

HII
 HACETTEPE
 UNIVERSITY
 COMPUTER VISION LAB

Erkut Erdem // Hacettepe University // Fall 2023

Administrative

- Assignment 1 will be out this week!
- You will have two weeks to submit your solutions.
- It includes
- Pencil-and-paper derivations
- Implementing kernel regression
- numpy/Python code

Recall from last time... Nearest Neighbors

Example dataset: CIFAR-10

10 labels
50,000 training images
10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

- Very simple method
- Retain all training data
- It can be slow in testing
- Finding NN in high dimensions is slow
- Metrics are very important
- Good baseline

NN classifier

5-NN classifier

Classification

- Input: X
- Real valued, vectors over real.
- Discrete values ($0,1,2, \ldots$)
- Other structures (e.g., strings, graphs, etc.)
- Output: Y
- Discrete (0,1,2,...)

Sports
Science
News
$Y=$ Topic

Anemic cell Healthy cell
$\mathrm{Y}=$ Diagnosis

Regression

- Input: X
- Real valued, vectors over real.
- Discrete values ($0,1,2, \ldots$)
- Other structures (e.g., strings, graphs, etc.)
- Output: Y
- Real valued, vectors over real.

Stock Market
Prediction

What should I watch tonight?

What should I watch tonight?

See More on IMDb Pro »

Point Break (2015)

PG-13 | 114 min | Action, Crime, Sport
25 December 2015 (USA)

5.4 Ratings: 5.4/10 from 7,322 users Metascore: 34/100

Reviews: 60 user | 84 critic | 19 from Metacritic.com

A young FBI agent infiltrates an extraordinary team of extreme sports athletes he suspects of masterminding a string of unprecedented, sophisticated corporate heists.
"Point Break" is inspired by the classic 1991 hit.
Director: Ericson Core
Writers: Kurt Wimmer (screenplay), Rick King (story), 5 more credits »
Stars: Édgar Ramírez, Luke Bracey, Ray Winstone
See full cast and crew »

+ Watchlist - Watch Trailer Share...

What should I watch tonight?

Today

- Kernel regression - nonparametric
- Distance metrics
- Linear regression (more on our next lecture)
- parametric
- simple model

Simple 1-D Regression

- Circles are data points (i.e., training examples) that are given to us
- The data points are uniform in x, but may be displaced in y

$$
t(x)=f(x)+\varepsilon
$$

with ε some noise

- In green is the "true" curve that we don't know

Kernel Regression

K-NN for Regression

- Given: Training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Attribute vectors: $x_{i} \in X$
- Target attribute $\quad y_{i} \in \mathcal{R}$
- Parameter:
- Similarity function: $K: X \times X \rightarrow \mathcal{R}$
- Number of nearest neighbors to consider: k
- Prediction rule
- New example x^{\prime}
- K-nearest neighbors: k train examples with largest $K\left(x_{i}, x^{\prime}\right)$

$$
h\left(\vec{x}^{\prime}\right)=\frac{1}{k} \sum_{i \in k n n\left(\vec{x}^{\prime}\right)} y_{i}
$$

1-NN for Regression

Figure Credit: Carlos Guestrin

1-NN for Regression

- Often bumpy (overfits)

9-NN for Regression

- Often bumpy (overfits)

Figure Credit: Andrew Moore

Multivariate distance metrics

- Suppose the input vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{\mathrm{N}}$ are two dimensional:

$$
\mathbf{x}_{1}=\left(x_{11}, x_{12}\right), \mathbf{x}_{2}=\left(x_{21}, x_{22}\right), \ldots \mathbf{x}_{\mathrm{N}}=\left(x_{N 1}, x_{N 2}\right) .
$$

- One can draw the nearest-neighbor regions in input space.

$\operatorname{Dist}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(x_{i 1}-x_{j 1}\right)^{2}+\left(x_{i 2}-x_{j 2}\right)^{2}$

$\operatorname{Dist}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(x_{i 1}-x_{j 1}\right)^{2}+\left(3 x_{i 2}-3 x_{j 2}\right)^{2}$

The relative scalings in the distance metric affect region shapes

Example: Choosing a restaurant

- In everyday life we need to make decisions by taking into account lots of factors
- The question is what weight we put on each of these factors (how important are they with respect to the others).

Reviews (out of 5 stars)	$\$$	Distance	Cuisine (out of 10)
4	30	21	7
2	15	12	8
5	27	53	9
3	20	5	6

Euclidean distance metric

$$
D\left(x, x^{\prime}\right)=\sqrt{\sum_{i} \sigma_{i}^{2}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

Or equivalently,

$$
D\left(x, x^{\prime}\right)=\sqrt{\left(x_{i}-x_{i}^{\prime}\right)^{T} A\left(x_{i}-x_{i}^{\prime}\right)}
$$

where

$$
A=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma_{N}^{2}
\end{array}\right]
$$

Notable distance metrics (and their level sets)

Scaled Euclidian (L_{2})

Mahalanobis (non-diagonal A)

