photo:@rewardyfahmi // Unsplash

Fundamentals of Machine Leanning

Lecture 3 Kernel Regression, Distance Metrics, Curse of Dimensionality

Erkut Erdem // Hacettepe University // Fall 2023

Administrative

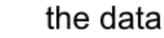
- Assignment 1 will be out this week!
- You will have two weeks to submit your solutions.
- It includes
 - Pencil-and-paper derivations
 - Implementing kernel regression
 - numpy/Python code

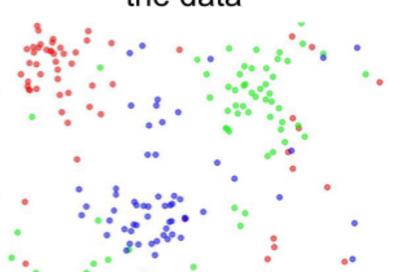
Recall from last time... Nearest Neighbors

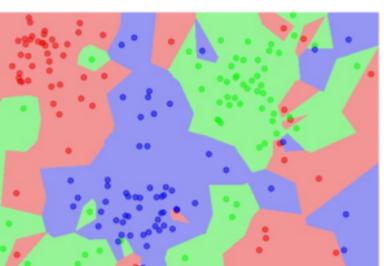
Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

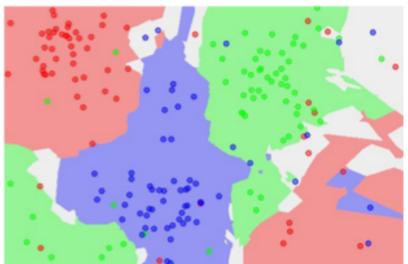
- Very simple method
- Retain all training data
 - It can be slow in testing
 - Finding NN in high dimensions is slow
- Metrics are very important
- Good baseline







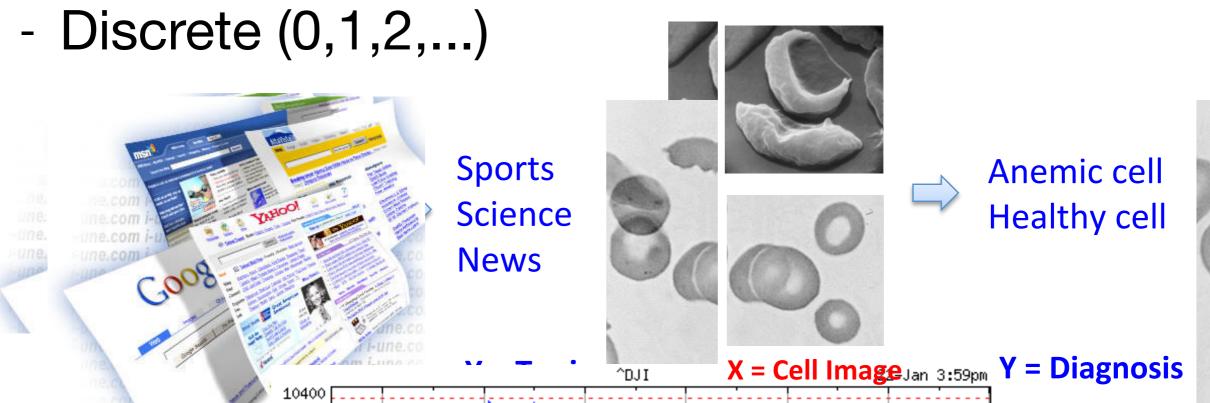
5-NN classifier



Classification

- Input: X
 - Real valued, vectors over real.
 - Discrete values (0,1,2,...)
 - Other structures (e.g., strings, graphs, etc.)
- Output: Y

