Illustration adapted from Alex Rogozhnikov

AIN 311 Fundamentals of Machine Learning

Lecture 20: AdaBoost

Erkut Erdem // Hacettepe University // Fall 2023

Last time... Bias/Variance Tradeoff

Graphical illustration of bias and variance. http://scott.fortmann-roe.com/docs/BiasVariance.html

Last time... Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D.
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i.
 - Classify new instance by majority vote / average.

$$Var(Bagging(L(x,D))) = \frac{Var(L(x,D))}{N}$$

Last time... Random Forests

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

Boosting

Boosting Ideas

- Main idea: use weak learner to create strong learner.
- Ensemble method: combine base classifiers returned by weak learner.
- Finding simple relatively accurate base classifiers often not hard.
- But, how should base classifiers be combined?

Example: "How May I Help You?"

- Goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
 - yes I'd like to place a collect call long distance please (Collect)
 - operator I need to make a call but I need to bill it to my office (ThirdNumber)
 - yes I'd like to place a call on my master card please (CallingCard)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

Observation:

- easy to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard' "
- hard to find single highly accurate prediction rule

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

But how do you???

- force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration *t*:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis a_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = sign\left(\sum \alpha_t h_t(X)\right)$
- Practically useful
- Theoretically interesting

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for *m*=1,...,*M*

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
- α_m set according to weighted error of h_m

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for *m*=1,...,*M*

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
 - α_m set according to weighted error of h_m

[Source: G. Shakhnarovich]

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for *m*=1,...,*M*

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
- α_m set according to weighted error of h_m

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for m=1,...,M

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
- α_m set according to weighted error of h_m

[Source: G. Shakhnarovich]

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for *m*=1,...,*M*

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
 - α_m set according to weighted error of h_m

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for m=1,...,M

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
- α_m set according to weighted error of h_m

 Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for m=1,...,M

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get "heavier"
 - α_m set according to weighted

error of h_m

First Boosting Algorithms

- [Schapire '89]:
 - first provable boosting algorithm
- [Freund '90]:
 - "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - first experiments using boosting
 - limited by practical drawbacks
- [Freund & Schapire '95]:
 - introduced "AdaBoost" algorithm
 - strong practical advantages over previous boosting algorithms

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t .
- Getweak classifier $h_t : X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

 e^{-lpha_t} if $y_i = h_t(x_i)$ e^{lpha_t} if $y_i \neq h_t(x_i)$

18

Toy Example

Minimize the error

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right]$$

For binary h_t , typically use $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

weak hypotheses = vertical or horizontal half-planes

 $\epsilon_1 = 0.30$ $\alpha_1 = 0.42$

$$\epsilon_1 = 0.30$$

 $\alpha_1 = 0.42$

 $\epsilon_3 = 0.14$ $\alpha_3 = 0.92$

Final Hypothesis

Voted combination of classifiers

- The general problem here is to try to combine many simple "weak" classifiers into a single "strong" classifier
- We consider voted combinations of simple binary ±1 component classifiers

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

where the (non-negative) votes α_i can be used to emphasize component classifiers that are more reliable than others

Components: Decision stumps

 Consider the following simple family of component classifiers generating ±1 labels:

$$h(\mathbf{x};\theta) = \operatorname{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}$. These are called decision stumps.

 Each decision stump pays attention to only a single component of the input vector

Voted combinations (cont'd.)

• We need to define a loss function for the combination so we can determine which new component $h(x;\theta)$ to add and how many votes it should receive

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

While there are many options for the loss function we consider here only a simple exponential loss

$$\sum_{i=1}^{n} \exp\{-y h_m(\mathbf{x})\}$$

Modularity, errors, and loss

• Consider adding the *mth* component:

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$
$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

Modularity, errors, and loss

• Consider adding the *mth* component:

n

 \mathbf{n}

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(\mathbf{x}_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

Modularity, errors, and loss

• Consider adding the *m*th component:

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$
$$= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(\mathbf{x}_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

So at the *m*th iteration the new component (and the votes) should optimize a weighted loss (weighted towards mistakes).

Empirical exponential loss (cont'd.)

- To increase modularity we'd like to further decouple the optimization of $h(x; \theta_m)$ from the associated votes α_m
- To this end we select $h(x; \theta_m)$ that optimizes the rate at which the loss would decrease as a function of α_m $\frac{\partial}{\partial \alpha_m}\Big|_{\alpha_m=0} \sum_{i=1}^n W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} =$ $\left[\sum_{i=1}^{n} W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} \cdot (-y_i h(\mathbf{x}_i; \theta_m))\right]_{\alpha_m = 0}$ $= \left| \sum_{i=1}^{n} W_i^{(m-1)} \left(-y_i h(\mathbf{x}_i; \theta_m) \right) \right|$

Empirical exponential loss (cont'd.)

