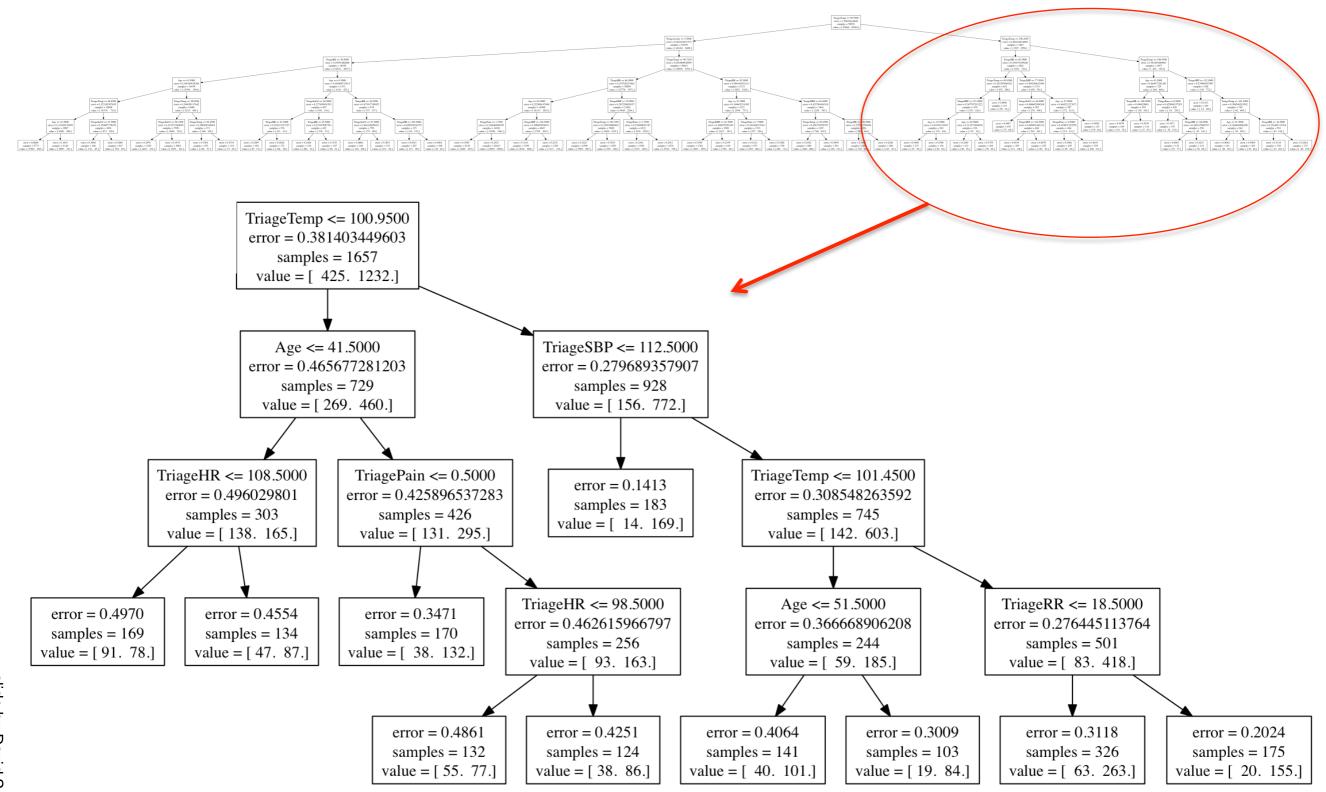
NB Fundamentals of Machine Learning Lecture 19: What is Ensemble Learning? Bagging Random Forests

Erkut Erdem // Hacettepe University // Fall 2023

Last time... Decision Trees



Last time... Information Gain

Decrease in entropy (uncertainty) after splitting

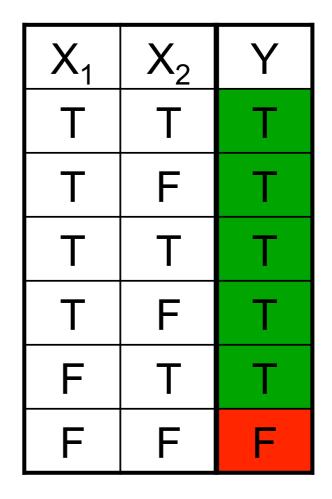
$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!



Last time... Continuous features

- Binary tree, split on attribute X
 - One branch: X < t
 - Other prinane hstalits for continuous attributes
- Search through possible values of t Infinitely many possible split points c to define node test X_j > c ?
 Seems hard!!
- No! Moving split point along the empty space detined two observed values UT ONLY a finite number of 7.5 are important has no effect on information gain or empirical loss; so just use midpoint finitely many possible split points c to define hode test $X_j > c$?

No! Moving split point along the empty space between two observed values has no effect on information gain of empirical loss; so just use midpoint

- Sort data according to X-19 to X-
- Considersphilipoints of the formation and for the different class 2
- Classes matter of imal for information gain or empirical loss reduction

Last time... Decision trees will overfit

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Fixed number of leaves
- Random forests

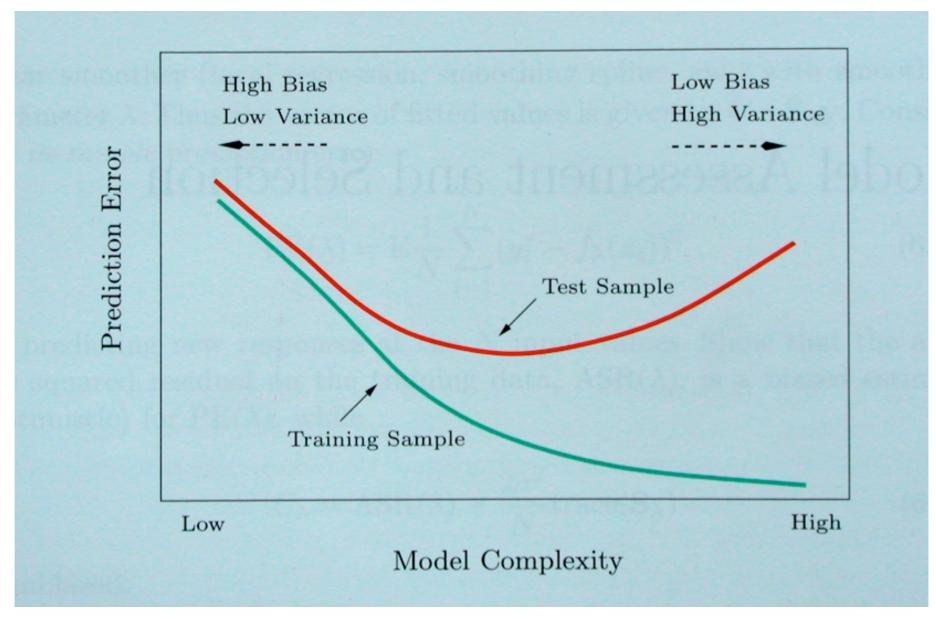
Today

- Ensemble Methods
 - Bagging
 - Random Forests

Ensemble Methods

- High level idea
 - Generate multiple hypotheses
 - Combine them to a single classifier
- Two important questions
 How do we generate multiple hypotheses
 - we have only one sample
 - How do we combine the multiple hypotheses
 - Majority, AdaBoost, ...