slide by Aarti Singh and Barnabas Poczos



5

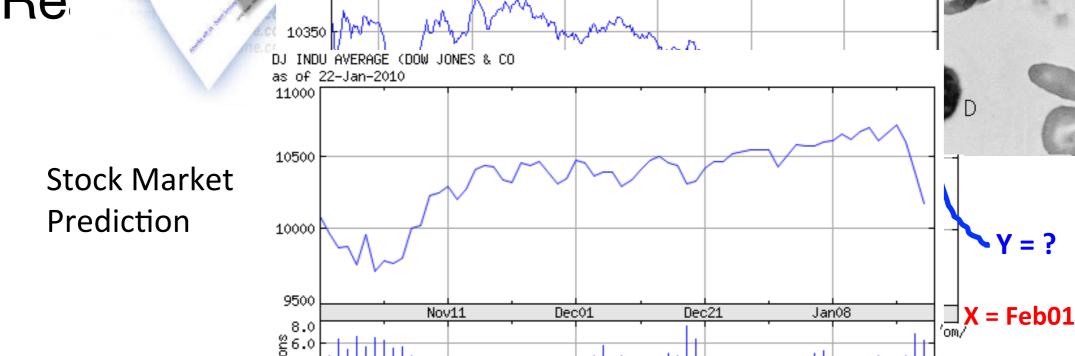
Regression

- Input: X
 - Real valued, vectors over real
 - Dis ,1,2,...) - Otł ≱.g., strir

10400

C.00

Outp - Re



^DJI

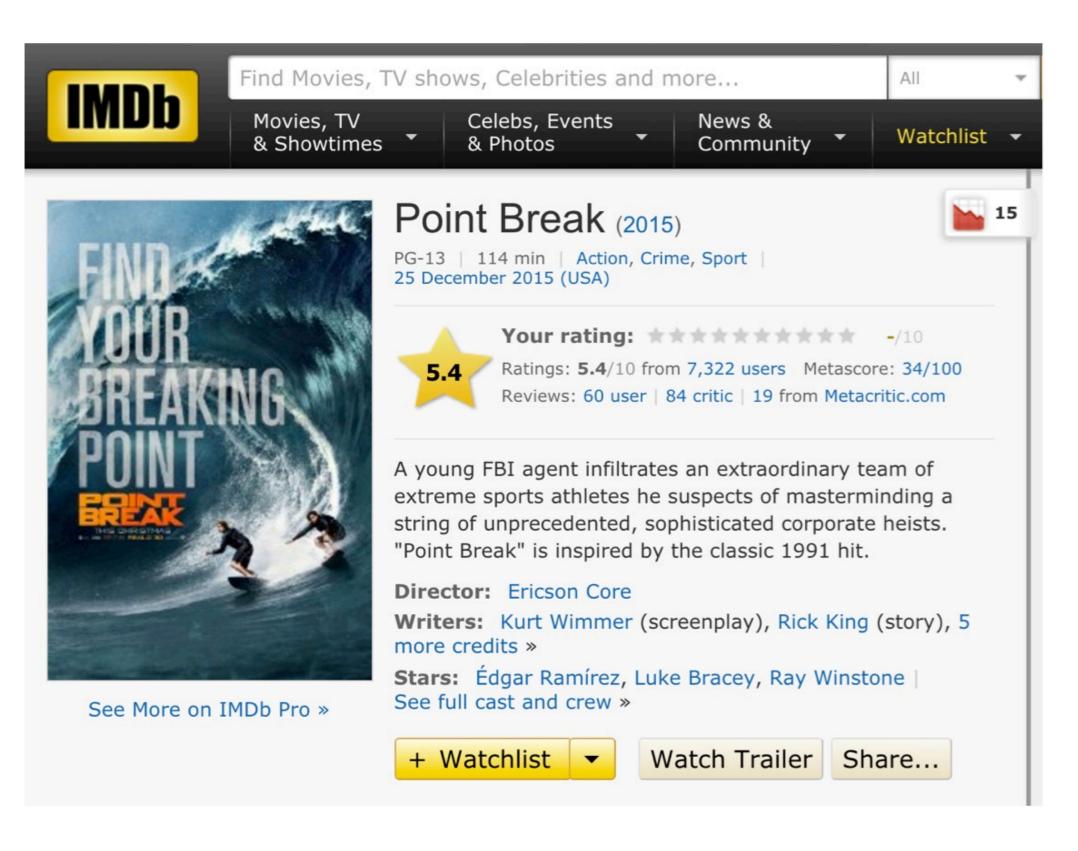
22-Jan 3:59p

ιt.

