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Last time… Graph-Theoretic Clustering
Goal: Given data points X1, ..., Xn and similarities W(Xi ,Xj), 
partition the data into groups so that points in a group 
are similar and points in different groups are dissimilar.
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Similarity Graph: G(V,E,W) V – Vertices (Data points) 

E – Edge if similarity > 0 

W - Edge weights (similarities)

Partition the graph so that edges within a group have large weights and 
edges across groups have small weights.

Graph)Clustering)
Goal: Given data points X1, …, Xn and similarities W(Xi,Xj), partition the data into 
groups so that points in a group are similar and points in different groups are 
dissimilar. 
 
Similarity Graph: G(V,E,W)      V – Vertices (Data points)   

    E – Edge if similarity > 0        
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Similarity graph 

Partition the graph so that edges within a group have large weights and 
edges across groups have small weights. 

Graph)Clustering)
Goal: Given data points X1, …, Xn and similarities W(Xi,Xj), partition the data into 
groups so that points in a group are similar and points in different groups are 
dissimilar. 
 
Similarity Graph: G(V,E,W)      V – Vertices (Data points)   

    E – Edge if similarity > 0        
    W - Edge weights (similarities) 

Similarity graph 

Partition the graph so that edges within a group have large weights and 
edges across groups have small weights. 
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Last time… K-Means vs. Spectral Clustering
• Applying k-means 

to Laplacian 
eigenvectors 
allows us to find 
cluster with non-
convex 
boundaries.
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k=means)vs)Spectral)clustering)
Applying k-means to laplacian eigenvectors allows us to find cluster with 
non-convex boundaries. 

Spectral clustering output k-means output 

k=means)vs)Spectral)clustering)
Applying k-means to laplacian eigenvectors allows us to find cluster with 
non-convex boundaries. 

Spectral clustering output k-means output 
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Bottom-Up (agglomerative):

Start with each item in its own cluster, 
find the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.
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Today
• Dimensionality Reduction

• Principle Component Analysis (PCA)

• PCA Applications

• PCA Shortcomings

• Autoencoders

• Independent Component Analysis
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Dimensionality  
Reduction
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Motivation I: Data Visualization
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In
st

an
ce

s

Features

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC
A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 
A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 
A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 
A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 
A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 
A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 
A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 
A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 
A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 

• 53 Blood and urine samples from 65 people
• Difficult to see the correlations between features
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Motivation I: Data Visualization

• Spectral format (65 curves, one for each person)

• Difficult to compare different patients

8

7 

• Spectral format (65 curves, one for each person) 

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800
900
1000

measurement

Va
lue

Measurement
Difficult to compare the different patients... 

Data Visualization 
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Motivation I: Data Visualization
• Spectral format (53 pictures, one for each feature)

98 
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• Spectral format (53 pictures, one for each feature) 

Difficult to see the correlations between the features... 

Data Visualization 

• Difficult to see the correlations between features
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Motivation I: Data Visualization
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How can we visualize the other variables??? 

 …  difficult  to  see  in  4  or  higher  dimensional  spaces... 

Data Visualization 
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Even 3 dimensions are already difficult. How to extend this?



Motivation I: Data Visualization
• Is there a representation better than the 

coordinate axes? 

• Is it really necessary to show all the 53 
dimensions?

- ... what if there are strong correlations between 

the features? 

• How could we find the smallest subspace of the 
53-D space that keeps the most information 
about the original data? 

11
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Reduce data from 2D to 1D

Motivation II: Data Compression
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Motivation II: Data Compression

slide by Andrew
 N

g


Reduce data from 2D to 1D



Motivation II: Data Compression
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Reduce data from 3D to 2D



Dimensionality Reduction
• Clustering


- One way to summarize a complex real-valued data 
point with a single categorical variable 

• Dimensionality reduction

- Another way to simplify complex high-dimensional 

data

- Summarize data with a lower dimensional real valued 

vector

15
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•Given data points in d dimensions

•Convert them to data points in r<d dims

•With minimal loss of information



Principal Component  
Analysis
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Principal Component Analysis

PCA: 

Orthogonal projection of the data onto a lower-
dimension linear space that... 
• maximizes variance of projected data (purple line) 
• minimizes mean squared distance between 


- data point and

- projections (sum of blue lines)

17

12 

Orthogonal projection of the data onto a lower-dimension linear 
space that... 
�maximizes variance of projected data (purple line) 

 
�minimizes mean squared distance between  

• data point and  
• projections (sum of blue lines) 

PCA: 

Principal Component Analysis 
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Principal Component Analysis
• PCA Vectors originate from the center of 

mass. 

