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Lecture 22:

K-Means Example Applications


Spectral clustering 

Hierarchical clustering


What is a good clustering?

AIN311

Fundamentals of   

Machine 
Learning

Photo by Unsplash user @foodiesfeed



Last time… K-Means
• An iterative 

clustering algorithm

- Initialize: Pick K 

random points as 
cluster centers (means)


- Alternate:

• Assign data instances 

to closest mean 

• Assign each mean to 

the average of its 
assigned points


- Stop when no points’ 
assignments change
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Today
• K-Means Example Applications

• Spectral clustering 

• Hierarchical clustering

• What is a good clustering?
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K-Means  
Example Applications

4



Example: K-Means for Segmentation
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Example: Vector quantization
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Example: Vector quantization 
514 14. Unsupervised Learning

FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962) was one of the founders
of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024×1024 grayscale
image at 8 bits per pixel. The center image is the result of 2× 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pixel

We see that the procedure is successful at grouping together samples of
the same cancer. In fact, the two breast cancers in the second cluster were
later found to be misdiagnosed and were melanomas that had metastasized.
However, K-means clustering has shortcomings in this application. For one,
it does not give a linear ordering of objects within a cluster: we have simply
listed them in alphabetic order above. Secondly, as the number of clusters
K is changed, the cluster memberships can change in arbitrary ways. That
is, with say four clusters, the clusters need not be nested within the three
clusters above. For these reasons, hierarchical clustering (described later),
is probably preferable for this application.

14.3.9 Vector Quantization

The K-means clustering algorithm represents a key tool in the apparently
unrelated area of image and signal compression, particularly in vector quan-
tization or VQ (Gersho and Gray, 1992). The left image in Figure 14.92 is a
digitized photograph of a famous statistician, Sir Ronald Fisher. It consists
of 1024× 1024 pixels, where each pixel is a grayscale value ranging from 0
to 255, and hence requires 8 bits of storage per pixel. The entire image oc-
cupies 1 megabyte of storage. The center image is a VQ-compressed version
of the left panel, and requires 0.239 of the storage (at some loss in quality).
The right image is compressed even more, and requires only 0.0625 of the
storage (at a considerable loss in quality).

The version of VQ implemented here first breaks the image into small
blocks, in this case 2×2 blocks of pixels. Each of the 512×512 blocks of four

2This example was prepared by Maya Gupta.

[Figure from Hastie et al. book] 
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Example: Simple Linear Iterative 
Clustering (SLIC) superpixels
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R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk SLIC Superpixels Compared to 
State-of-the-art Superpixel Methods, IEEE T-PAMI, 2012

λ: spatial regularization parameter



Bag of Words model
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aardvark  0 

about  2 

all  2 

Africa  1 

apple  0 

anxious  0 

... 

gas  1 

... 

oil  1 

… 

Zaire  0 
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Object Bag of ‘words’ 
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Interest Point Features
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Normalize 
patch 

Detect patches 
[Mikojaczyk and Schmid ’02] 

[Matas et al. ’02]  

[Sivic et al. ’03] 

Compute 
SIFT 

descriptor 
      [Lowe’99] 
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Patch Features
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… 
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Dictionary Formation
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… 
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Clustering (usually K-means)
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Vector quantization 

… 
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Clustered Image Patches
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Visual synonyms and polysemy
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Visual Polysemy. Single visual word occurring on different  (but locally  
similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar 
part of an object  (wheel of a motorbike).
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Image Representation
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….. 

fre
qu

en
cy

 

codewords 
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Spectral clustering
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Graph-Theoretic Clustering
Goal: Given data points X1, ..., Xn and similarities W(Xi ,Xj), 
partition the data into groups so that points in a group 
are similar and points in different groups are dissimilar.

21

Similarity Graph: G(V,E,W) V – Vertices (Data points) 

E – Edge if similarity > 0 

W - Edge weights (similarities)

Partition the graph so that edges within a group have large weights and 
edges across groups have small weights.
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Graphs Representations
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A Weighted Graph and its 
Representation
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Similarity)graph)construc6on)
Similarity Graphs: Model local neighborhood relations between data points 
 

  

E.g. epsilon-NN  
 
 
 
 
 

    or mutual k-NN graph (Wij = 1 if xi or xj is k nearest neighbor of the other) 
 
 
 

Controls size of neighborhood 

Data clustering 

Wij 

Wij =

⇢
1 kxi � xjk  ✏
0 otherwise

Similarity graph construction
• Similarity Graphs: Model local neighborhood relations 

between data points

• E.g. epsilon-NN


	 or mutual k-NN graph (Wij = 1 if xi or xj is k nearest neighbor 
of 	the other) 
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Similarity graph construction
• Similarity Graphs: Model local neighborhood relations 

between data points

• E.g. Gaussian kernel similarity function
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Controls size of neighborhood
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Scale affects affinity

26

• Small σ: group only nearby points

• Large σ: group far-away points
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Three points in feature space

Wij = exp(-|| zi – zj ||2 / s2)
With an appropriate s

W=

The eigenvectors of W are:

The first 2 eigenvectors group the points 
as desired…

British Machine Vision Conference, pp. 103-108, 1990
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Example eigenvector

points

Affinity matrix

eigenvector

28
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Example eigenvector

points

eigenvector

Affinity matrix
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Graph cut

• Set of edges whose removal makes a 
graph disconnected


• Cost of a cut: sum of weights of cut edges

• A graph cut gives us a partition (clustering)


- What is a “good” graph cut and how do we find 
one?

