undamentals of Machine earning Lecture 22: **K-Means Example Applications** Spectral clustering **Hierarchical clustering** What is a good clustering?

NDEMELON

SINER

20-

Erkut Erdem // Hacettepe University // Fall 2023

Last time... K-Means

- An iterative clustering algorithm
 - Initialize: Pick K
 random points as
 cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points' assignments change

Today

- K-Means Example Applications
- Spectral clustering
- Hierarchical clustering
- What is a good clustering?

K-Means Example Applications

Example: K-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Example: K-Means for Segmentation

Example: K-Means for Segmentation

K=10

Example: Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 - 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]

Example: Simple Linear Iterative Clustering (SLIC) superpixels

$$\Psi(x,y) = \begin{bmatrix} \lambda x \\ \lambda y \\ I(x,y) \end{bmatrix}$$

λ: spatial regularization parameter

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk SLIC Superpixels Compared to State-of-the-art Superpixel Methods, IEEE T-PAMI, 2012

Bag of Words model

the world of	All About The Co	mpany	aardvark	0
TOTAL	Global Activities	ure		Ũ
	TOTAL's Story		about	2
	Upstream Strate	ŝy	uoout	
Tore	Downstream Stra	itegy	011	2
	Chemicals Strate	gy	all	L
	TOTAL Foundatio	a		1
	Homepage	\rightarrow	Amca	1
LATOT			1	0
	all about the		apple	0
	company			
177	anna , anna a sha concar a ta an anna a ta		anxious	0
	Our energy exploration, production, and distribution			
	operations span the globe, with activities in more that	100		
	countries.			
			gas	1
	At TOTAL, we draw our greatest strength from our			T
	fast-growing oil and gas reserves. Our strategic empl	IASIS		
	on natural gas provides a strong position in a rapidly		•••	
	explanding marcel.			1
	Our expanding refining and marketing operations in A	usia		1
	and the Mediterranean Rim complement already solid	1		
	positions in Europe, Africa, and the U.S.		•••	
				0
	Our growing specialty chemicals sector adds balance	and	Zaire	0
	pront to the core energy business.		L	

slide by Fei Fei Li

Object Bag of 'words'

slide by Fei Fei Li

Interest Point Features

Detect patches

[Mikojaczyk and Schmid '02]

[Matas et al. '02]

[Sivic et al. '03]

SIFT

Patch Features

Dictionary Formation

Clustering (usually K-means)

Clustered Image Patches

Visual synonyms and polysemy

Visual Polysemy. Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of an object (wheel of a motorbike).

	>
Ć	ک
2	
(D
) 1)
L L	ע

Image Representation

codewords

Spectral clustering

Graph-Theoretic Clustering

Graphs Representations

	а	b	С	d	е
а	[0	1	0	0	1]
b	1	0	0	0	0
С	0	0	0	0	1
d	0	0	0	0	1
е	1	0	1	1	0

Adjacency Matrix

A Weighted Graph and its Representation

	Affinity Matrix				
	[1	.1	.3	0	0]
	.1	1	.4	0	.2
W =	.3	.4	1	.6	.7
	0	0	.6	1	1
	0	.2	.7	1	1

 W_{ij} : probability that i &j belong to the same cluster

Similarity graph construction

- Similarity Graphs: Model local neighborhood relations between data points
- E.g. epsilon-NN

Controls size of neighborhood

Similarity graph construction

- Similarity Graphs: Model local neighborhood relations between data points
- E.g. Gaussian kernel similarity function

 $W_{ij} = e^{\frac{\|x_i - x_j\|^2}{2\sigma^2}} \xrightarrow{\epsilon_{\epsilon}} \text{Controls size of neighborhood}}$

Scale affects affinity

- Small σ: group only nearby points
- Large *σ*: group far-away points

Feature grouping by "relocalisation" of eigenvectors of the proximity matrix

British Machine Vision Conference, pp. 103-108, 1990

Guy L. Scott Robotics Research Group Department of Engineering Science University of Oxford H. Christopher Longuet-Higgins