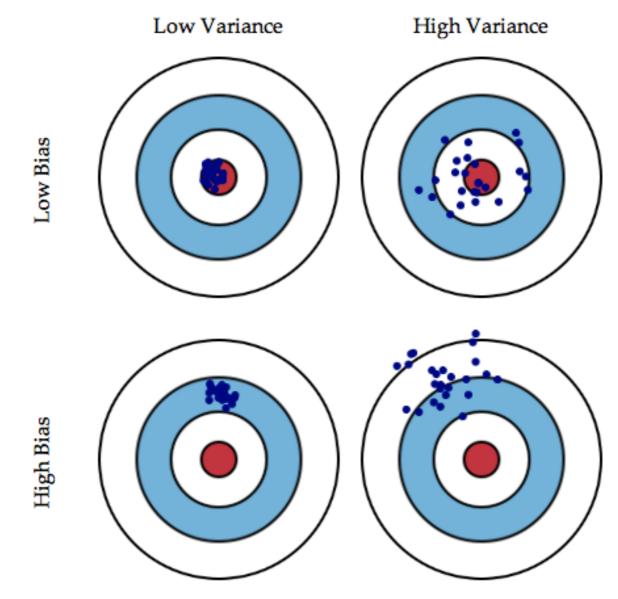
Bias/Variance Tradeoff



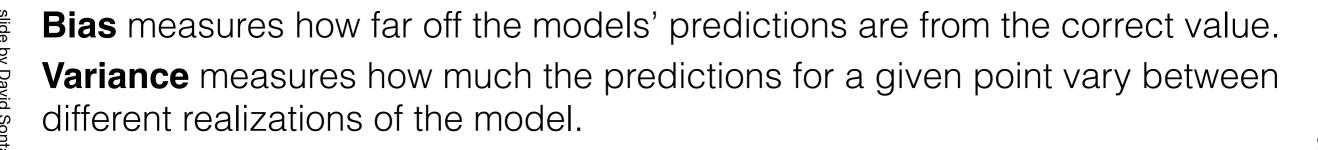
Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Bias measures how far off the models' predictions are from the correct value. Variance measures how much the predictions for a given point vary between different realizations of the model.

Bias/Variance Tradeoff



Graphical illustration of bias and variance.



Fighting the bias-variance tradeoff

- · Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don't usually overfit

• Simple (a.k.a. weak) learners are bad

- High bias, can't solve hard learning problems

Reduce Variance Without Increasing Bias

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

(when prediction are **independent**)

- Average models to reduce model variance
- One problem:
 - Only one training set
 - Where do multiple models come from?

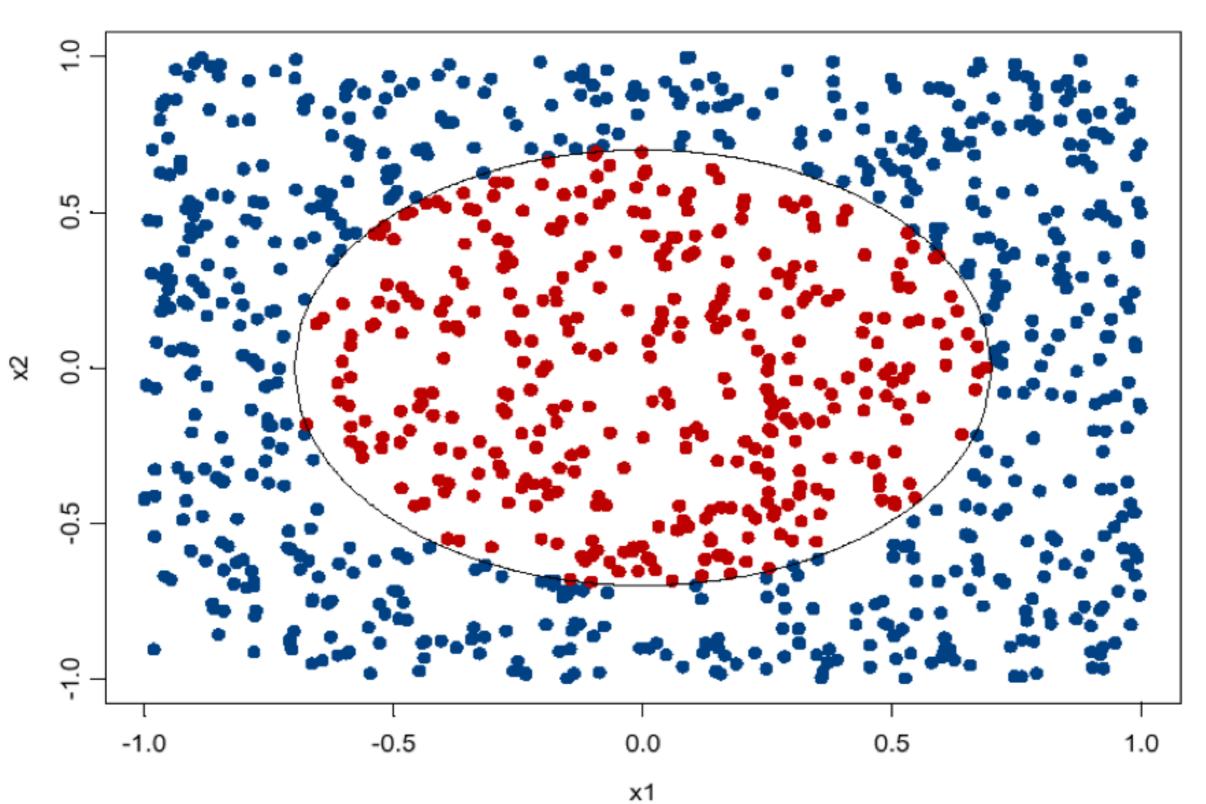
Bagging (Bootstrap Aggregating)

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D.
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i.
 - Classify new instance by majority vote / average.

