Last time... Bias/Variance Tradeoff

Graphical illustration of bias and variance.

Last time... Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D.
- Bootstrap sampling: Given set D containing N training examples, create D^{\prime} by drawing N examples at random with replacement from D.
- Bagging:
- Create k bootstrap samples $D_{1} \ldots D_{k}$.
- Train distinct classifier on each D_{i}.
- Classify new instance by majority vote / average.

$$
\operatorname{Var}(\operatorname{Bagging}(L(x, D)))=\frac{\operatorname{Var}(L(x, D)}{N}
$$

Last time... Random Forests

1. For $b=1$ to B :
(a) Draw a bootstrap sample \mathbf{Z}^{*} of size N from the training data.
(b) Grow a random-forest tree T_{b} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size $n_{\text {min }}$ is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.
2. Output the ensemble of trees $\left\{T_{b}\right\}_{1}^{B}$.

Boosting

Boosting Ideas

- Main idea: use weak learner to create strong learner.
- Ensemble method: combine base classifiers returned by weak learner.
- Finding simple relatively accurate base classifiers often not hard.
- But, how should base classifiers be combined?

Example: "How May I Help You?"

- Goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

- Observation:

- easy to find "rules of thumb" that are "often" correct
- e.g.: "IF ‘card’ occurs in utterance THEN predict ‘CallingCard' "
- hard to find single highly accurate prediction rule

Boosting: Intuition

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
- Classifiers that are most "sure" will vote with more conviction
- Classifiers will be most "sure" about a particular part of the space
- On average, do better than single classifier!

-But how do you???

- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration t :
- weight each training example by how incorrectly it was classified
- Learn a hypothesis - h_{t}
- A strength for this hypothesis $-a_{t}$
- Final classifier:
- A linear combination of the votes of the different classifiers weighted by their strength $H(X)=\operatorname{sign}\left(\sum \alpha_{t} h_{t}(X)\right)$

- Practically useful

- Theoretically interesting

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

First Boosting Algorithms

- [Schapire '89]:
- first provable boosting algorithm
- [Freund '90]:
- "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire \& Simard '92]:
- first experiments using boosting
- limited by practical drawbacks
- [Freund \& Schapire '95]:
- introduced "AdaBoost" algorithm
- strong practical advantages over previous boosting algorithms

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ where $x_{i} \in X, y_{i} \in Y=\{-1,+1\}$ Initialize $D_{1}(i)=1 / m$.
For $t=1, \ldots, T$:

- Train weak learner using distribution D_{t}.
- Getweak classifier $h_{t}: X \rightarrow \mathbb{R}$.
- Choose $\alpha_{t} \in \mathbb{R}$.
- Update:

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is a normalization factor

Output the final classifier:

$$
Z_{t}=\sum_{i=1}^{m} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right) .
$$

Toy Example

Minimize the error

$$
\epsilon_{t}=\operatorname{Pr}_{i \sim D_{t}}\left[h_{t}\left(x_{i}\right) \neq y_{i}\right]
$$

For binary h_{t}, typically use

$$
\alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)
$$

Round 1

Round 1

Round 1

Round 2

Round 2

$$
\begin{aligned}
& \varepsilon_{2}=0.21 \\
& \alpha_{2}=0.65
\end{aligned}
$$

Round 2

$$
\begin{aligned}
& \varepsilon_{2}=0.21 \\
& \alpha_{2}=0.65
\end{aligned}
$$

Round 3

Round 3

$$
\begin{aligned}
& \varepsilon_{3}=0.14 \\
& \alpha_{3}=0.92
\end{aligned}
$$

Final Hypothesis

Voted combination of classifiers

- The general problem here is to try to combine many simple "weak" classifiers into a single "strong" classifier
- We consider voted combinations of simple binary ± 1 component classifiers

$$
h_{m}(\mathbf{x})=\alpha_{1} h\left(\mathbf{x} ; \theta_{1}\right)+\ldots+\alpha_{m} h\left(\mathbf{x} ; \theta_{m}\right)
$$

where the (non-negative) votes α_{i} can be used to emphasize component classifiers that are more reliable than others

Components: Decision stumps

- Consider the following simple family of component classifiers generating ± 1 labels:

$$
h(\mathbf{x} ; \theta)=\operatorname{sign}\left(w_{1} x_{k}-w_{0}\right)
$$

where $\theta=\left\{k, w_{1}, w_{0}\right\} . \quad$ These are called decision stumps.

- Each decision stump pays attention to only a single component of the input vector

Voted combinations (cont'd.)