University of Sussex

Falmer

Brighton

С В А

Three points in feature space

$$N_{ij} = \exp(-||z_i - z_j||^2 / s^2)$$

With an appropriate s

		A	B	C
	A	1.00	0.63	0.03
W=	В	0.63	1.00	0.0
	С	0.03	0.0	1.00

The eigenvectors of W are:

	E_1	E_2	E_3
Eigenvalues	1.63	1.00	0.37
A	-0.71	-0.01	0.71
В	-0.71	-0.05	-0.71
C	-0.04	1.00	-0.03

The first 2 eigenvectors group the points as desired...

Example eigenvector

points

Example eigenvector

slide by Bill Freeman and Antonio Torralba

Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a partition (clustering)
 - What is a "good" graph cut and how do we find one?

Minimum cut

• A cut of a graph G is the set of edges S such that removal of S from G disconnects G.

Cut: sum of the weight of the cut edges:

$$Cut(A,B) = \sum_{u \in A, v \in B} W(u,v),$$

with $A \cap B = \emptyset$

Minimum cut

- We can do clustering by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Minimum cut

- We can do segmentation by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

 $2 \sqrt{2}$ $3 \sqrt{4}$ 4 7 1 1

Drawbacks of Minimum cut

 Weight of cut is directly proportional to the number of edges in the cut.

Normalized cuts

Write graph as V, one cluster as A and the other as B

cut(A,B) is sum of weights with one end in A and one end in B $Cut(A,B) = \sum_{u \in A, v \in B} W(u,v),$

with $A \cap B = \emptyset$

assoc(A,V) is sum of all edges with one end in A.

$$\mathcal{ASSOC}(A,B) = \sum_{u \in A, v \in B} W(u,v)$$

A and B not necessarily disjoint

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut

- Let W be the adjacency matrix of the graph
- Let *D* be the diagonal matrix with diagonal entries $D(i, i) = \sum_{j} W(i, j)$
- Then the normalized cut cost can be written as

$$\frac{y^{T}(D-W)y}{y^{T}Dy} \qquad D-W: \text{ Graph Laplacian}$$

where y is an indicator vector whose value should be 1 in the *i*-th position if the *i*-th feature point belongs to A and a negative constant otherwise J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut

- Finding the exact minimum of the normalized cut cost is NP-complete, but if we *relax y* to take on arbitrary values, then we can minimize the relaxed cost by solving the generalized eigenvalue problem (*D* – *W*)*y* = λ*Dy*
- The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue, aka the <u>Fiedler vector</u>
- Intuitively, the *i*-th entry of *y* can be viewed as a "soft" indication of the component membership of the *i*-th feature
 - Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

slide by Svetlana

37

Normalized cut algorithm

- 1. Given an image or image sequence, set up a weighted graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, and set the weight on the edge connecting two nodes being a measure of the similarity between the two nodes.
- 2. Solve $(\mathbf{D} \mathbf{W})\mathbf{x} = \lambda \mathbf{D}\mathbf{x}$ for eigenvectors with the smallest eigenvalues.
- 3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.
- 4. Decide if the current partition should be sub-divided, and recursively repartition the segmented parts if necessary.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000 38

K-Means vs. Spectral Clustering

 Applying k-means to Laplacian eigenvectors allows us to find cluster with non-convex boundaries.

K-Means vs. Spectral Clustering

 Applying k-means to Laplacian eigenvectors allows us to find cluster with non-convex boundaries.

K-Means vs. Spectral Clustering

 Applying k-means to Laplacian eigenvectors allows us to find cluster with non-convex boundaries.