Bagging

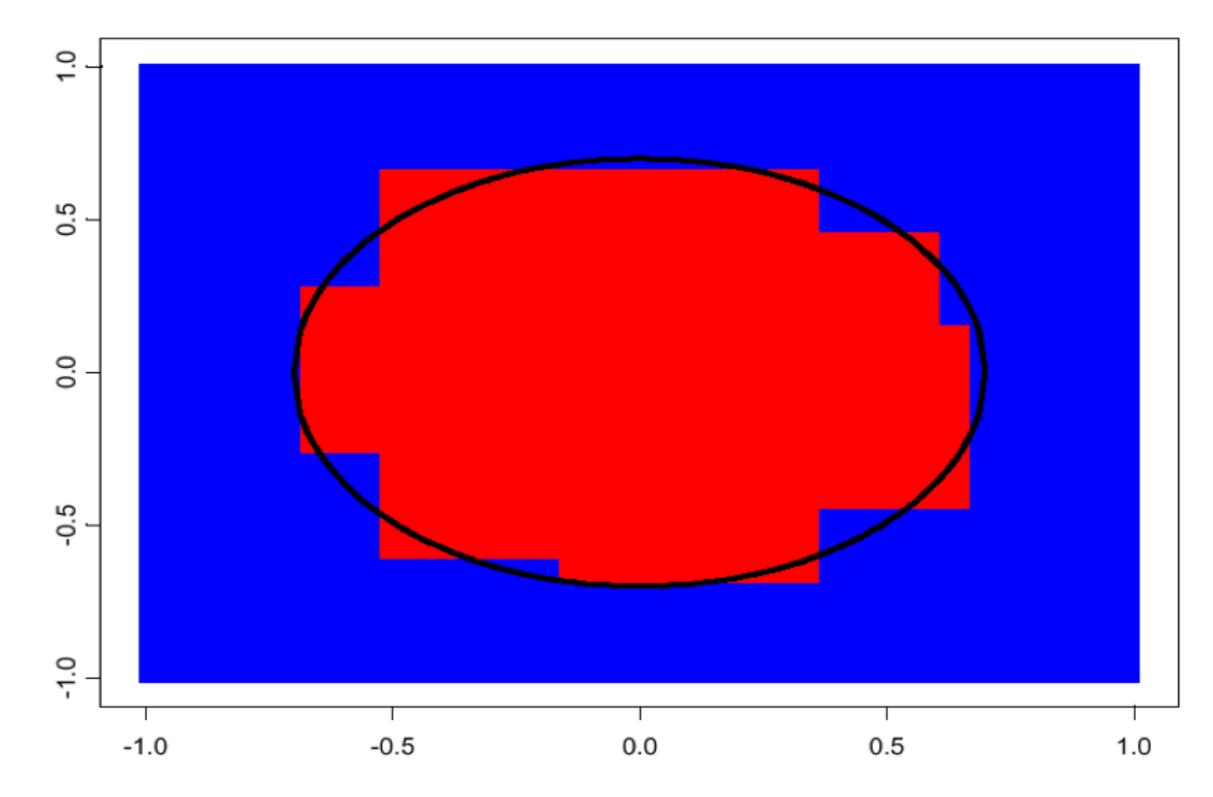
- Best case: $Var(Bagging(L(x, D))) = \frac{Var(L(x, D))}{N}$
- In practice:
 - models are correlated, so reduction is smaller than 1/N
 - variance of models trained on fewer training cases usually somewhat larger