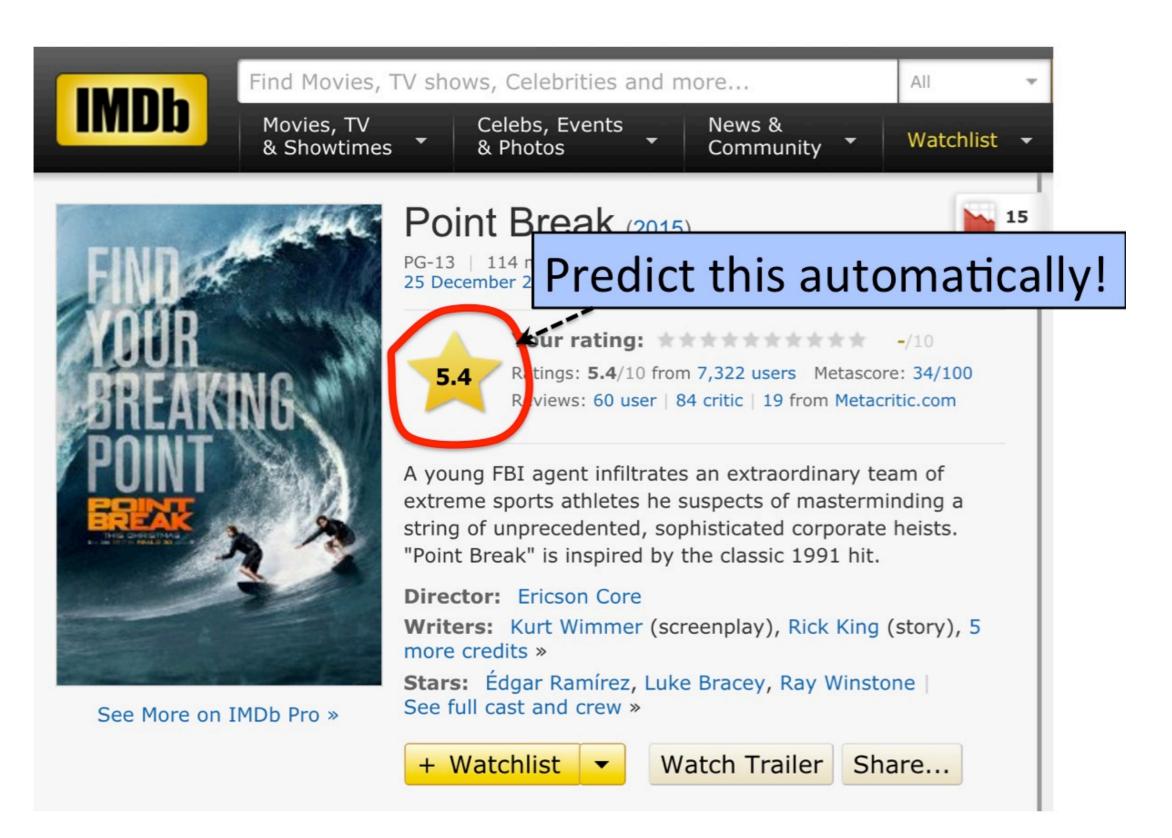
6

What should I watch tonight?

What should I watch tonight?



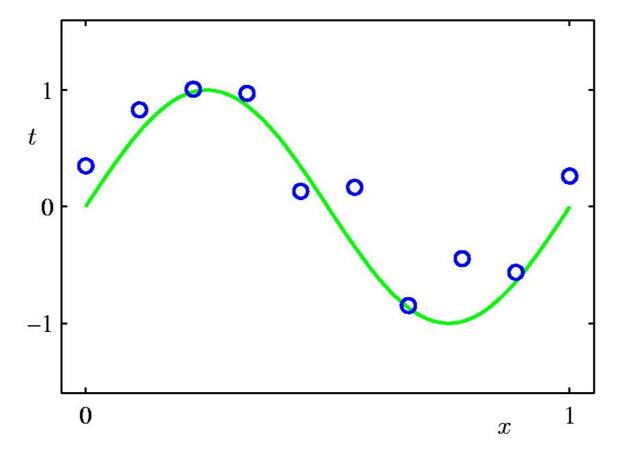
What should I watch tonight?



Today

- Kernel regression
 - nonparametric
- Distance metrics
- Linear regression (more on our next lecture)
 - parametric
 - simple model

Simple 1-D Regression



- Circles are data points (i.e., training examples) that are given to us
- The data points are uniform in x, but may be displaced in y

$$t(x) = f(x) + \varepsilon$$

with ε some noise

In green is the "true" curve that we don't know

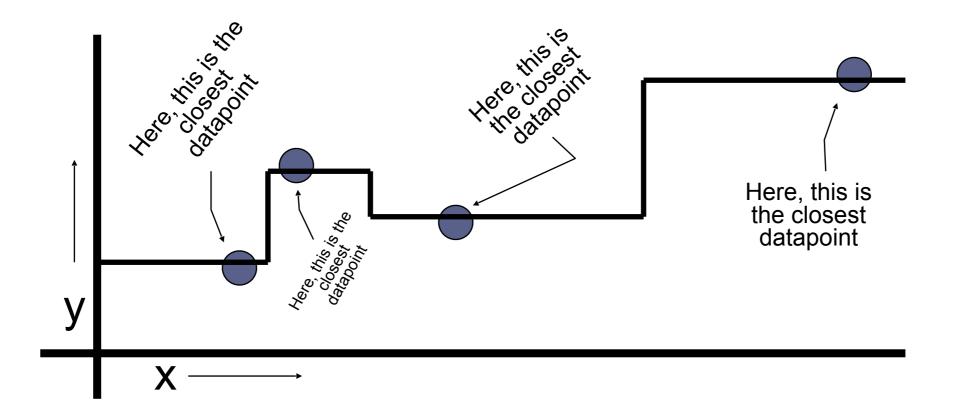
Kernel Regression

K-NN for Regression

- Given: Training data $\{(x_1,y_1),...,(x_n,y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in \mathcal{R}$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \mathcal{R}$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i,x')$