Examples

[Ng et al., 2001] ₄₂

Some Issues

- Choice of number of clusters k
 - Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

Some Issues

- Choice of number of clusters k
- Choice of similarity
 - Choice of kernel
 - for Gaussian kernels, choice of σ

Some Issues

- Choice of number of clusters k
- Choice of similarity
 - Choice of kernel for Gaussian kernels, choice of σ
- Choice of clustering method
 - k-way vs. recursive 2-way

Hierarchical clustering

Hierarchical Clustering

 Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

 The number of dendrograms with
 n leafe
 (2n - 2)//((2(n - 2)))

n leafs = (2n - 3)!/[(2(n - 2)) (n - 2)!]

NumberNumber of possible
Dendrongrams21334155105......1034,459,425

We begin with a distance matrix which contains the distances between every pair of objects in our dataset

48

Computing distance between clusters: Single Link

 Cluster distance = distance of two closest members in each class

 Potentially long and skinny clusters

Computing distance between clusters: Complete Link

 Cluster distance = distance of two farthest members in each class

Tight clusters

Computing distance between clusters: Average Link

 Cluster distance = average distance of all pairs

- The most widely used measure
- Robust against noise

Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
 <u>silhouette coefficient</u>
- Need to use an "ultrametric" to get a meaningful hierarchy

What is a good clustering?

What is a good clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the obj. representation and the similarity measure used
- External criteria for clustering quality
 - Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
 - Assesses a clustering with respect to ground truth
 - Example:
 - Purity
 - Entropy of classes in clusters (or Mutual Information between classes and clusters)

Vality nal Evaluation of Cluster Quality

- Simple measure: purity, the ratio between the dominant class in the cluster and the size of cluster
 - Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, ω₁, ω₂, ..., ω_K with n_i members.

External Evaluation of Cluster Quality

Let:

 $TC = TC_1 \cup TC_2 \cup \ldots \cup TC_n$

 $CC = CC_1 \cup CC_2 \cup \ldots \cup CC_m$

be the target and computed clusterings, respectively.

- TC = CC = original set of data
- Define the following:
 - *a*: number of pairs of items that belong to the same cluster in both *CC* and *TC*
 - b: number of pairs of items that belong to different clusters in both CC and TC
 - *c*: number of pairs of items that belong to the same cluster in *CC* but different clusters in *TC*
 - *d*: number of pairs of items that belong to the same cluster in *TC* but different clusters in *CC*

External Evaluation of Cluster Quality

$$P = \frac{a}{a+c}$$
$$R = \frac{a}{a+d}$$

$$F = \frac{2 \times P \times R}{P + R}$$

$$\frac{a+b}{a+b+c+d}$$

Rand Index

Measure of clustering agreement: how similar are these two ways of partitioning the data?

External Evaluation of Cluster Quality

 $\frac{a+b}{a+b+c+d}$

Rand Index

2(ab-cd)

$$(a+c)(c+b) + (a+d)(d+b)$$

Adjusted Rand Index

Extension of the Rand index that attempts to account for it that may have been clustered by chance

luality **External Evaluation of Cluster Quality** p $Entropy(CC_i) = \sum_{i=1}^{n} -p(TC_i \mid CC_i) \log p(TC_i \mid CC_i)$ $TC_i \in TC$ $AvgEntropy(CC) = \sum_{i=1}^{m} \frac{|CC_i|}{|CC|} Entropy(CC_i)$ Measure of purity wrt the target clustering Example: Cluster I Cluster II Cluster III

Entropy(CC₁) = $(5/6)\log(5/6) + (1/6)\log(1/6) + (0/6)\log(0/6) = -.650$ Entropy(CC₂) = $(1/6)\log(1/6) + (4/6)\log(4/6) + (1/6)\log(1/6) = -1.252$ **Cleateoply(CCu)ity (2/5)** $\log(2/5)$ (4 (045) $\log(3/5)$ (3/5) $\log(3/5) = -.971$ AvgEntropy(CC) = (-.650 * 6/17) + (-1.252 * 6/17) + (-.971 * 5/17)AvgEntropy(CC) = -.956

Next Lecture: Dimensionality Reduction