• Principal component #1: points in the 
direction of the largest variance. 

• Each subsequent principal component

- is orthogonal to the previous ones, and

- points in the directions of the largest 

variance of the residual subspace

18
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2D Gaussian dataset

1915 

2D Gaussian dataset 
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1st PCA axis

2016 

1st PCA axis 
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2nd PCA axis

2117 

2nd PCA axis 
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We maximize the variance 
of the projection in the 
residual subspace 

Maximize the variance of projection of x 

x’  PCA reconstruction 

Given w1,…,  wk-1, we calculate wk principal vector as before: 

kth PCA vector 

w1(w1
Tx) 

w2(w2
Tx) 

x 

w1 

w2 
x’=w1(w1

Tx)+w2(w2
Tx) 

w 

PCA algorithm I (sequential) PCA algorithm I (sequential)
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• Given data {x1,  …,  xm}, compute covariance matrix 6  
 

 
 
 
 

• PCA basis vectors = the eigenvectors of 6�
 
 

• Larger eigenvalue � more important eigenvectors 
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PCA algorithm II  
(sample covariance matrix) 

PCA algorithm II  
(sample covariance matrix)
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Reminder: Eigenvector and Eigenvalue
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Ax = λx 
A: Square matrix 
λ: Eigenvector or characteristic vector 
x: Eigenvalue or characteristic value



Reminder: Eigenvector and Eigenvalue
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Ax - λx = 0
(A – λI)x = 0

B = A – λI
Bx = 0

x = B-10 = 0

If we define a new matrix B:

If B has an inverse: BUT! an eigenvector 
cannot be zero!!

x will be an eigenvector of A if and only if  B does 
not have an inverse, or equivalently det(B)=0 :

det(A – λI) = 0

Ax = λx



Reminder: Eigenvector and Eigenvalue

26

Example 1: Find the eigenvalues of

two eigenvalues: -1, - 2  
Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. 

If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.
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PCA algorithm II  
(sample covariance matrix)
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PCA algorithm III  
(SVD of the data matrix)

28
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Singular Value Decomposition of the centered data matrix X. 

Xfeatures u samples = USVT 

X VT S U = 

samples 

significant 

noise 

no
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e noise 
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sig. 

PCA algorithm III  
(SVD of the data matrix) 
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PCA algorithm III 

2924 

• Columns of U 
• the principal vectors, { u(1),  …,  u(k) } 
• orthogonal and has unit norm – so UTU = I 
• Can reconstruct the data using linear combinations 

of { u(1),  …,  u(k) } 
 

• Matrix S  
• Diagonal 
• Shows importance of each eigenvector 

 
•  Columns of VT  

• The coefficients for reconstructing the samples 

PCA algorithm III  
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Applications

30



Face Recognition

31



Face Recognition
• Want to identify specific person, based on facial image

• Robust to glasses, lighting, …


- Can’t just use the given 256 x 256 pixels

32

�Want to identify specific person, based on facial image 
� Robust  to  glasses,  lighting,… 
 � Can’t  just  use  the  given  256  x  256  pixels 

Face Recognition 

26 
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Applying PCA: Eigenfaces

33

� Example data set:  Images of faces  
• Famous Eigenface approach  

[Turk & Pentland], [Sirovich & Kirby] 
� Each face x is  … 

• 256 u 256 values (luminance at location)  
• x in �256u256    (view as 64K dim vector) 

� Form X = [ x1 ,  …,  xm ] centered data mtx 

� Compute  6�= XXT  

� Problem: 6 is 64K u 64K  …  HUGE!!! 
256 x 256 
real values 

m faces 

X =  

x1,  …,  xm 

Method A: Build a PCA subspace for each person and check 
which subspace can reconstruct the test image the best  

Method B: Build one PCA database for the whole dataset and 
then classify based on the weights. 