- We need to define a loss function for the combination so we can determine which new component $h(\mathrm{x} ; \theta)$ to add and how many votes it should receive

$$
h_{m}(\mathbf{x})=\alpha_{1} h\left(\mathbf{x} ; \theta_{1}\right)+\ldots+\alpha_{m} h\left(\mathbf{x} ; \theta_{m}\right)
$$

- While there are many options for the loss function we consider here only a simple exponential loss

$$
\sum_{i=1}^{n} \exp \left\{-y h_{m}(\mathbf{x})\right\}
$$

Modularity, errors, and loss

- Consider adding the $m^{\text {th }}$ component:

$$
\begin{aligned}
& \sum_{i=1}^{n} \exp \left\{-y_{i}\left[h_{m-1}\left(\mathbf{x}_{i}\right)+\alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right]\right\} \\
& \quad=\sum_{i=1}^{n} \exp \left\{-y_{i} h_{m-1}\left(\mathbf{x}_{i}\right)-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\}
\end{aligned}
$$

Modularity, errors, and loss

- Consider adding the $m^{\text {th }}$ component:

$$
\begin{aligned}
& \sum_{i=1}^{n} \exp \left\{-y_{i}\left[h_{m-1}\left(\mathbf{x}_{i}\right)+\alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right]\right\} \\
& \quad=\sum_{i=1}^{n} \exp \left\{-y_{i} h_{m-1}\left(\mathbf{x}_{i}\right)-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\} \\
& \quad=\sum_{i=1}^{n} \underbrace{\exp \left\{-y_{i} h_{m-1}\left(\mathbf{x}_{i}\right)\right\}}_{\text {fixed at stage } m} \exp \left\{-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\}
\end{aligned}
$$

Modularity, errors, and loss

- Consider adding the $m^{\text {th }}$ component:

$$
\begin{aligned}
& \sum_{i=1}^{n} \exp \left\{-y_{i}\left[h_{m-1}\left(\mathbf{x}_{i}\right)+\alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right]\right\} \\
& \quad=\sum_{i=1}^{n} \exp \left\{-y_{i} h_{m-1}\left(\mathbf{x}_{i}\right)-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\} \\
& \quad=\sum_{i=1}^{n} \underbrace{\exp \left\{-y_{i} h_{m-1}\left(\mathbf{x}_{i}\right)\right\}}_{\text {fixed at stage } m} \exp \left\{-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\}
\end{aligned}
$$

- So at the $m^{t h}$ iteration the new component (and the votes) should optimize a weighted loss (weighted towards mistakes).

Empirical exponential loss (cont'd.)

- To increase modularity we'd like to further decouple the optimization of $h\left(\mathrm{x} ; \theta_{m}\right)$ from the associated votes α_{m}
- To this end we select $h\left(\mathrm{x} ; \theta_{m}\right)$ that optimizes the rate at which the loss would decrease as a function of α_{m}

$$
\left.\frac{\partial}{\partial \alpha_{m}}\right|_{\alpha_{m}=0} \sum_{i=1}^{n} W_{i}^{(m-1)} \exp \left\{-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\}=
$$

$$
\left[\sum_{i=1}^{n} W_{i}^{(m-1)} \exp \left\{-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right\} \cdot\left(-y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right)\right]_{\alpha_{m}=0}
$$

$$
=\left[\sum_{i=1}^{n} W_{i}^{(m-1)}\left(-y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right)\right)\right]
$$

Empirical exponential loss (cont'd.)

- We find $h\left(\mathbf{x} ; \hat{\theta}_{m}\right)$ that minimizes

$$
-\sum_{i=1}^{n} W_{i}^{(m-1)} y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right)
$$

- We can also normalize the weights:

$$
\begin{array}{r}
-\sum_{i=1}^{n} \frac{W_{i}^{(m-1)}}{\sum_{j=1}^{n} W_{j}^{(m-1)}} y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right) \\
=-\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right)
\end{array}
$$

so that $\quad \sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)}=1$.

Empirical exponential loss (cont'd.)

- We find $h\left(\mathbf{x} ; \hat{\theta}_{m}\right)$ that minimizes

$$
-\sum_{i=1}^{n} W_{i}^{(m-1)} y_{i} h\left(\mathbf{x}_{i} ; \theta_{m}\right)
$$

$$
\text { where } \sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)}=1
$$

- α_{m} is subsequently chosen to minimize

$$
\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} \exp \left\{-y_{i} \alpha_{m} h\left(\mathbf{x}_{i} ; \hat{\theta}_{m}\right)\right\}
$$

The AdaBoost Algorithm

0) Set $\tilde{W}_{i}^{(0)}=1 / n$ for $i=1, \ldots, n$
1) At the $m^{\text {th }}$ iteration we find (any) classifier $h\left(\mathbf{x} ; \hat{\theta}_{m}\right)$ for which the weighted classification error ϵ_{m}

$$
\epsilon_{m}=0.5-\frac{1}{2}\left(\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} y_{i} h\left(\mathbf{x}_{i} ; \hat{\theta}_{m}\right)\right)
$$

is better than chance.
2) The new component is assigned votes based on its error:

$$
\hat{\alpha}_{m}=0.5 \log \left(\left(1-\epsilon_{m}\right) / \epsilon_{m}\right)
$$