Bagging Example



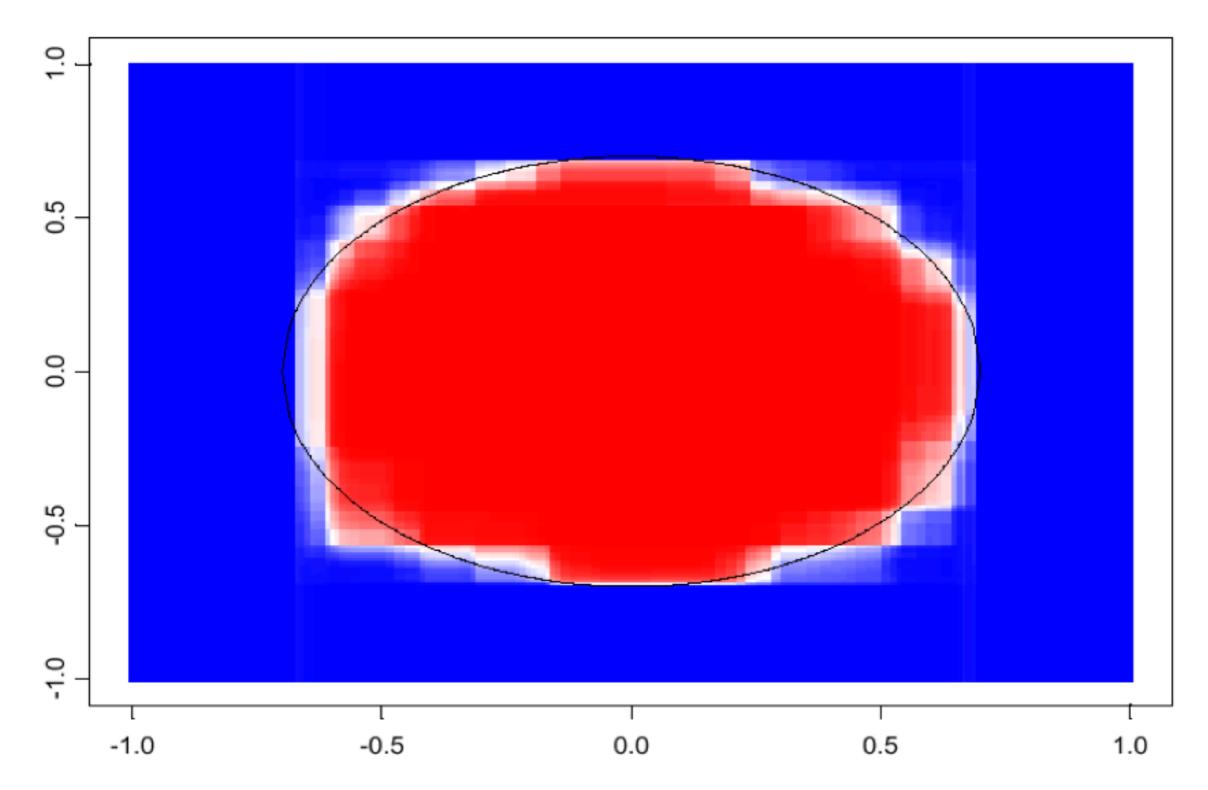
14

CART* decision boundary



* A decision tree learning algorithm; very similar to ID3

100 bagged trees

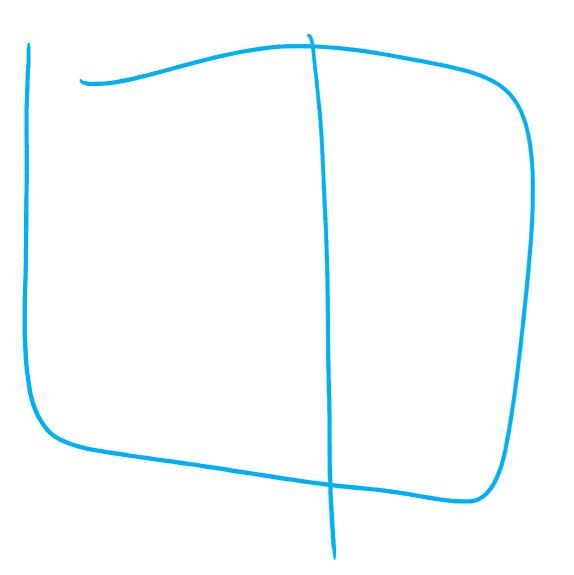


Shades of blue/red indicate strength of vote for particular classification₁₆

Random Forests

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes



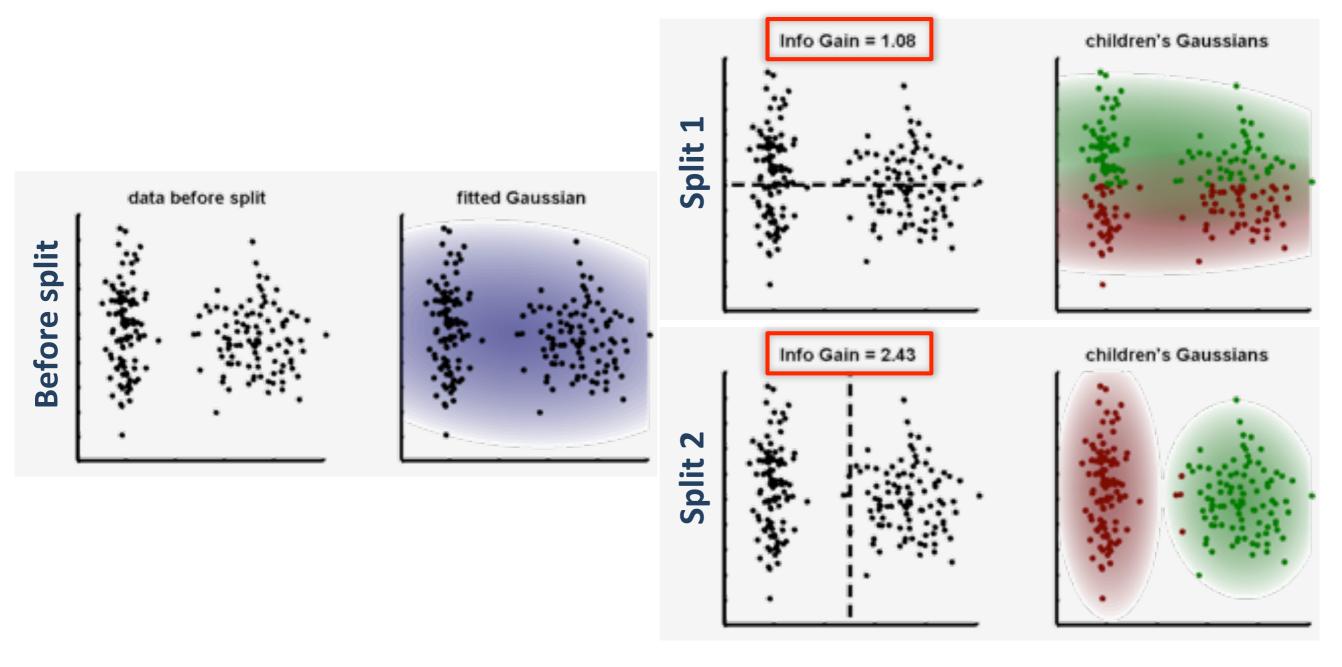
A generic data point is denoted by a vector $\mathbf{v} = (x_1, x_2, \cdots, x_d)$ $S_j = S_j^{L} \cup S_j^{R}$

[Criminisi et al., 2011]

 $I_j = H(\mathcal{S}_j) - \sum_{i \in \{L,R\}} \frac{|\mathcal{S}_j^i|}{|\mathcal{S}_j|} H(\mathcal{S}_j^i)$

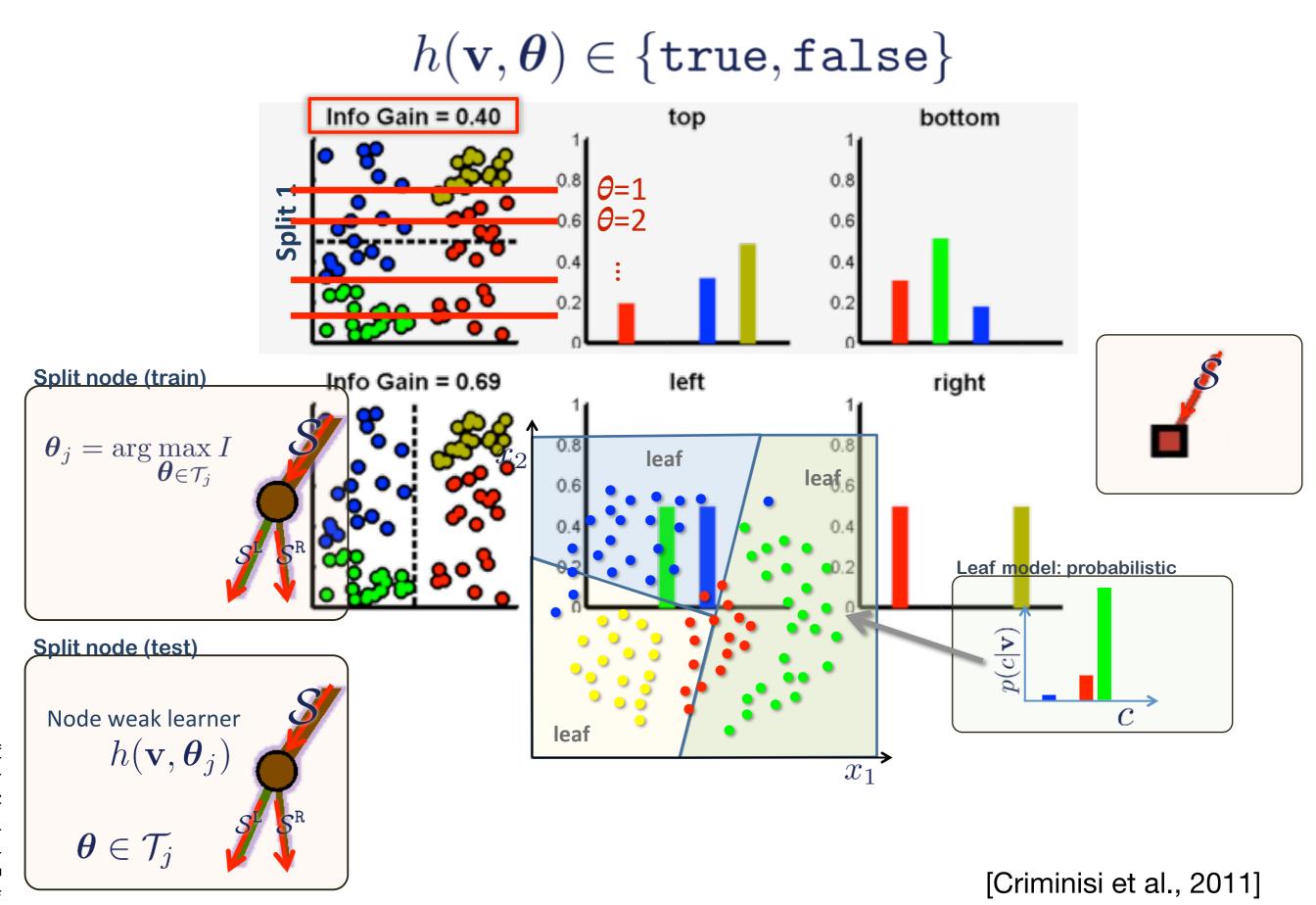
[Criminisi et al., 2011]

Advanced: Gaussian information gain to decide splits



$$H(\mathcal{S}) = \frac{1}{2} \log \left((2\pi e)^d |\Lambda(\mathcal{S})| \right)$$