Applying PCA: Eigenfaces 

27 
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A Clever Workaround

34

• Note that  m<<64K 
• Use L=XTX instead of 6=XXT 

• If v is eigenvector of L 
 then Xv is eigenvector of 6�
 
Proof:       L  v = J v 
             XTX v = J v 
     X (XTX v)  =  X(J v) = J Xv 
     (XXT)X v  =  J (Xv) 
�����������6��Xv)  =  J (Xv) 

256 x 256 
real values 

m faces 

X =  

x1,  …,  xm 

29 

A Clever Workaround 
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Eigenfaces Example

35
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Representation and Reconstruction
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Principle Components (Method B)

37
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Principle Components (Method B) 
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Principle Components (Method B)

• … faster if train with …

- only people w/out glasses

- same lighting conditions

38

�…  faster  if  train  with… 
• only people w/out glasses 
• same lighting conditions 

31 

Reconstructing…  (Method  B) 
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When projecting strange data
• Original images

• Reconstruction doesn’t look like the original 

39
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Happiness subspace (method A)

40

33 

Happiness subspace (method A) 
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Disgust subspace (method A)

41

34 

Disgust subspace (method A) 
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Facial Expression Recognition  
Movies

4235 

Facial Expression Recognition 
Movies 
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Facial Expression Recognition  
Movies

4336 

Facial Expression Recognition 
Movies 
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Facial Expression Recognition  
Movies

4437 

Facial Expression Recognition 
Movies 
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Shortcomings
• Requires carefully controlled data:


- All faces centered in frame

- Same size

- Some sensitivity to angle


• Method is completely knowledge free

- (sometimes this is good!)

- Doesn’t know that faces are wrapped around 

3D objects (heads)

- Makes no effort to preserve class distinctions

45
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Image Compression

46



Original Image

• Divide the original 372x492 image into patches:

- Each patch is an instance


• View each as a 144-D vector 4739 

• Divide the original 372x492 image into patches: 

• Each patch is an instance that contains 12x12 pixels on a grid 

• View each as a 144-D vector 

Original Image 
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L2 error and PCA dim

48
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L2 error and PCA dim 
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PCA compression: 144D => 60D

4941 

PCA compression: 144D ) 60D 
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PCA compression: 144D => 16D

50
42 

PCA compression: 144D ) 16D 
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16 most important eigenvectors

5143 

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

16 most important eigenvectors 
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PCA compression: 144D => 6D
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PCA compression: 144D ) 6D 
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6 most important eigenvectors
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PCA compression: 144D => 3D

54
46 

PCA compression: 144D ) 3D 
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3 most important eigenvectors
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PCA compression: 144D => 1D

5648 

PCA compression: 144D ) 1D 
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60 most important eigenvectors

• Looks like the discrete cosine bases of JPG!…
57

49 

Looks like the discrete cosine bases of JPG!... 

60 most important eigenvectors 
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2D Discrete Cosine Basis

58
50 http://en.wikipedia.org/wiki/Discrete_cosine_transform 

2D Discrete Cosine Basis 
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Noise Filtering
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Noise Filtering

6052 

x x’ 

U x 

Noise Filtering 
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Noisy image

61

53 

Noisy image 
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Denoised image  
using 15 PCA components

6254 

Denoised image  
using 15 PCA components 
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PCA Shortcomings

63



Problematic Data Set for PCA
• PCA doesn’t know labels!

64

56 
PCA  doesn’t  know  labels! 

Problematic Data Set for PCA 
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PCA vs. Fisher Linear Discriminant

65

PCA for pattern recognition

20

• higher  variance
• bad for discriminability

• smaller  variance
• good discriminability

Principal Component Analysis

Fisher Linear Discriminant
Linear Discriminant Analysis

Principal Component Analysis 

• higher variance 
• bad for discriminability


Fisher Linear 
Discriminant 
• smaller variance 
• good discriminability


PCA for pattern recognition

20

• higher  variance
• bad for discriminability

• smaller  variance
• good discriminability

Principal Component Analysis

Fisher Linear Discriminant
Linear Discriminant Analysis

PCA for pattern recognition

20

• higher  variance
• bad for discriminability

• smaller  variance
• good discriminability

Principal Component Analysis

Fisher Linear Discriminant
Linear Discriminant Analysis
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Problematic Data Set for PCA
• PCA cannot capture NON-LINEAR structure!