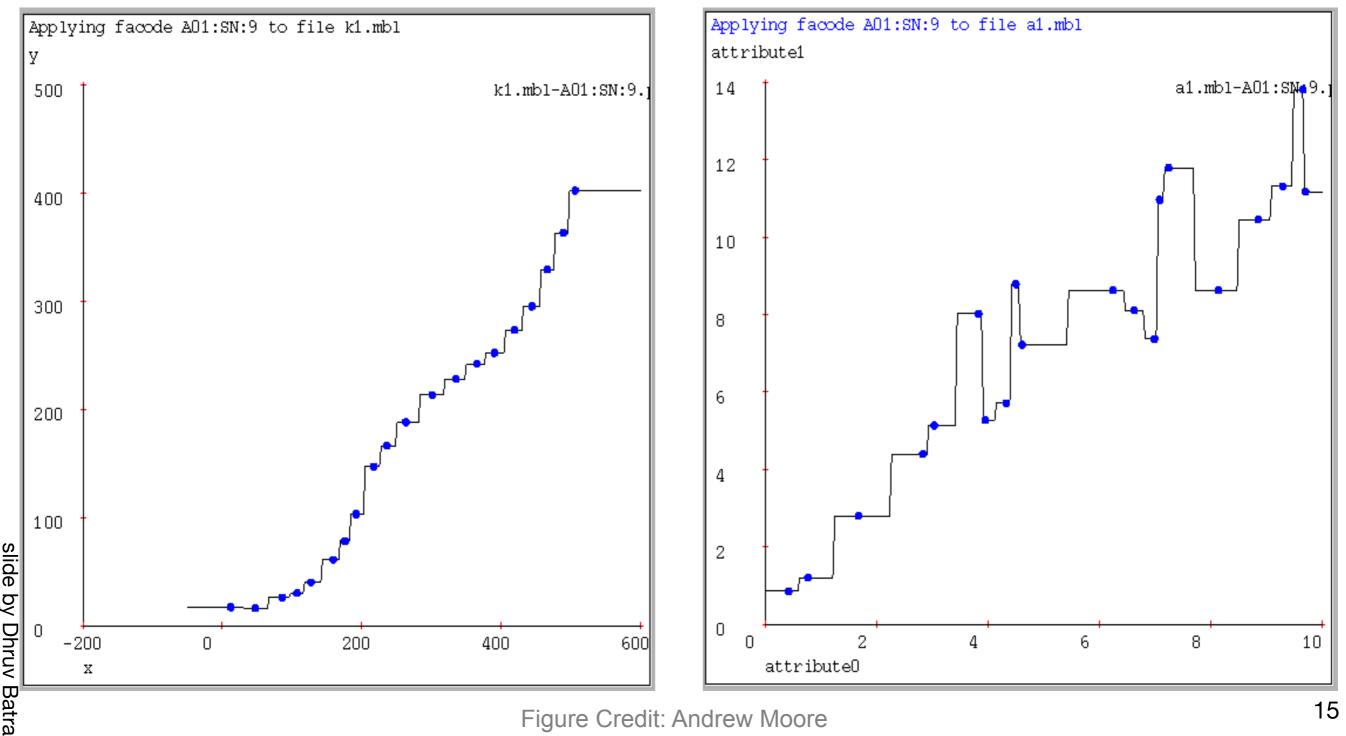
$$h(\vec{x}') = \frac{1}{k} \sum_{i \in knn(\vec{x}')} y_i$$

1-NN for Regression



1-NN for Regression

Often bumpy (overfits)



9-NN for Regression

Often bumpy (overfits)