A
B

30
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Minimum cut

€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

Cut: sum of the weight of the cut edges:

• A cut of a graph G is the set of edges S such 
that removal of S from G disconnects G.

31
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Minimum cut
• We can do clustering by finding the 

minimum cut in a graph

- Efficient algorithms exist for doing this

Minimum cut example

32
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Minimum cut
• We can do segmentation by finding the 

minimum cut in a graph

- Efficient algorithms exist for doing this

33

Minimum cut example
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Drawbacks of Minimum cut
• Weight of cut is directly proportional to the 

number of edges in the cut.

Ideal Cut

Cuts with 

lesser weight

than the 

ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 34
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Normalized cuts

assoc(A,V) is sum of all edges with one end in A.

cut(A,B) is sum of weights with one end in A and one end in B

Write graph as V, one cluster as A and the other as B

cut(A,B)

assoc(A,V)

cut(A,B)

assoc(B,V)
+Ncut(A,B) = 

€ 

cut(A,B) = W(u,v),
u∈A,v∈B
∑

                     with A ∩ B = ∅

€ 

assoc(A,B) = W(u,v)
u∈A,v∈B
∑

                     A and B not necessarily disjoint

35
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http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cut
• Let W be the adjacency matrix of the graph

• Let D be the diagonal matrix with diagonal entries 

D(i, i) = Σj W(i, j) 

• Then the normalized cut cost can be written as 
 
 
 
where y is an indicator vector whose value should 
be 1 in the i-th position if the i-th feature point 
belongs to A and a negative constant otherwise

Dyy
yWDy

T

T )( −

36

slide by Svetlana Lazebnik J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

D-W: Graph Laplacian

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cut
• Finding the exact minimum of the normalized cut cost is 

NP-complete, but if we relax y to take on arbitrary values, 
then we can minimize the relaxed cost by solving the 
generalized eigenvalue problem  (D − W)y = λDy 


• The solution y is given by the generalized eigenvector 
corresponding to the second smallest eigenvalue, aka the 
Fiedler vector


• Intuitively, the i-th entry of y can be viewed as a “soft” 
indication of the component membership of the i-th feature

- Can use 0 or median value of the entries as the splitting point 

(threshold), or find threshold that minimizes the Ncut cost

37
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Normalized cut algorithm

38

slide by Bill Freem
an and Antonio Torralba J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


K-Means vs. Spectral Clustering
• Applying k-means to Laplacian 

eigenvectors allows us to find cluster with 
non-convex boundaries.

39
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Examples

42[Ng et al., 2001]

Examples)
Ng et al 2001 
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Some Issues
• Choice of number of clusters k 


- Most stable clustering is usually given by the value of k that 
maximizes the eigengap (difference between consecutive 
eigenvalues)

43

Some)Issues)
!   Choice of number of clusters k 
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 eigenvalues) 

 

1k k kλ λ −Δ = −
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Some Issues
• Choice of number of clusters k

• Choice of similarity 


- Choice of kernel 

	for Gaussian kernels, choice of σ 

44
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Some Issues
• Choice of number of clusters k 

• Choice of similarity 

- Choice of kernel 

	for Gaussian kernels, choice of σ  

• Choice of clustering method

- k-way vs. recursive 2-way

45
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Hierarchical clustering
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Hierarchical Clustering
• Bottom-Up (agglomerative): Starting with each item in 

its own cluster, find the best pair to merge into a new 
cluster. Repeat until all clusters are fused together. 

47

• The number of dendrograms 
with  
n leafs = (2n -3)!/[(2(n -2)) (n -2)!]


	 Number	 Number of possible 
	 of leafs	 	 Dendrongrams

	 2	 	 	     1

	 3	 	 	     3

	 4	 	 	     15

	 5	 	 	     105

	 …		 	     …

	 10	 	 	 34,459,425
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We begin with a distance 
matrix which contains the 
distances between every  
pair of objects in our dataset

48
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Bottom-Up (agglomerative):

Start with each item in its own cluster, 
find the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.
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Bottom-Up (agglomerative):
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Bottom-Up (agglomerative):

Start with each item in its own cluster, 
find the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.