66

58 
PCA cannot capture NON-LINEAR structure! 

Problematic Data Set for PCA 
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PCA Conclusions
• PCA


- Finds orthonormal basis for data

- Sorts dimensions in order of “importance”

- Discard low significance dimensions 

• Uses:

- Get compact description

- Ignore noise

- Improve classification (hopefully) 

• Not magic:

- Doesn’t know class labels

- Can only capture linear variations 

• One of many tricks to reduce dimensionality! 67
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Autoencoders

68



Relation to Neural Networks
• PCA is closely related to a particular form of neural 

network

• An autoencoder is a neural network whose outputs 

are its own inputs  
 
 
 
 
 
 

• The goal is to minimize reconstruction error 
69

slide by Sanja Fidler


Relation to Neural Networks

PCA is closely related to a particular form of neural network

An autoencoder is a neural network whose outputs are its own inputs

The goal is to minimize reconstruction error

Urtasun, Zemel, Fidler (UofT) CSC 411: 14-PCA & Autoencoders March 14, 2016 15 / 18



Autoencoders

Define
z = f (W x); x̂ = g(V z)

Goal:

min
W,V

1

2N

NX

n=1

||x(n) � x̂(n)||2

If g and f are linear

min
W,V

1

2N

NX

n=1

||x(n) � VW x(n)||2

In other words, the optimal solution is PCA.

Urtasun, Zemel, Fidler (UofT) CSC 411: 14-PCA & Autoencoders March 14, 2016 16 / 18

Auto encoders
• Define 
 

70
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W,V

1

2N

NX

n=1

||x(n) � x̂(n)||2

If g and f are linear

min
W,V

1

2N

NX

n=1

||x(n) � VW x(n)||2

In other words, the optimal solution is PCA.
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Auto encoders
• Define 
 

• Goal: 
 
 

71
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Autoencoders

Define
z = f (W x); x̂ = g(V z)

Goal:

min
W,V

1

2N

NX

n=1

||x(n) � x̂(n)||2

If g and f are linear

min
W,V

1

2N

NX

n=1

||x(n) � VW x(n)||2

In other words, the optimal solution is PCA.
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Auto encoders
• Define 
 

• Goal: 
 
 

• If g and f are linear 
 
 
 

72
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Autoencoders

Define
z = f (W x); x̂ = g(V z)

Goal:

min
W,V

1

2N

NX

n=1

||x(n) � x̂(n)||2

If g and f are linear

min
W,V

1

2N

NX

n=1

||x(n) � VW x(n)||2

In other words, the optimal solution is PCA.

Urtasun, Zemel, Fidler (UofT) CSC 411: 14-PCA & Autoencoders March 14, 2016 16 / 18

Auto encoders
• Define 
 

• Goal: 
 
 

• If g and f are linear 
 
 
 

• In other words, the optimal solution is PCA
73
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Auto encoders: Nonlinear PCA
• What if g( ) is not linear?

• Then we are basically doing nonlinear PCA

• Some subtleties but in general this is an 

accurate description 

74
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Comparing Reconstructions

75

Comparing Reconstructions

Urtasun, Zemel, Fidler (UofT) CSC 411: 14-PCA & Autoencoders March 14, 2016 18 / 18

Real data


30-d deep autoencoder


30-d logistic PCA


30-d PCA
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Independent Component 
Analysis (ICA)

76



A Serious Limitation of PCA
• Recall that PCA looks at the  

covariance matrix only.  
What if the data is not well  
described by the covariance  
matrix?  
 
 
 

• The only distribution which is uniquely specified by its 
covariance (with the subtracted mean) is the Gaussian 
distribution. Distributions which deviate from the 
Gaussian are poorly described by their covariances. 

77

slide by Kornel Laskow
ski and Dave Touretzky

A More Serious Limitation

Recall that PCA looks at the covariance matrix only. What if the
data is not well described by the covariance matrix?

The only distribution which is uniquely specified by its covariance
(with the subtracted mean) is the Gaussian distribution. Distribu-
tions which deviate from the Gaussian are poorly described by their
covariances.

41

Faithful vs Meaningful Representations

Even with non-Gaussian data, variance maximization leads to the
most faithful representation in a reconstruction error sense (recall
that we trained our autoencoder network using a mean-square error
in an input reconstruction layer).

The mean-square error measure implicitly assumes Gaussianity, since
it penalizes datapoints close to the mean less that those that are
far away.

But it does not in general lead to the most meaningful representa-
tion.

We need to perform gradient descent in some function other than
the reconstruction error.

42

A Criterion Stronger than Decorrelation

The way to circumvent these problems is to look for components
which are statistically independent, rather than just uncorrelated.

For statistical independence, we require that

p(ξ1, ξ2, · · · , ξN) =
N∏

i=1
p(ξi) (26)

For uncorrelatedness, all we required was that

⟨ξiξj ⟩ − ⟨ξi ⟩⟨ξj ⟩ = 0 , i ̸= j (27)

Independence is a stronger requirement; under independence,

⟨g1(ξi)g2(ξj) ⟩ − ⟨g1(ξi) ⟩⟨g2(ξj) ⟩ = 0 , i ̸= j (28)

for any functions g1 and g2.