slide by Dhruv Batra

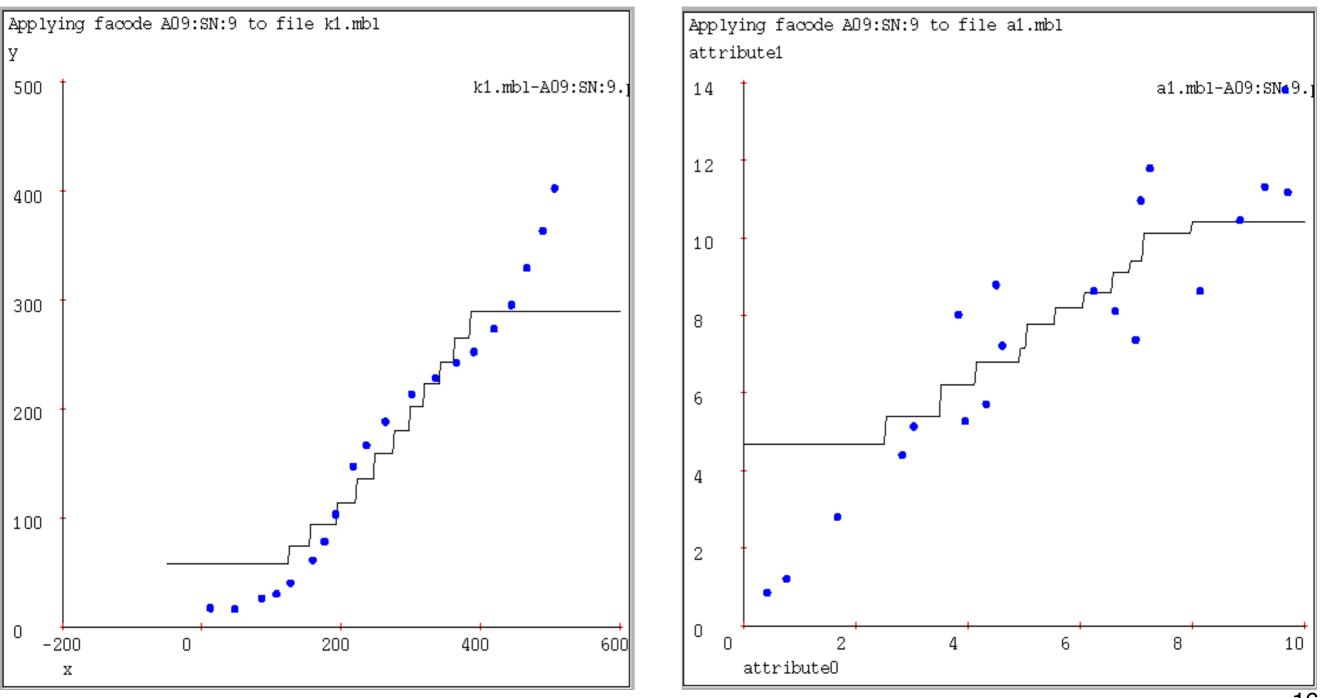


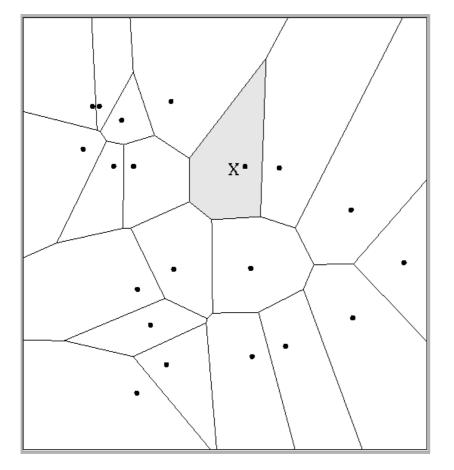
Figure Credit: Andrew Moore

Multivariate distance metrics

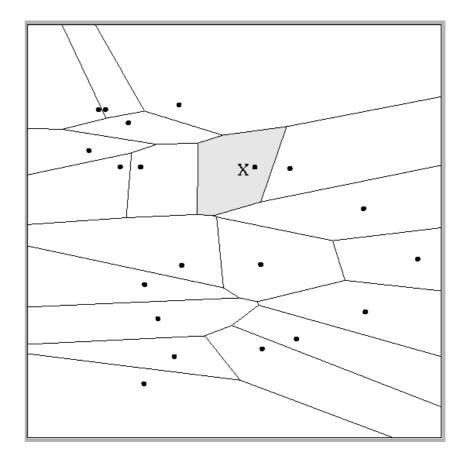
• Suppose the input vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_N$ are two dimensional:

 $\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$

• One can draw the nearest-neighbor regions in input space.



 $\text{Dist}(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2$



$$\text{Dist}(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (3x_{i2} - 3x_{j2})^2$$

The relative scalings in the distance metric affect region shapes

Example: Choosing a restaurant

- In everyday life we need to make decisions by taking into account lots of factors
- The question is what weight we put on each of these factors (how important are they with respect to the others).

Reviews (out of 5 stars)	\$	Distance	Cuisine (out of 10)
4	30	21	7
2	15	12	8
5	27	53	9
3	20	5	6

Euclidean distance metric

$$D(x, x') = \sqrt{\sum_{i} \sigma_i^2 (x_i - x'_i)^2}$$

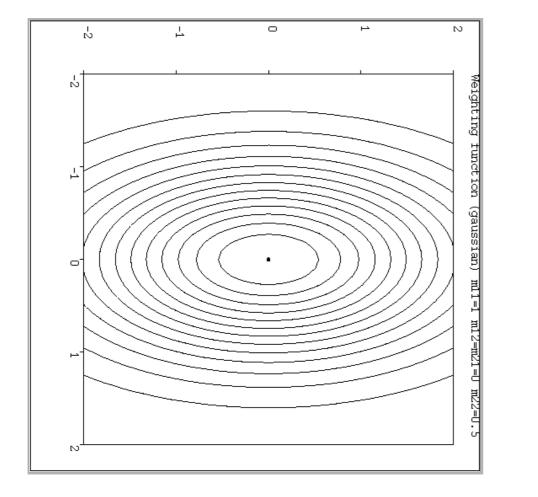
Or equivalently,

$$D(x, x') = \sqrt{(x_i - x'_i)^T A(x_i - x'_i)}$$

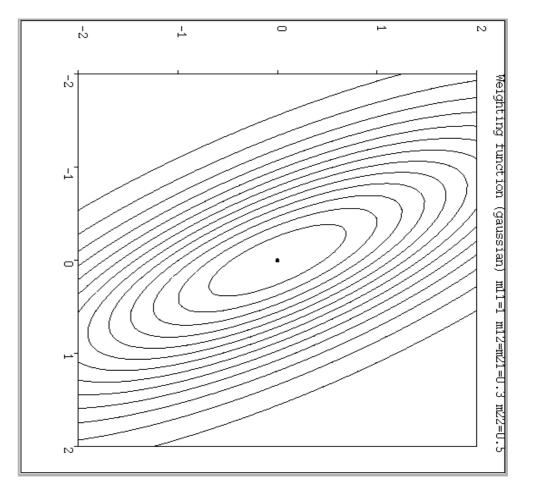
where

$$A = \begin{bmatrix} \sigma_{1}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_{N}^{2} \end{bmatrix}$$

Notable distance metrics (and their level sets)



Scaled Euclidian (L₂)



Mahalanobis (non-diagonal A)