• We find
$$h(\mathbf{x}; \hat{\theta}_m)$$
 that minimizes

$$-\sum_{i=1}^n W_i^{(m-1)} y_i h(\mathbf{x}_i; \theta_m)$$

• We can also normalize the weights:

$$-\sum_{i=1}^{n} \frac{W_{i}^{(m-1)}}{\sum_{j=1}^{n} W_{j}^{(m-1)}} y_{i}h(\mathbf{x}_{i};\theta_{m})$$
$$= -\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} y_{i}h(\mathbf{x}_{i};\theta_{m})$$

that
$$\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1$$

so tha

Empirical exponential loss (cont'd.)

• We find
$$h(\mathbf{x}; \hat{\theta}_m)$$
 that minimizes

$$-\sum_{i=1}^{n} W_i^{(m-1)} y_i h(\mathbf{x}_i; \theta_m)$$
where $\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1$.

• α_m is subsequently chosen to minimize $\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \hat{\theta}_m)\}$

0) Set
$$\tilde{W}_i^{(0)} = 1/n$$
 for $i = 1, \ldots, n$

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

3) The weights are updated according to $(Z_m \text{ is chosen so that the new weights } \tilde{W}_i^{(m)} \text{ sum to one}):$

$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp\{-y_i \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)\}$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

• Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$

- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For $t = 1, \ldots, T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- 🔶 Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Given:
$$(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$
For $t = 1, ..., T$:

• Find
$$h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$$

• If $\epsilon_t \geq 1/2$ then stop

• Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

• Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given:
$$(x_1, y_1), \dots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$
For $t = 1, ..., T$:

• Find
$$h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$$

• If $\epsilon_t \geq 1/2$ then stop

• Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{n} D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Slide by Uri Matas and Jan Soutput the final classifier:
$$H(x) = sign\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- 🔶 Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [\![y_i \neq h_j(x_i)]\!]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Given:
$$(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$$

Initialise weights $D_1(i) = 1/m$
For $t = 1, ..., T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) \llbracket y_i \neq h_j(x_i) \rrbracket$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is normalisation factor

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Reweighting

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- ⇒ Increase (decrease) weight of wrongly (correctly) classified examples
- \Rightarrow The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Reweighting

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

- \Rightarrow The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

Reweighting

Effect on the training set

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

- \Rightarrow The weight is the upper bound on the error of a given example
- \Rightarrow All information about previously selected "features" is captured in D_t

- Boosting often (but not always)
 - Robust to overfitting
 - Test set error decreases even after training error is zero

Application: Detecting faces

- Training Data
 - 5000 faces
 - All frontal
 - 300 million non-faces
 - 9500 non-face images

Application: Detecting Faces

- Problem: find faces in photograph or movie
- Weak classifiers: detect light/dark rectangle in image

 $\frac{1}{2}$ • Many clever tricks to make extremely fast and accurate

[Viola & Jones]

Boosting vs. Logistic Regression

Logistic regression:

$$\sum_{\substack{i=1\\i=1}}^{m} \ln(1 + \exp(-y_i f(x_i))))$$

• Define

$$f(x) = \sum_{j} w_{j} x_{j}^{y_{j} x_{j}}$$
where x_{j}^{j} predefined
features (linear classifier

 Jointly optimize over all weights w₀,w₁,w₂,... **Boosting:**

$$\begin{array}{c} \mathsf{M}^{i_{m} \cdots m} \\ \sum_{\substack{i \equiv 1 \\ i = 1}}^{m} \exp(-y_{i}f(x_{i}))^{x_{i}})) \\ \vdots \end{array}$$

 $f(x) = \sum_{t} \alpha_{t} h_{t}(x) \stackrel{(x)}{\longrightarrow}$ where $h_{t}(x)^{t}$ defined dynamically to fit data (not a linear classifier)

• Weights α_t learned per iteration t incrementally

Boosting vs. Bagging

Bagging:

- Resample data points
- Weight of each classifier
 is the same
- Only variance reduction

Boosting:

- Reweights data points (modifies their distribution)
- Weight is dependent on classifier's accuracy
- Both bias and variance reduced – learning rule becomes more complex with iterations

Next Lecture: K-Means Clustering