43

Independent Component Analysis (ICA)

Like Principal Component Analysis, except that we’re looking for a
transformation subject to the stronger requirement of independence,
rather than uncorrelatedness.

In general, no analytic solution (like eigenvalue decomposition for
PCA) exists, so ICA is implemented using neural network models.

To do this, we need an architecture and an objective function to
descend/climb in.

Leads to N independent (or as independent as possible) components
in N-dimensional space; they need not be orthogonal.

When are independent components identical to uncorrelated (prin-
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Faithful vs Meaningful Representations 

• Even with non-Gaussian data, variance maximization leads 
to the most faithful representation in a reconstruction error 
sense (recall that we trained our autoencoder network using 
a mean-square error in an input reconstruction layer).  

• The mean-square error measure implicitly assumes 
Gaussianity, since it penalizes datapoints close to the mean 
less that those that are far away.  

• But it does not in general lead to the most meaningful 
representation.  

• We need to perform gradient descent in some function 
other than the reconstruction error.
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A Criterion Stronger than Decorrelation 
• The way to circumvent these problems is to look for 

components which are statistically independent, rather than 
just uncorrelated. 
 


• For statistical independence, we require that 
 
 
 


• For uncorrelatedness, all we required was that  
 

• Independence is a stronger requirement; under independence,  
 
 
for any functions g1 and g2.
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A More Serious Limitation

Recall that PCA looks at the covariance matrix only. What if the
data is not well described by the covariance matrix?

The only distribution which is uniquely specified by its covariance
(with the subtracted mean) is the Gaussian distribution. Distribu-
tions which deviate from the Gaussian are poorly described by their
covariances.
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A Criterion Stronger than Decorrelation

The way to circumvent these problems is to look for components
which are statistically independent, rather than just uncorrelated.

For statistical independence, we require that

p(ξ1, ξ2, · · · , ξN) =
N∏

i=1
p(ξi) (26)

For uncorrelatedness, all we required was that

⟨ξiξj ⟩ − ⟨ξi ⟩⟨ξj ⟩ = 0 , i ̸= j (27)

Independence is a stronger requirement; under independence,

⟨g1(ξi)g2(ξj) ⟩ − ⟨g1(ξi) ⟩⟨g2(ξj) ⟩ = 0 , i ̸= j (28)

for any functions g1 and g2.
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Independent Component Analysis (ICA)

Like Principal Component Analysis, except that we’re looking for a
transformation subject to the stronger requirement of independence,
rather than uncorrelatedness.

In general, no analytic solution (like eigenvalue decomposition for
PCA) exists, so ICA is implemented using neural network models.
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Independent Component Analysis (ICA) 
• Like PCA, except that we’re looking for a transformation subject to the 

stronger requirement of independence, rather than uncorrelatedness.  

• In general, no analytic solution (like eigenvalue decomposition for 
PCA) exists, so ICA is implemented using neural network models. 
 


• To do this, we need an architecture and an objective function to 
descend/climb in.  

• Leads to N independent (or as independent as possible) components 
in N-dimensional space; they need not be orthogonal.  

• When are independent components identical to uncorrelated 
(principal) components? When the generative distribution is uniquely 
determined by its first and second moments. This is true of only the 
Gaussian distribution.
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Neural Network for ICA
• Single layer network:  
 
 
 
 
 

• Patterns {ξ} are fed into the input layer.  

• Inputs multiplied by weights in matrix W. 

• Output logistic (vector notation here): 
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Neural Network for ICA

Single layer network:

Patterns {ξ̄} are fed into the input layer.

Inputs multiplied by weights in matrix W.

Output logistic (vector notation here):

ȳ =
1

1 + eWT ξ̄
(29)

45

Objective Function for ICA

Want to ensure that the outputs yi are maximally independent.

This is identical to requiring that the mutual information be small.
Or alternately that the joint entropy be large.

H(p) = entropy of distribution p of first
neuron’s output

H(p|q) = conditional entropy

I(p; q) = H(p) − H(q|p)
= H(q) − H(p|q)
= mutual information

Gradient ascent in this objective function is called infomax (we’re
trying to maximize the enclosed area representing information quan-
tities).

46

Blind Source Separation (BSS)

The most famous application of ICA.

Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} and
{xk[t]} are time series (t is a discrete time index).