Minkowski distance

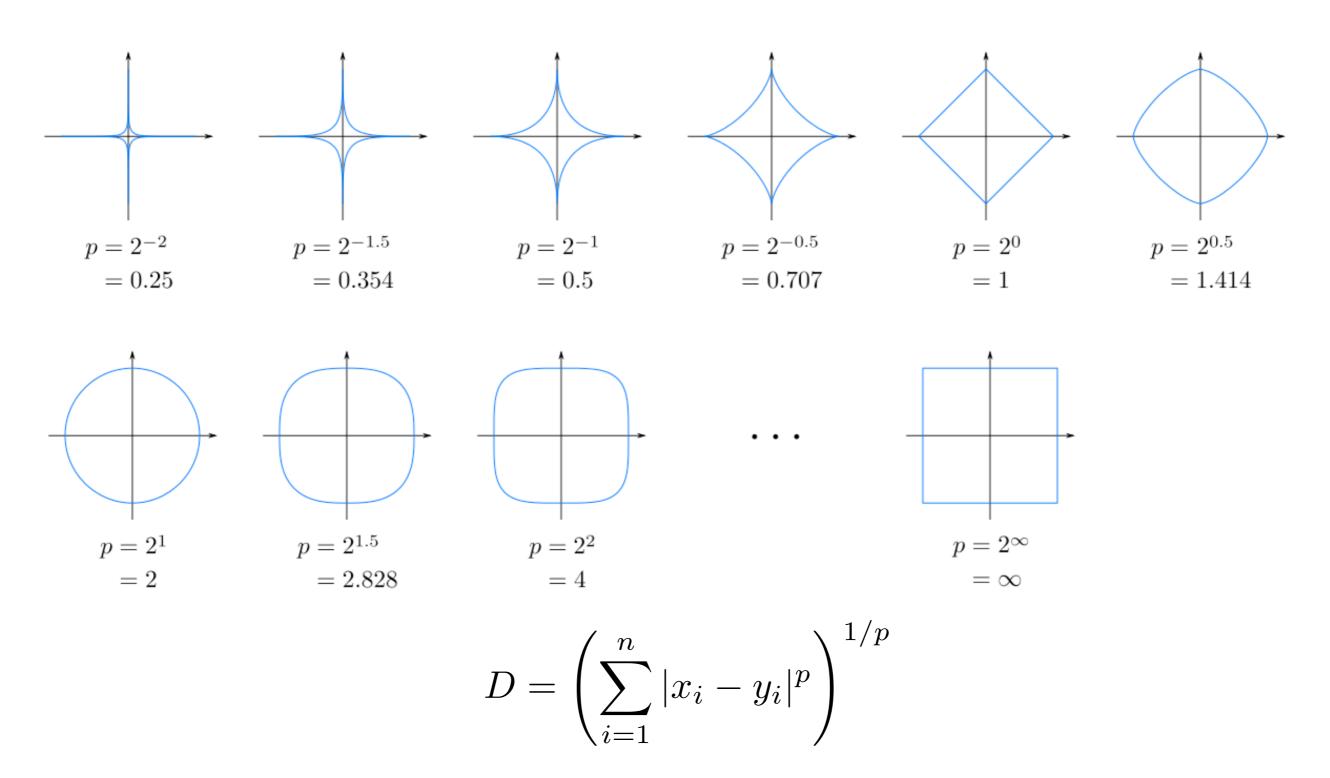
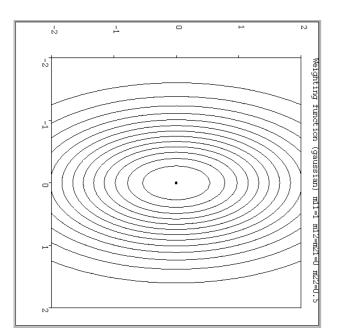
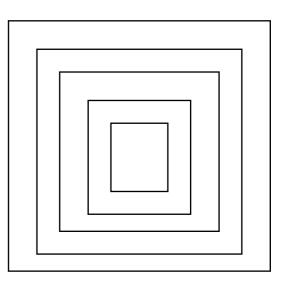


Image Credit: By Waldir (Based on File:MinkowskiCircles.svg) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Notable distance metrics (and their level sets)





Scaled Euclidian (L₂)

L₁ norm (absolute)

L_{inf} (max) norm

Weighted K-NN for Regression

- Given: Training data $\{(x_1,y_1),...,(x_n,y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in \mathcal{R}$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \mathcal{R}$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i,x')$

$$h(\vec{x}') = \frac{\sum_{i \in knn(\vec{x}')} y_i K(\vec{x}_i, \vec{x}')}{\sum_{i \in knn(\vec{x}')} K(\vec{x}_i, \vec{x}')}$$

