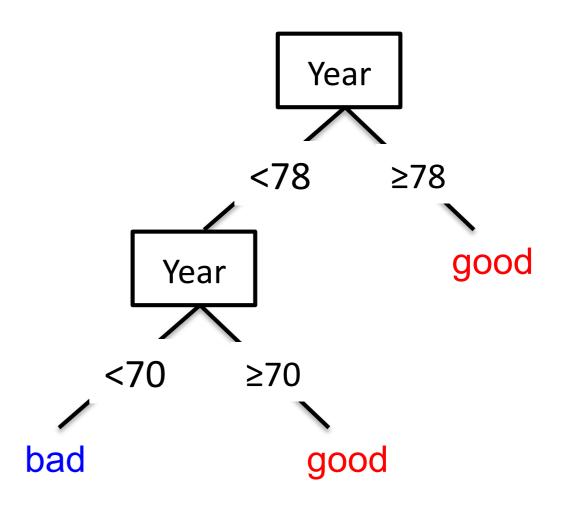
"One branch for each numeric value" idea:



Hopeless: hypothesis with such a high branching factor will shatter any dataset and overfit

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t
 - Other branch: $X \ge t$
- Requires small change
 Allow repeated splits on same variable
 along a path



The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t
 - Other paraneters for continuous attributes
- Search through possible values of t Infinitely many possible split points c to define node test X_j > c ?
 Seems hard!!
- No! Moving split point along the empty space detween two observed values UT ONLY a finite number Of 7.5 are important has no effect on information gain or empirical loss; so just use midpoint finitely many possible split points c to define hode test $X_j > c$?

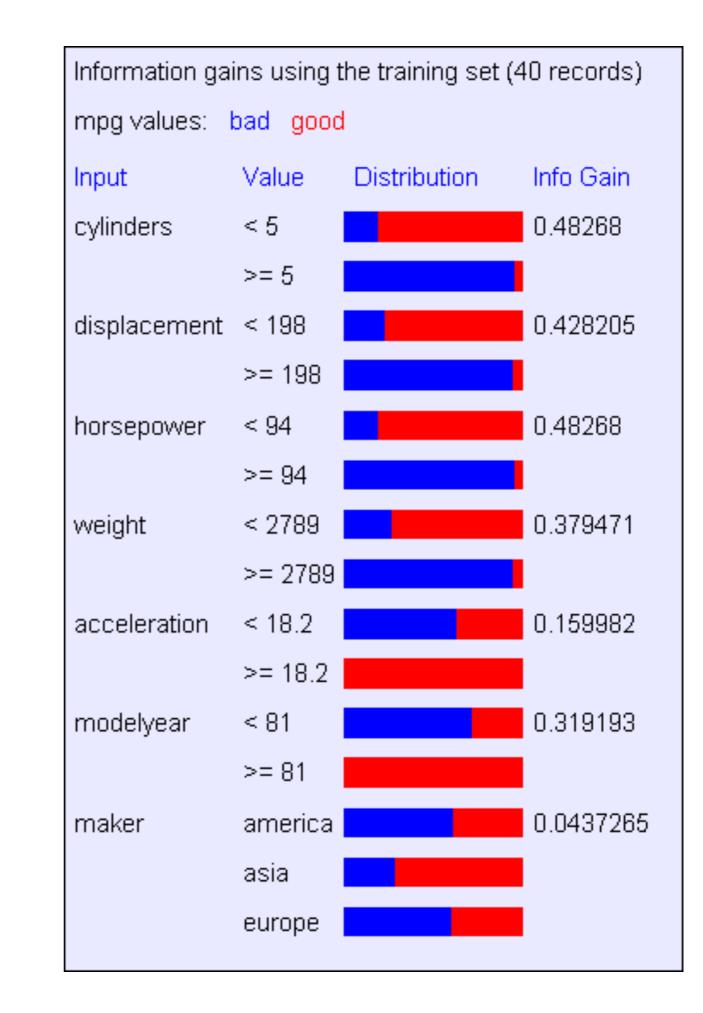
No! Moving split point along the entropy space between two observed values has no effect on information gain of empirical loss; so just use midpoint