Each signal is a linear mixture of the sources

xk[t] = Ask[t] + nk[t] (30)

where nk[t] is the noise contribution in the kth signal xk[t], and A is
a mixture matrix.

The problem: given xk[n], determine A and sk[n].
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The Cocktail Party

Want to separate individual voices from a cocktail party. Here’s a
2-speaker equivalent:
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Neural Network for ICA

Single layer network:

Patterns {ξ̄} are fed into the input layer.

Inputs multiplied by weights in matrix W.

Output logistic (vector notation here):

ȳ =
1

1 + eWT ξ̄
(29)
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Gradient ascent in this objective function is called infomax (we’re
trying to maximize the enclosed area representing information quan-
tities).

46

Blind Source Separation (BSS)

The most famous application of ICA.

Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} and
{xk[t]} are time series (t is a discrete time index).

Each signal is a linear mixture of the sources

xk[t] = Ask[t] + nk[t] (30)

where nk[t] is the noise contribution in the kth signal xk[t], and A is
a mixture matrix.
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Objective Function for ICA 
• Want to ensure that the outputs yi are maximally independent.

• This is identical to requiring that the mutual information be 

small. Or alternately that the joint entropy be large.  
 
 
 
 
 
 

• Gradient ascent in this objective function is called infomax 
(we’re trying to maximize the enclosed area representing 
information quantities). 
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Neural Network for ICA

Single layer network:

Patterns {ξ̄} are fed into the input layer.

Inputs multiplied by weights in matrix W.

Output logistic (vector notation here):

ȳ =
1

1 + eWT ξ̄
(29)

45

Objective Function for ICA

Want to ensure that the outputs yi are maximally independent.

This is identical to requiring that the mutual information be small.
Or alternately that the joint entropy be large.

H(p) = entropy of distribution p of first
neuron’s output

H(p|q) = conditional entropy

I(p; q) = H(p) − H(q|p)
= H(q) − H(p|q)
= mutual information

Gradient ascent in this objective function is called infomax (we’re
trying to maximize the enclosed area representing information quan-
tities).
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Blind Source Separation (BSS)

The most famous application of ICA.

Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} and
{xk[t]} are time series (t is a discrete time index).

Each signal is a linear mixture of the sources

xk[t] = Ask[t] + nk[t] (30)

where nk[t] is the noise contribution in the kth signal xk[t], and A is
a mixture matrix.

The problem: given xk[n], determine A and sk[n].
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entropy of distribution p of first  
neuron’s output  
 

conditional entropy 


H(p) − H(q|p)  
H(q) − H(p|q)  
mutual information



Blind Source Separation (BSS) 
• The most famous application of ICA. 

• Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} 
and {xk[t]} are time series (t is a discrete time index).  

• Each signal is a linear mixture of the sources 
 
 
where nk[t] is the noise contribution in the kth signal 
xk[t], and A is a mixture matrix.  

• The problem: given xk[n], determine A and sk[n]. 
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Neural Network for ICA

Single layer network:

Patterns {ξ̄} are fed into the input layer.

Inputs multiplied by weights in matrix W.

Output logistic (vector notation here):

ȳ =
1

1 + eWT ξ̄
(29)

45

Objective Function for ICA

Want to ensure that the outputs yi are maximally independent.

This is identical to requiring that the mutual information be small.
Or alternately that the joint entropy be large.

H(p) = entropy of distribution p of first
neuron’s output

H(p|q) = conditional entropy

I(p; q) = H(p) − H(q|p)
= H(q) − H(p|q)
= mutual information

Gradient ascent in this objective function is called infomax (we’re
trying to maximize the enclosed area representing information quan-
tities).
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Blind Source Separation (BSS)

The most famous application of ICA.

Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} and
{xk[t]} are time series (t is a discrete time index).

Each signal is a linear mixture of the sources

xk[t] = Ask[t] + nk[t] (30)

where nk[t] is the noise contribution in the kth signal xk[t], and A is
a mixture matrix.

The problem: given xk[n], determine A and sk[n].

47

The Cocktail Party

Want to separate individual voices from a cocktail party. Here’s a
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The Cocktail Party 
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6 

ICA Estimation 
Sources Observation 

x(t) = As(t) s(t) 

Mixing 

y(t)=Wx(t) 

The Cocktail Party Problem 
SOLVING WITH ICA 



Demo: The Cocktail Party
• Frequency domain ICA (1995)

85Paris Smaragdis

Input mix:

Extracted speech:

http://paris.cs.illinois.edu/demos/index.html 

http://paris.cs.illinois.edu/demos/index.html