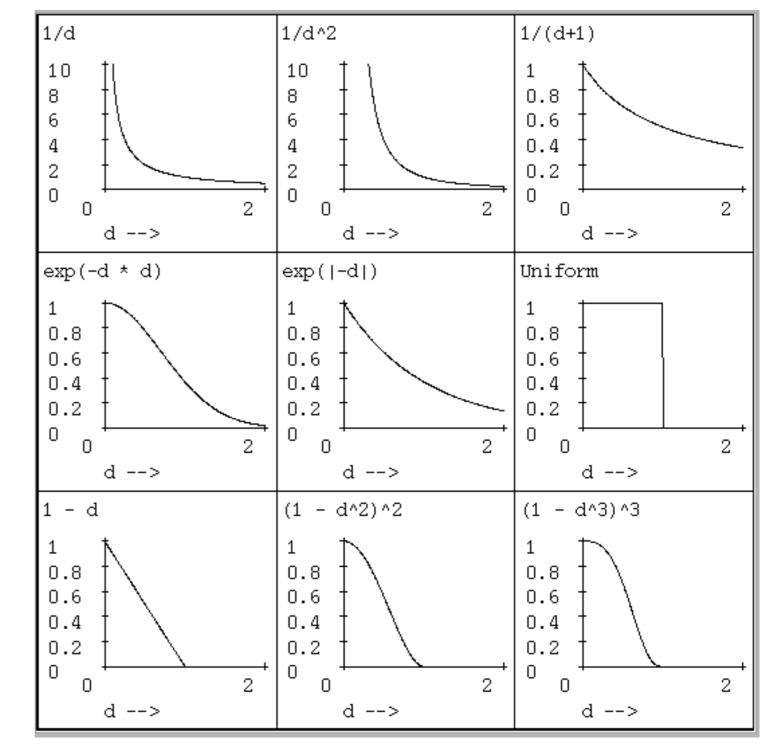
Kernel Regression/Classification

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - All of them
- A weighting function (optional)
 - $w_i = \exp(-d(x_i, query)^2 / \sigma^2)$
 - Nearby points to the query are weighted strongly, far points weakly. The σ parameter is the Kernel Width. Very important.
- How to fit with the local points?
 - Predict the weighted average of the outputs predict = $\sum w_i y_i / \sum w_i$

Weighting/Kernel functions

 $w_i = exp(-d(x_i, query)^2 / \sigma^2)$

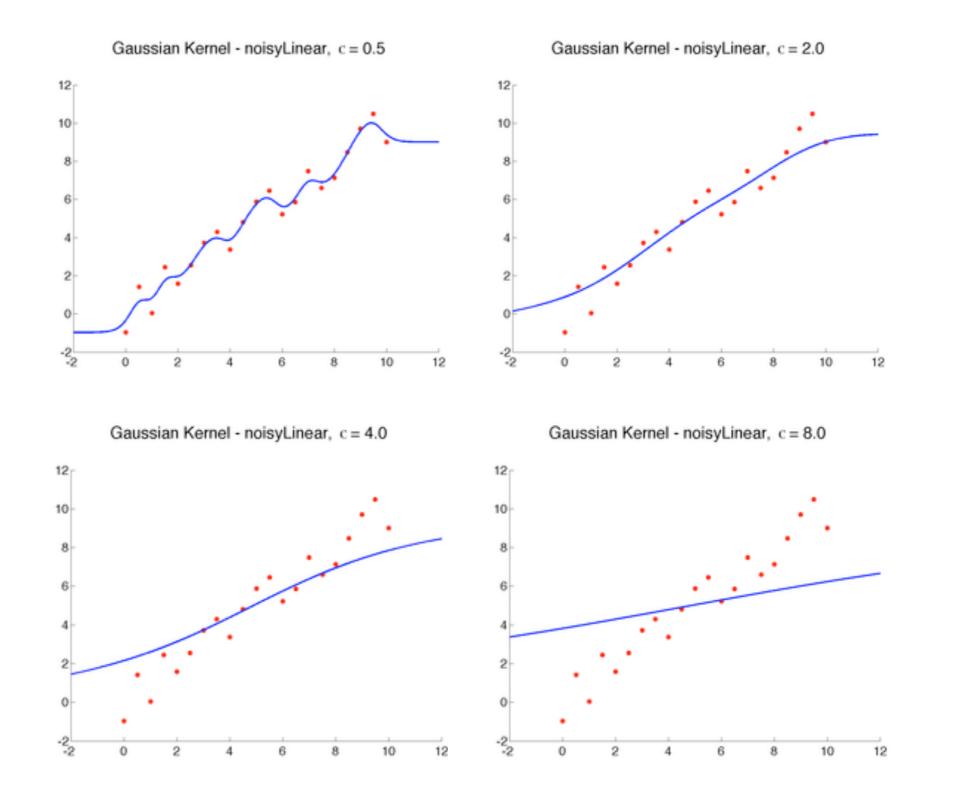


(Our examples use Gaussian)

Slide Credit: Carlos Guestrin

Effect of Kernel Width

- What happens as $\sigma \rightarrow inf$?
- What happens as $\sigma \rightarrow 0$?



slide by Dhruv Batra

Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search

Problems with Instance-Based Learning

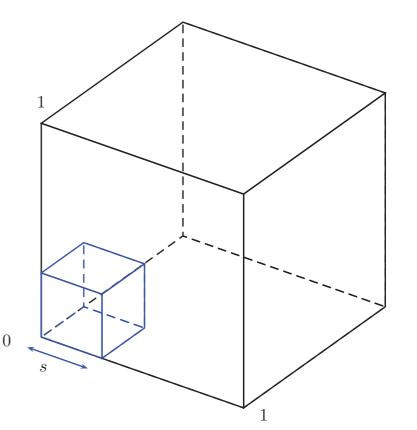
- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features