But how do we compute 
distances between clusters 
rather than objects?
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Computing distance between clusters:  
Single Link

• Cluster distance = distance of two closest 
members in each class

53

Computing distance between 
clusters: Single Link 

• cluster distance = distance of two closest 
members in each class 

- Potentially 
long and skinny 
clusters 

• Potentially long 
and skinny 
clusters
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Computing distance between clusters:  
Complete Link

• Cluster distance = distance of two farthest 
members in each class

54

• Tight clusters 

Computing distance between 
clusters: : Complete Link 

• cluster distance = distance of two farthest 
members 

+ tight clusters 
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Computing distance between clusters:  
Average Link

• Cluster distance = average distance of all 
pairs

55

• The most widely 
used measure


• Robust against 
noise 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Agglomerative Clustering
Good

• Simple to implement, widespread application

• Clusters have adaptive shapes

• Provides a hierarchy of clusters


Bad

• May have imbalanced clusters

• Still have to choose number of clusters or threshold 

• Need to use an “ultrametric” to get a meaningful 
hierarchy

56
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What is a good clustering?
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What is a good clustering?
• Internal criterion: A good clustering will produce high 

quality clusters in which: 

- the intra-class (that is, intra-cluster) similarity is high 

- the inter-class similarity is low 

- The measured quality of a clustering depends on both the 

obj. representation and the similarity measure used


• External criteria for clustering quality

- Quality measured by its ability to discover some or all of the 

hidden patterns or latent classes in gold standard data

- Assesses a clustering with respect to ground truth

- Example: 


• Purity

• Entropy of classes in clusters (or Mutual Information between 

classes and clusters) 58
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External Evaluation of Cluster Quality
• Simple measure: purity, the ratio between the dominant 

class in the cluster and the size of cluster

- Assume documents with C gold standard classes, while 

our clustering algorithms produce K clusters, ω1, ω2, ..., ωK 
with ni members. 

- Example:

purity = 1/17* (max(5, 1, 0)+max(1, 4, 1)+max(2, 0, 3)) 

           = 1/17*(5+4+3) ≈ 0.71 59

External Evaluation of Cluster 
QualityQuality

z Simple measure: purity, the ratio between the dominant class p p y
in the cluster and the size of cluster
z Assume documents with C gold standard classes, while our clustering algorithms 

produce K clusters, Ȧ1, Ȧ2, …, ȦK with ni members.

Examplez Example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster II: Purity = 1/6 (max(1 4 1)) = 4/6Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6
Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

38© Eric Xing @ CMU, 2006-2012
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External Evaluation of Cluster Quality
• Let: 

   TC = TC1 ∪ TC2 ∪...∪ TCn 

   CC = CC1 ∪ CC2 ∪...∪ CCm 

 be the target and computed clusterings, 	respectively. 


• TC = CC = original set of data

• Define the following: 


- a: number of pairs of items that belong to the same cluster in both CC and TC 

- b: number of pairs of items that belong to different clusters in both CC and TC


- c: number of pairs of items that belong to the same cluster in CC but different 
clusters in TC 


- d: number of pairs of items that belong to the same cluster in TC but different 
clusters in CC 

60
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External Evaluation of Cluster Quality

F-measure

61

Measure of clustering 
agreement: how similar 
are these two ways of 
partitioning the data?

Rand Index

DML
BYU DATA MINING LAB

FOmeasure#

€ 

P =
a

a + c
R =

a
a + d

F =
2 × P × R
P + R

DML
BYU DATA MINING LAB

Rand#Index#

a+b
a+b+c+d

Measure of clustering agreement: how similar are 
these two ways of partitioning the data? 
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External Evaluation of Cluster Quality

62

Rand Index Adjusted Rand Index

Extension of the Rand index that 
attempts to account for items 
that may have been clustered by 
chance

DML
BYU DATA MINING LAB

Rand#Index#

a+b
a+b+c+d

Measure of clustering agreement: how similar are 
these two ways of partitioning the data? 

DML
BYU DATA MINING LAB

Adjusted#Rand#Index#

€ 

2(ab − cd)
(a + c)(c + b) + (a + d)(d + b)

Extension of the Rand index that attempts to account 
for items that may have been clustered by chance 
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External Evaluation of Cluster Quality

63

DML
BYU DATA MINING LAB

Average#Entropy#

€ 

Entropy(CCi) = −p(TC j |CCi)log p(TC j |CCi)
TC j ∈ TC
∑

AvgEntropy(CC) =
CCi

CC
Entropy(CCi)

i=1

m

∑

Measure of purity with respect to the target clustering 
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Measure of purity wrt 
the target clustering

Entropy(CC1) = (5/6)log(5/6) + (1/6)log(1/6) + (0/6)log(0/6) = -.650 
Entropy(CC2) = (1/6)log(1/6) + (4/6)log(4/6) + (1/6)log(1/6) = -1.252 
Entropy(CC3) = (2/5)log(2/5) + (0/5)log(0/5) + (3/5)log(3/5) = -.971 

External Evaluation of Cluster 
QualityQuality

z Simple measure: purity, the ratio between the dominant class p p y
in the cluster and the size of cluster
z Assume documents with C gold standard classes, while our clustering algorithms 

produce K clusters, Ȧ1, Ȧ2, …, ȦK with ni members.

Examplez Example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster II: Purity = 1/6 (max(1 4 1)) = 4/6Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6
Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

38© Eric Xing @ CMU, 2006-2012

- Example:

AvgEntropy(CC) = (-.650 * 6/17) + (-1.252 * 6/17) + (-.971 * 5/17) 
AvgEntropy(CC) = -.956



Next Lecture: 
Dimensionality Reduction
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