3) The weights are updated according to (Z_{m} is chosen so that the new weights $\tilde{W}_{i}^{(m)}$ sum to one):

$$
\tilde{W}_{i}^{(m)}=\frac{1}{Z_{m}} \cdot \tilde{W}_{i}^{(m-1)} \cdot \exp \left\{-y_{i} \hat{\alpha}_{m} h\left(\mathbf{x}_{i} ; \hat{\theta}_{m}\right)\right\}
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$
Initialise weights $D_{1}(i)=1 / \mathrm{m}$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$
Initialise weights $D_{1}(i)=1 / m$
$t=1$
For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$
Initialise weights $D_{1}(i)=1 / m$

$$
t=1
$$

For $t=1, \ldots, T$:
Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$

- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$
Initialise weights $D_{1}(i)=1 / m$

$$
t=1
$$

For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / m$

$$
t=1
$$

For $t=1, \ldots, T$:
Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$

- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / \mathrm{m}$
For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / m$
For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / m$
For $t=1, \ldots, T$:
\bullet Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$

- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
$\stackrel{\frac{0}{\bar{\circ}}}{\stackrel{\circ}{2}}$ Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / \mathrm{m}$
For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / m$ For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / m$

$$
t=7
$$

For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

The AdaBoost Algorithm

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) ; x_{i} \in \mathcal{X}, y_{i} \in\{-1,+1\}$ Initialise weights $D_{1}(i)=1 / \mathrm{m}$
For $t=1, \ldots, T$:

- Find $h_{t}=\arg \min _{h_{j} \in \mathcal{H}} \epsilon_{j}=\sum_{i=1}^{m} D_{t}(i) \llbracket y_{i} \neq h_{j}\left(x_{i}\right) \rrbracket$
- If $\epsilon_{t} \geq 1 / 2$ then stop
- Set $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)$
- Update

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is normalisation factor
Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)
$$

Reweighting

Effect on the training set

$$
\left.\begin{array}{c}
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}} \\
\exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)\left\{\begin{array}{r}
<1, \quad y_{i}=h_{t}\left(x_{i}\right) \\
>1,
\end{array} y_{i} \neq h_{t}\left(x_{i}\right)\right.
\end{array} ~ . ~ \begin{array}{r}
<1
\end{array}\right)
$$

\Rightarrow Increase (decrease) weight of wrongly (correctly) classified examples
\Rightarrow The weight is the upper bound on the error of a given example
\Rightarrow All information about previously selected "features" is captured in D_{t}

Reweighting

Effect on the training set

$$
\begin{gathered}
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}} \\
\exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)\left\{\begin{array}{r}
<1, \quad y_{i}=h_{t}\left(x_{i}\right) \\
>1, \quad y_{i} \neq h_{t}\left(x_{i}\right)
\end{array}\right.
\end{gathered}
$$

\Rightarrow Increase (decrease) weight of wrongly (correctly) classified examples
\Rightarrow The weight is the upper bound on the error of a given example
\Rightarrow All information about previously selected "features" is captured in D_{t}

Reweighting

Effect on the training set

$$
\begin{gathered}
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}} \\
\exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)\left\{\begin{array}{r}
<1, \quad y_{i}=h_{t}\left(x_{i}\right) \\
>1, \quad y_{i} \neq h_{t}\left(x_{i}\right)
\end{array}\right.
\end{gathered}
$$

\Rightarrow Increase (decrease) weight of wrongly (correctly) classified examples
\Rightarrow The weight is the upper bound on the error of a given example
\Rightarrow All information about previously selected "features" is captured in D_{t}

Boosting results - Digit recognition

- Boosting often (but not always)
- Robust to overfitting
- Test set error decreases even after training error is zero

Application: Detecting Faces

- Training Data
- 5000 faces
- All frontal
- 300 million non-faces
- 9500 non-face images

Application: Detecting Faces

- Problem: find faces in photograph or movie
- Weak classifiers: detect light/dark rectangle in image

- Many clever tricks to make extremely fast and accurate
[Viola \& Jones]

Boosting vs. Logistic Regression

Logistic regression:

- Minimize log loss

$$
\sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} f\left(x_{i}\right)\right)\right)
$$

- Define

$$
f(x)=\sum_{j} w_{j} x_{j}
$$

where x_{j} predefined
features (linear classifier)

- Jointly optimize over all weights $w_{0}, w_{1}, w_{2}, \ldots$

Boosting:

- Minimize exp loss

$$
\sum_{i=1}^{m} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

- Define

$$
f(x)=\sum_{t} \alpha_{t} h_{t}(x)
$$

where $h_{t}(x)$ defined dynamically to fit data (not a linear classifier)

- Weights α_{t} learned per iteration t incrementally

Boosting vs. Bagging

Bagging:

- Resample data points
- Weight of each classifier is the same
- Only variance reduction

Boosting:

- Reweights data points (modifies their distribution)
- Weight is dependent on classifier's accuracy
- Both bias and variance reduced - learning rule becomes more complex with iterations

Next Lecture: K-Means Clustering