- Consider split points of the formation and the different class?
- Classes matter of imal for information gain or empirical loss reduction

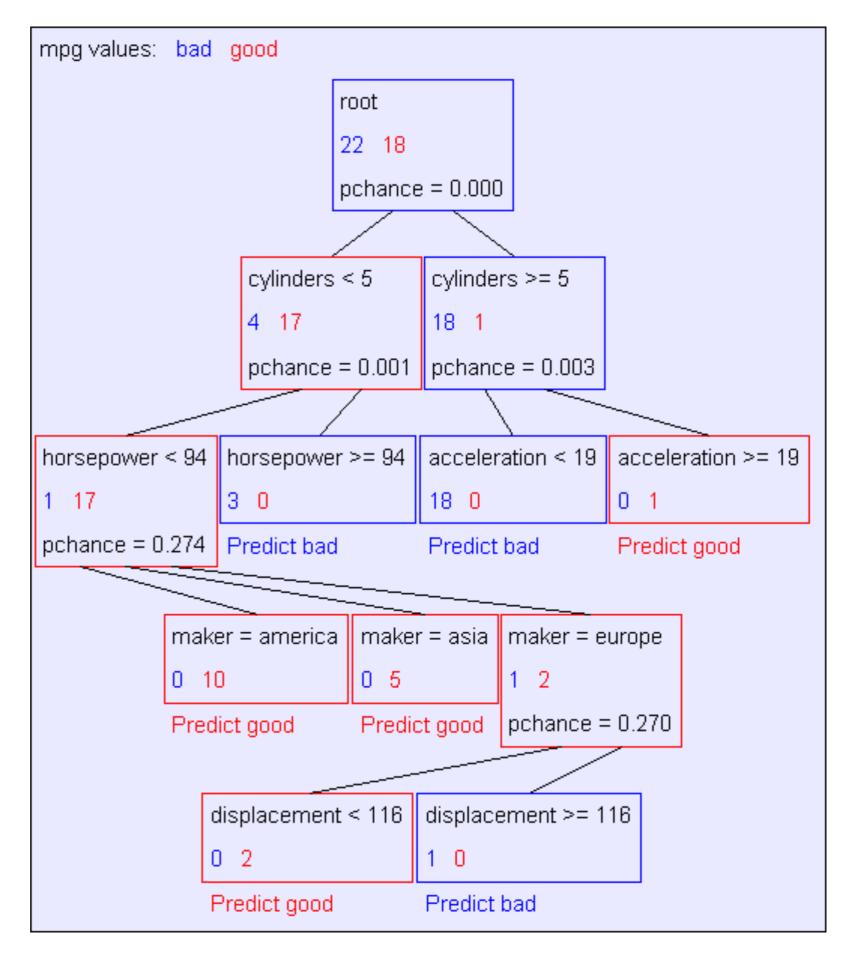
Picking the best threshold

- Suppose *X* is real valued with threshold *t*
- Want IG(Y | X:t), the information gain for Y when testing if X is greater than or less than t
- Define:
 - H(Y | X:t) = p(X < t)H(Y | X < t)+p(X >=t)H(Y | X >=t)
 - IG(Y | X:t) = H(Y) H(Y | X:t)
 - $IG^*(Y \mid X) = \max_t IG(Y \mid X:t)$
- Use: $IG^*(Y | X)$ for continuous variables

Example with MPG



Example tree for our continuous dataset



Demo time...

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Or, use ensembles of different trees (random forests)

Decision Trees vs SVM

Characteristic	SVM	Trees
Natural handling of data of "mixed" type		
Handling of missing values		
Robustness to outliers in input space		
Insensitive to monotone transformations of inputs		
Computational scalability (large N)		
Ability to deal with irrel- evant inputs	▼	
Ability to extract linear combinations of features		▼
Interpretability	•	•
Predictive power		▼

Next Lecture: Ensemble Methods