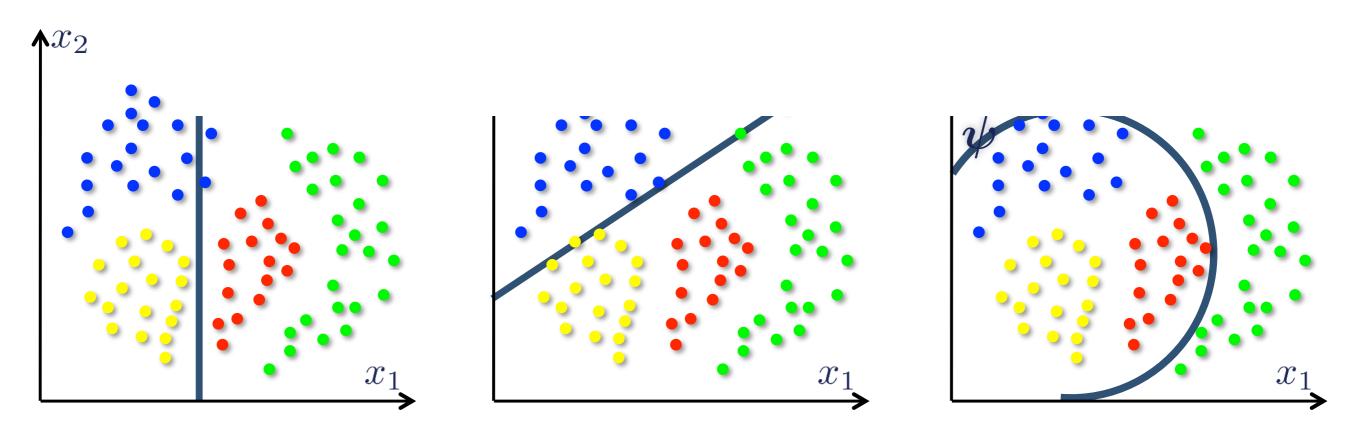
[Criminisi et al., 2011] 21



slide by Nando de Freitas

A

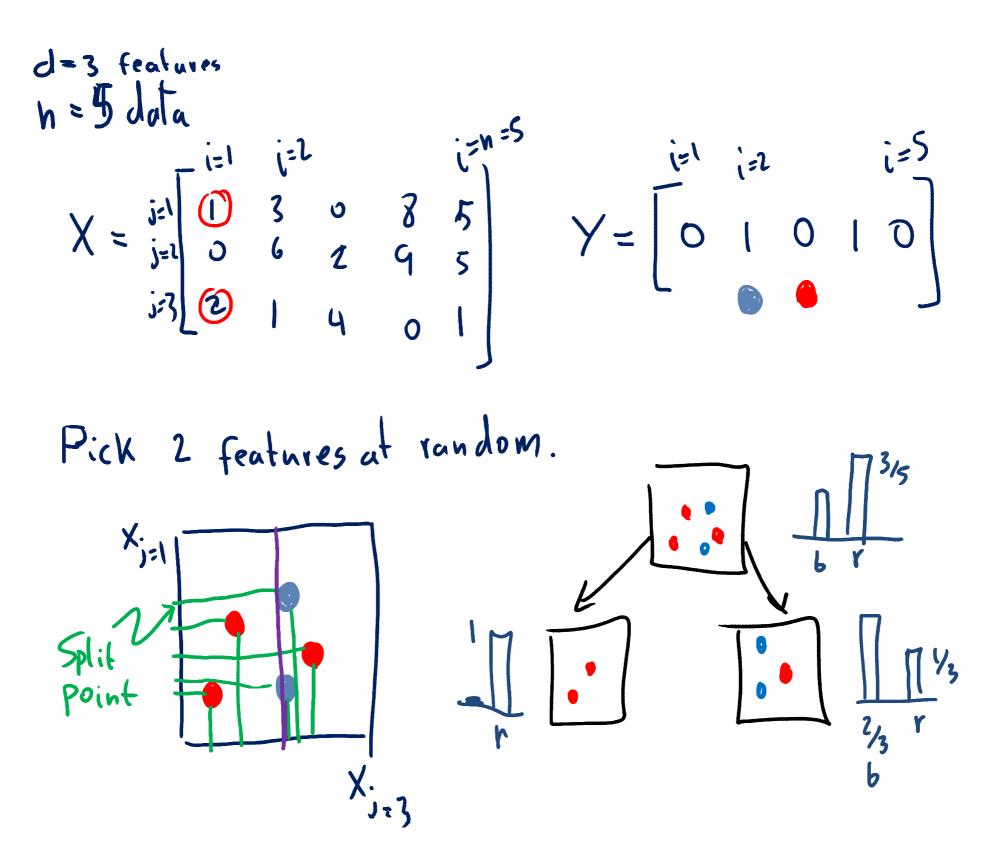
 $\mathbf{v} = (x_1 \ x_2) \in \mathbb{R}^2 \qquad \phi(\mathbf{v}) = (x_1 \ x_2 \ 1)^\top$



 $h(\mathbf{v}, \boldsymbol{\theta}) = [\tau_1 > \boldsymbol{\phi}(\mathbf{v}) \cdot \boldsymbol{\psi} > \tau_2] \quad h(\mathbf{v}, \boldsymbol{\theta}) = [\tau_1 > \boldsymbol{\phi}(\mathbf{v}) \cdot \boldsymbol{\psi} > \tau_2] \quad h(\mathbf{v}, \boldsymbol{\theta}) = \left[\tau_1 > \boldsymbol{\phi}^{\top}(\mathbf{v}) \ \boldsymbol{\psi} \ \boldsymbol{\phi}(\mathbf{v}) > \tau_2\right]$ axis aligned oriented line conic section examples of weak learners