Minkowski distance

$$
p=2^{-2}
$$

$p=2^{-1.5}$
$p=2^{-1}$
$p=2^{-0.5}$
$=0.707$

$$
\begin{aligned}
p & =2^{0} \\
& =1
\end{aligned}
$$

$p=2^{0.5}$
$=0.5$
$=1.414$

$p=2^{1}$
$=2$

$$
\begin{aligned}
p & =2^{1.5} \\
& =2.828
\end{aligned}
$$

$p=2^{2}$
$=4$

$$
p=2^{\infty}
$$

$$
=\infty
$$

$$
D=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

Notable distance metrics (and their level sets)

Scaled Euclidian (L_{2})

L_{1} norm (absolute)

$\mathrm{L}_{\text {inf }}($ max) norm

Weighted K-NN for Regression

- Given: Training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Attribute vectors: $x_{i} \in X$
- Target attribute $\quad y_{i} \in \mathcal{R}$
- Parameter:
- Similarity function: $K: X \times X \rightarrow \mathcal{R}$
- Number of nearest neighbors to consider: k
- Prediction rule
- New example x^{\prime}
- K-nearest neighbors: k train examples with largest $K\left(x_{i}, x^{\prime}\right)$

$$
h\left(\vec{x}^{\prime}\right)=\frac{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} y_{i} K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)}{\sum_{i \in \operatorname{knn}\left(\vec{x}^{\prime}\right)} K\left(\vec{x}_{i}, \vec{x}^{\prime}\right)}
$$

Kernel Regression/Classification

Four things make a memory based learner:

- A distance metric
- Euclidean (and others)
- How many nearby neighbors to look at?
- All of them
- A weighting function (optional)
- $w_{i}=\exp \left(-d\left(x_{i}, q u e r y\right)^{2} / \sigma^{2}\right)$
- Nearby points to the query are weighted strongly, far points weakly. The σ parameter is the Kernel Width. Very important.
- How to fit with the local points?
- Predict the weighted average of the outputs predict $=\Sigma w_{i} y_{i} / \Sigma w_{i}$

Weighting/Kernel functions

$$
w_{i}=\exp \left(-d\left(x_{i}, q u e r y\right)^{2} / \sigma^{2}\right)
$$

(Our examples use Gaussian)

Effect of Kernel Width

- What happens as $\sigma \rightarrow \inf$?
- What happens as $\sigma \rightarrow 0$?

Gaussian Kernel - noisyLinear, $c=4.0$

Gaussian Kernel - noisyLinear, c $=2.0$

Gaussian Kernel - noisyLinear, c $=8.0$

Problems with InstanceBased Learning

- Expensive
- No Learning: most real work done during testing
- For every test sample, must search through all dataset - very slow!
- Must use tricks like approximate nearest neighbour search

Problems with InstanceBased Learning

- Expensive
- No Learning: most real work done during testing
- For every test sample, must search through all dataset - very slow!
- Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
- Distances overwhelmed by noisy features

Problems with InstanceBased Learning

- Expensive
- No Learning: most real work done during testing
- For every test sample, must search through all dataset - very slow!
- Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
- Distances overwhelmed by noisy features
- Curse of Dimensionality
- Distances become meaningless in high dimensions

Curse of Dimensionality

- Consider applying a KNN classifier/regressor to data where the inputs are uniformly distributed in the D-dimensional unit cube.
- Suppose we estimate the density of class labels around a test point x by "growing" a hyper-cube around x until it contains a desired fraction f of the data points.
- The expected edge length of this cube will be $e_{D}(f)=f^{1 / D}$.
- If $D=10$, and we want to base our estimate on 10% of the data, we have $e_{10}(0.1)=0.8$, so we need to extend the cube 80% along each dimension around x.
- Even if we only use 1% of the data, we find $e_{10}(0.01)=0.63$. - no longer very local

High dimensional spaces are empty

- Assume your data lives in $[0,1] p$. The volume of an hypercube with an edge length of $r=0.1$ is 0.1^{p}
\rightarrow when p grows, it quickly becomes so small that the probability to capture points from your database becomes very very small...

Points in high dimensional spaces are isolated

- To overcome this limitation, you need a number of sample which grows exponentially with $p \ldots$

High dimensional spaces are empty

- X, Y two independent variables, with uniform distribution on $[0,1]^{p}$. The mean square distance $\|X-Y\|^{2}$ satisfies

$$
\mathbb{E}\left[\|X-Y\|^{2}\right]=p / 6 \quad \text { and } \quad S t d\left[\|X-Y\|^{2}\right] \simeq 0.2 \sqrt{p}
$$

Figure: Histograms of pairwise-distances between $n=100$ points sampled uniformly in the hypercube $[0,1]^{p}$

The notion of nearest neighbors vanishes.

Parametric vs Non-parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
-Yes = Non-parametric Models
-No = Parametric Models

Ways to avoid the curse of dimensionality

- Dimension reduction:
- the problem comes from that p is too large,
- therefore, reduce the data dimension to $d \ll p$,
- such that the curse of dimensionality vanishes!
- Regularization:
- The problem comes from that parameter estimates are unstable,
- therefore, regularize these estimates,
- such that the parameter are correctly estimated!
- Parsimonious models:
- the problem comes from that the number of parameters to estimate is too large,
- therefore, make restrictive assumptions on the model,
- such that the number of parameters to estimate becomes more "decent"!

Next Lecture: Linear Regression,

 Least Squares Optimization, Model complexity, Regularization