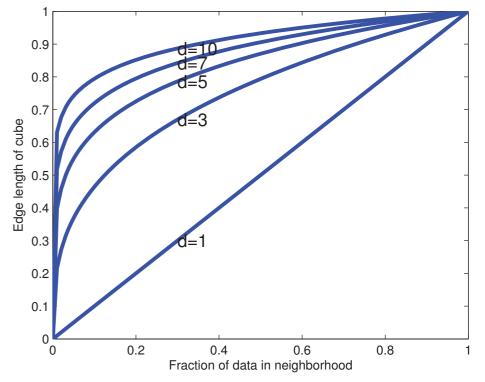
Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset
 very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
 - Curse of Dimensionality
 - Distances become meaningless in high dimensions

Curse of Dimensionality

- Consider applying a KNN classifier/regressor to data where the inputs are uniformly distributed in the *D*-dimensional unit cube.
- Suppose we estimate the density of class labels around a test point x by "growing" a hyper-cube around x until it contains a desired fraction f of the data points.
- The expected edge length of this cube will be $e_D(f) = f^{1/D}$.
- If D = 10, and we want to base our estimate on 10% of the data, we have e₁₀(0.1) = 0.8, so we need to extend the cube 80% along each dimension around x.
 - Even if we only use 1% of the data, we find $e_{10}(0.01) = 0.63$. no longer very local





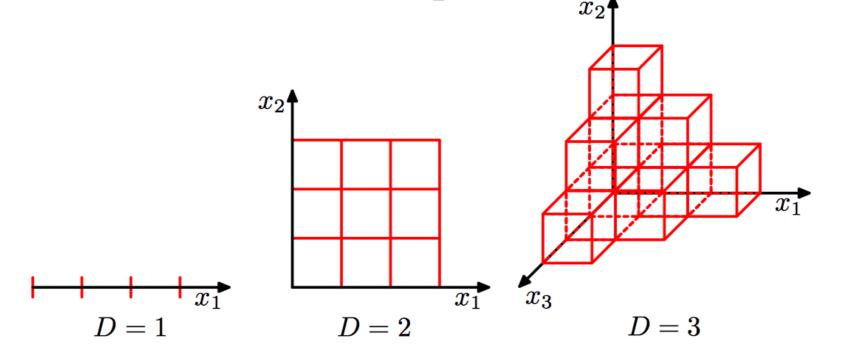
High dimensional spaces are empty

• Assume your data lives in $[0, 1]^p$. The volume of an hypercube with an edge length of r = 0.1 is 0.1^p

 \rightarrow when *p* grows, it quickly becomes so small that the probability to capture points from your database becomes very very small...

Points in high dimensional spaces are isolated

• To overcome this limitation, you need a number of sample which grows exponentially with *p*...



High dimensional spaces are empty

• *X*, *Y* two independent variables, with uniform distribution on $[0, 1]^p$. The mean square distance $||X - Y||^2$ satisfies

$$\mathbb{E}[\|X - Y\|^2] = p/6$$
 and $Std[\|X - Y\|^2] \simeq 0.2\sqrt{p}$

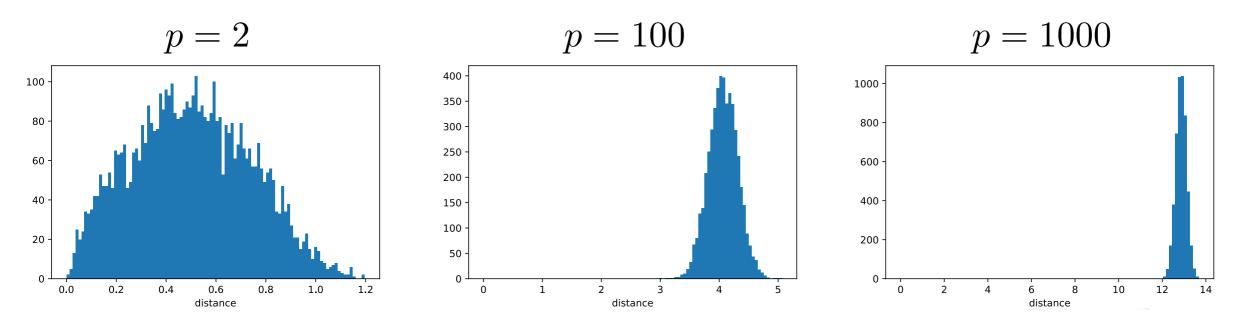


Figure: Histograms of pairwise-distances between n = 100 points sampled uniformly in the hypercube $[0, 1]^p$

The notion of nearest neighbors vanishes.

Parametric vs Non-parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
 - -Yes = Non-parametric Models
 - -No = Parametric Models

Ways to avoid the curse of dimensionality

• Dimension reduction:

- the problem comes from that p is too large,
- therefore, reduce the data dimension to $d \ll p$,
- such that the curse of dimensionality vanishes!
- Regularization:
 - The problem comes from that parameter estimates are unstable,
 - therefore, regularize these estimates,
 - such that the parameter are correctly estimated!

Parsimonious models:

- the problem comes from that the number of parameters to estimate is too large,
- therefore, make restrictive assumptions on the model,
- such that the number of parameters to estimate becomes more "decent"!

Next Lecture: Linear Regression, Least Squares Optimization, Model complexity, Regularization