slide by Nando de Freitas

Building a random tree



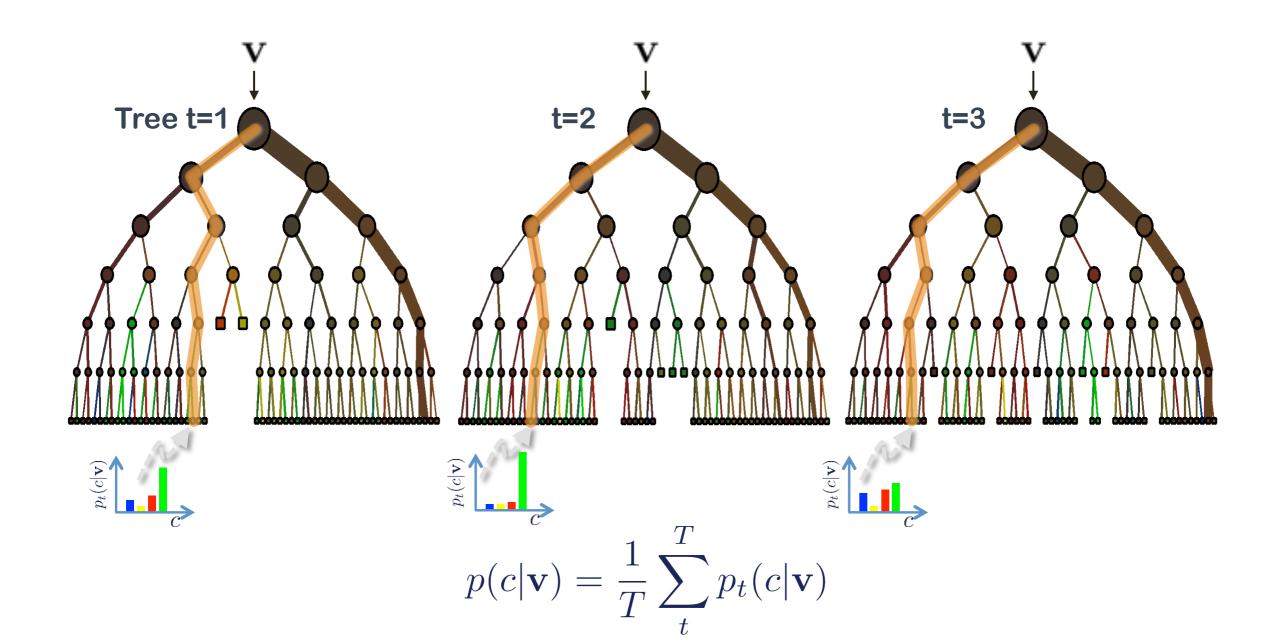
Random Forests algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

Randomization

Randomized node optimization. If \mathcal{T} is the entire set of all possible parameters $\boldsymbol{\theta}$ then when training the j^{th} node we only make available a small subset $\mathcal{T}_j \subset \mathcal{T}$ of such values.

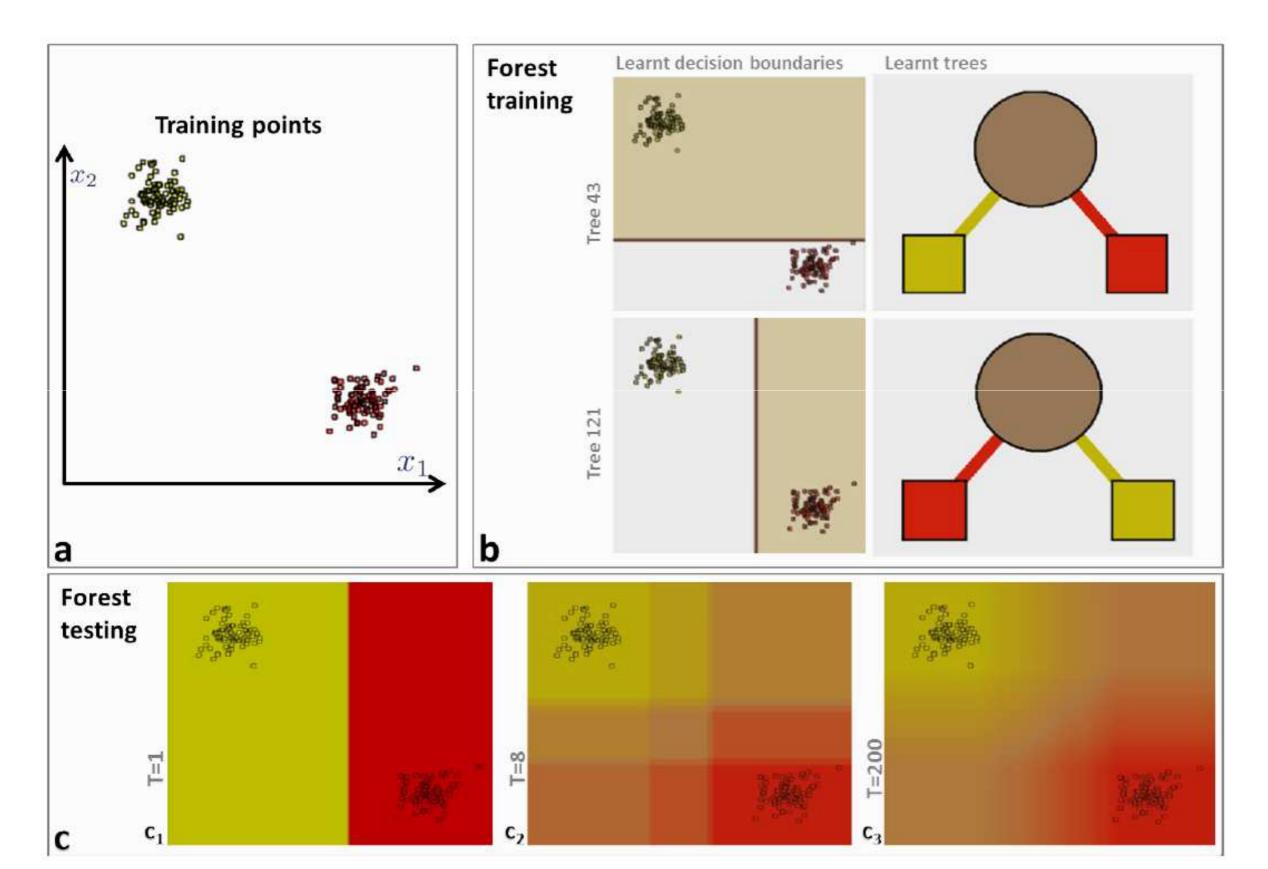
$$\boldsymbol{\theta}_j^* = \arg \max_{\boldsymbol{\theta}_j \in \mathcal{T}_j} I_j.$$



slide by Nando de Freitas

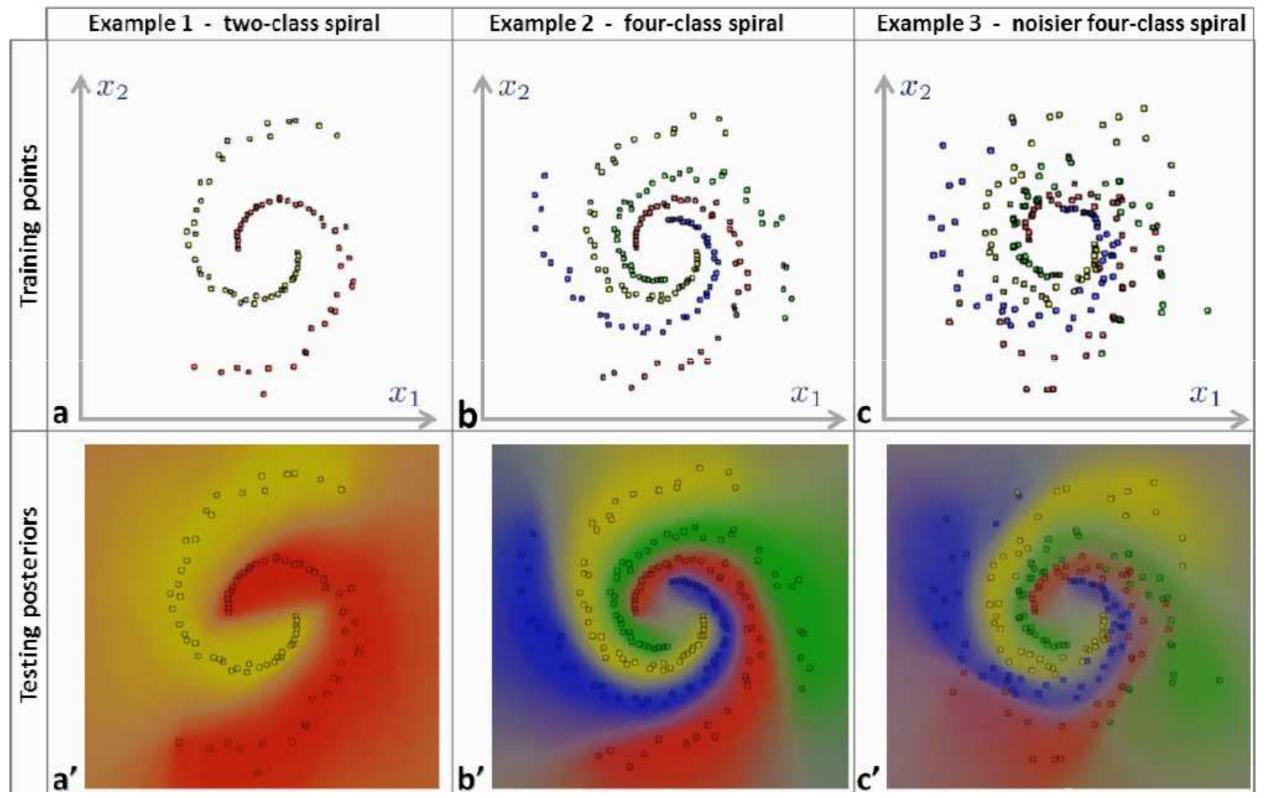
7

Effect of forest size



Effect of forest size

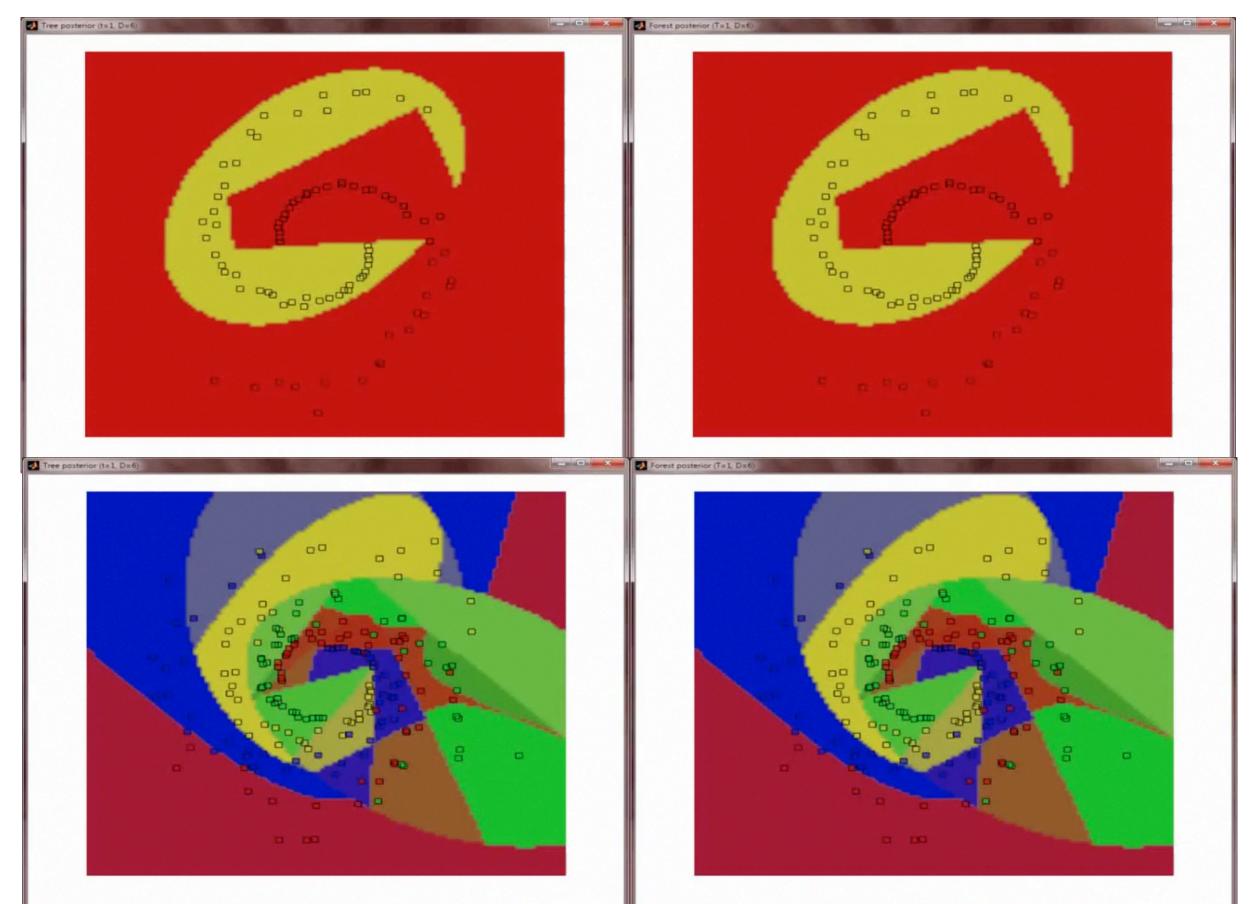
Effect of more classes and noise



slide by Nando de Freitas

I 30

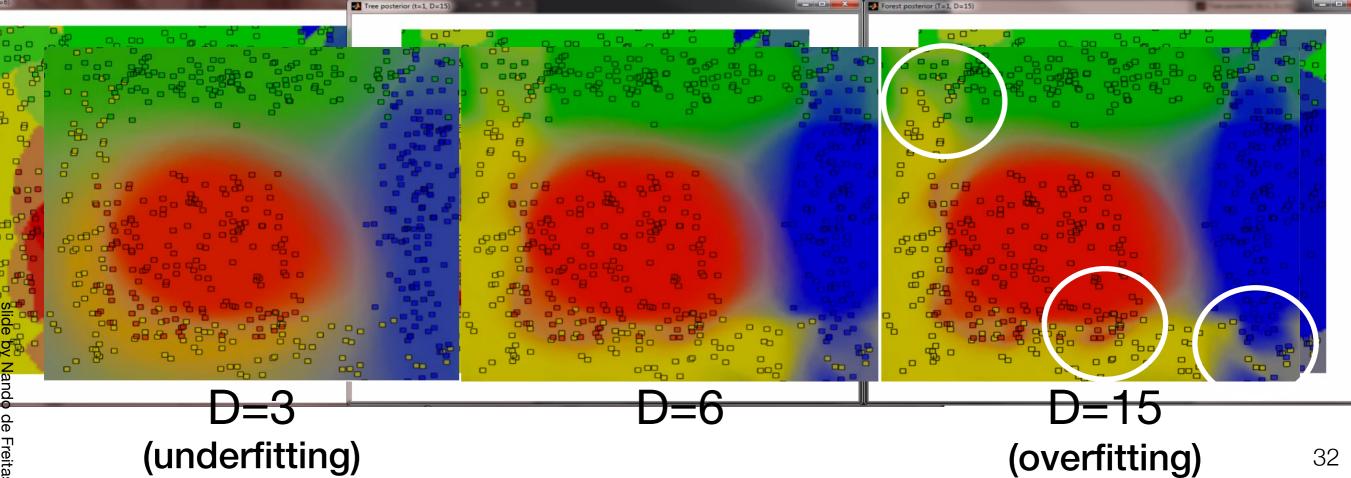
Effect of more classes and noise



Effect of tree depth (D)

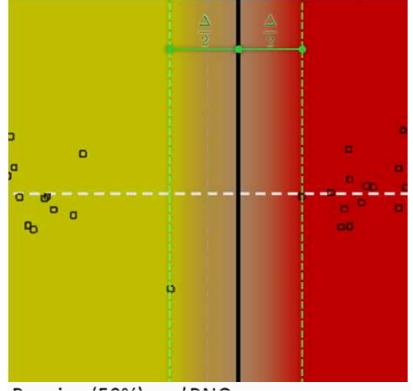
Training points: 4-class mixed





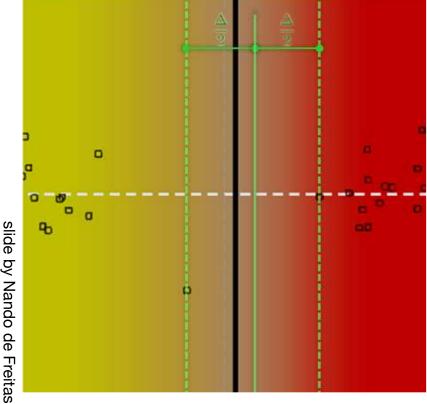
Effect of bagging

Randomized node optimization (RNO)



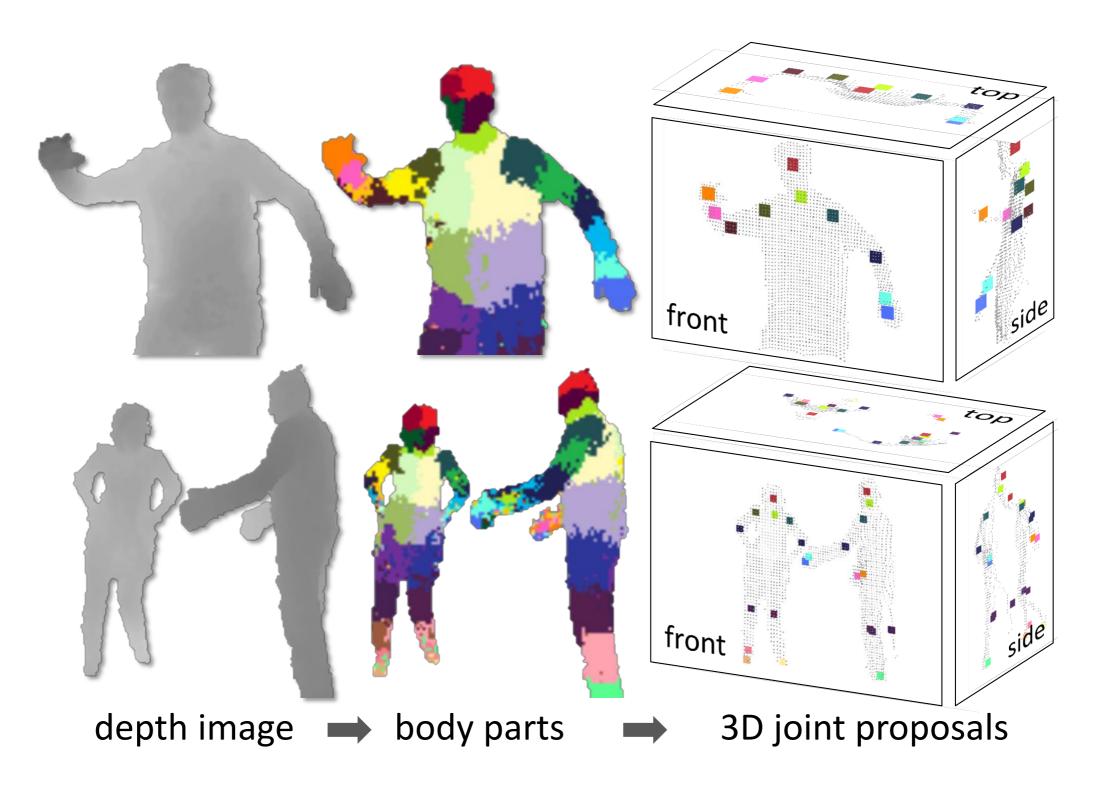
no bagging => max-margin

Bagging (50%) and RNO



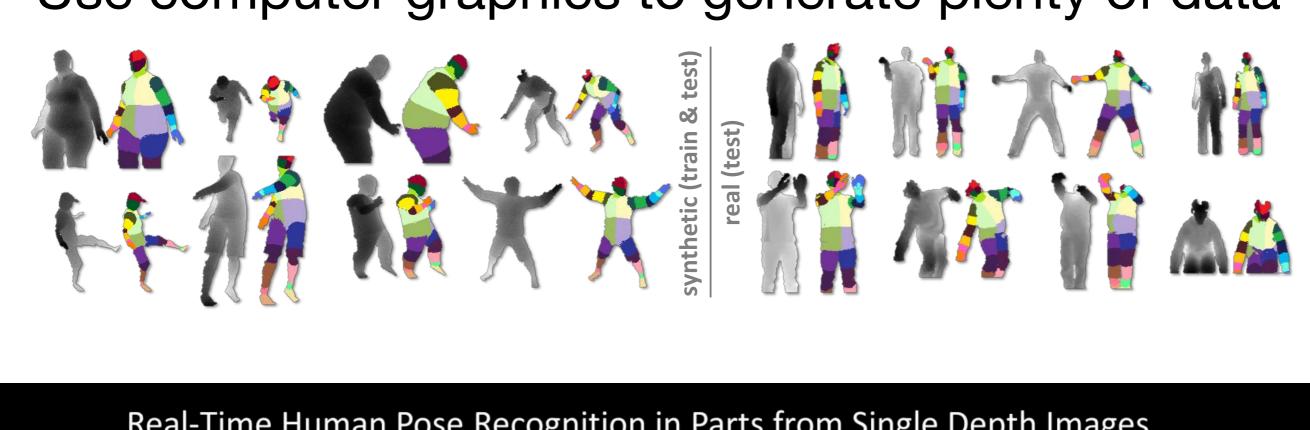
Random Forests and the Kinect

Random Forests and the Kinect



Random Forests and the Kinect

Use computer graphics to generate plenty of data



Real-Time Human Pose Recognition in Parts from Single Depth Images CVPR 2011

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake Microsoft Research Cambridge & Xbox Incubation

Reduce Bias² and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
- Yes: Boosting

Next Lecture: Boosting