About class projects

- This semester the theme is Machine Learning for Sustainability.
- To be done in pairs.
- Deliverables: Proposal, blog posts, progress report, project presentations (classroom + video presentations), final report and code
- For more details please check the project webpage: https://web.cs.hacettepe.edu.tr/~erkut/ain311.f23/project.html.

Recall from last time... Linear Regression

$$
\begin{aligned}
& y(x)=w_{0}+w_{1} x \quad \mathbf{w}=\left(w_{0}, w_{1}\right) \\
& \ell(\mathbf{w})=\sum_{n=1}^{N}\left[t^{(n)}-\left(w_{0}+w_{1} x^{(n)}\right)\right]^{2}
\end{aligned}
$$

Gradient Descent Update Rule:
$\mathbf{w} \leftarrow \mathbf{w}+2 \lambda\left(t^{(n)}-y\left(x^{(n)}\right)\right) x^{(n)}$
Closed Form Solution:

$$
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
$$

Recall from last time... Some key concepts

- Data fits - is linear model best (model selection)?
- Simplest models do not capture all the important variations (signal) in the data: underfit
- More complex model may overfit the training data (fit not only the signal but also the noise in the data),
 especially if not enough data to constrain model
- One method of assessing fit:
- test generalization = model's ability to predict the held out data

- Regularization

$$
\begin{aligned}
& \widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} \\
& \|\mathbf{w}\|^{2} \equiv \mathbf{w}^{\mathrm{T}} \mathbf{w}=w_{0}^{2}+w_{1}^{2}+\ldots+w_{M}^{2}
\end{aligned}
$$

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

Today

- Machine Learning Methodology
- validation
- cross-validation (k-fold, leave-one-out)
- model selection

Machine Learning Methodology

Recap: Regression

- In regression, labels y^{i} are continuous
- Classification/regression are solved very similarly
- Everything we have done so far transfers to classification with very minor changes
- Error: sum of distances from
 examples to the fitted model

Training/Test Data Split

- Talked about splitting data in training/test sets
- training data is used to fit parameters
- test data is used to assess how classifier generalizes to new data
- What if classifier has "non-tunable" parameters?
- a parameter is "non-tunable" if tuning (or training) it on the training data leads to overfitting
- Examples:
- k in kNN classifier
- number of hidden units in a multilayer neural network (MNN)
- number of hidden layers in MNN
- etc...

Example of Overfitting

- Want to fit a polynomial machine $f(\mathbf{x}, \mathbf{w})$
- Instead of fixing polynomial degree, make it parameter d
- learning machine $f(\mathbf{x}, \mathbf{w}, \mathbf{d})$
- Consider just three choices for d
- degree 1
- degree 2
- degree 3

- Training error is a bad measure to choose d
- degree 3 is the best according to the training error, but overfits the data

Training／Test Data Split

－What about test error？Seems appropriate
－degree 2 is the best model according to the test error
－Except what do we report as the test error now？
$\frac{\underline{\alpha}}{\frac{\alpha}{⿳ 亠 丷 厂 犬 土}} \cdot$ Test error should be computed on data that was not used for training at all！
－Here used＂test＂data for training，i．e．choosing model

Validation data

- Same question when choosing among several classifiers
- our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)

Validation data

- Same question when choosing among several classifiers
- our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts labeled data

Training	Validation	Test
$\approx 60 \%$	$\approx 20 \%$	$\approx 20 \%$

train tunable parameters w
train other parameters, or to select classifier
use only to assess final performance

Training/Validation

labeled data

Training
~60\%

Training error:
computed on training example

> | Validation | Test |
| :---: | :---: |
| $\approx 20 \%$ | $\approx 20 \%$ |

Validation error:
computed on validation
examples

Test error: computed on test
examples

Training/Validation/Test Data

validation error: 3.3 validation error: 1.8

validation error: 3.4

- Training Data
- Validation Data
- $\mathbf{d}=2$ is chosen

Test Data

- 1.3 test error computed for $\mathbf{d}=2$

Choosing Parameters: Example

- Need to choose number of hidden units for a MNN
- The more hidden units, the better can fit training data
- But at some point we overfit the data

Diagnosing Underfitting/Overfitting

Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

Fixing Underfitting/Overfitting

- Fixing Underfitting
- getting more training examples will not help
- get more features
- try more complex classifier
- if using MLP, try more hidden units
- Fixing Overfitting
- getting more training examples might help
- try smaller set of features
- Try less complex classifier
- If using MLP, try less hidden units

Train/Test/Validation Method

- Good news
- Very simple
- Bad news:
- Wastes data
- in general, the more data we have, the better are the estimated parameters
- we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
- If we have a small dataset our test (validation) set might just be lucky or unlucky

Small Dataset

Linear Model:

Mean Squared Error = 0.9

Join the dots Model:

Mean Squared Error $=2.2$

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to n

1. Let $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ be the $\mathrm{k}^{\text {th }}$ example

LOOCV (Leave-one-out Cross Validation)

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to n

1. Let $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ be the $\mathrm{k}^{\text {th }}$ example
2. Temporarily remove $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ from the dataset
3. Train on the remaining $n-1$ examples

LOOCV (Leave-one-out Cross Validation)

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to n

1. Let $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ be the $\mathrm{k}^{\text {th }}$ example
2. Temporarily remove $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ from the dataset
3. Train on the remaining $n-1$ examples
4. Note your error on $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$

When you've done all points, report the mean error

LOOCV (Leave-one-out Cross Validation)

MSEloocv $=2.12$

LOOCV for Quadratic Regression

MSEloocv $=0.96$

LOOCV for Joint The Dots

MSEloocv $=3.33$

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave-one- out	expensive	doesn't waste data

- Can we get the best of both worlds?

K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue

K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points

K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points

K-Fold Cross Validation

Linear Regression
$\mathrm{MSE}_{\text {3FOLD }}=2.05$

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

K-Fold Cross Validation

Quadratic Regression MSE $_{3 \text { FOLD }}=1.1$

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

K-Fold Cross Validation

Join the dots
$\mathrm{MSE}_{\text {3FOLD }}=2.93$

- Randomly break the dataset into k partitions
- In this example, we have $\mathrm{k}=3$ partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave- one-out	expensive	doesn't waste data
$\mathbf{1 0 - f o l d}$	wastes 10\% of the data,10 times more expensive than test set	only wastes 10\%, only 10 times more expensive instead of \mathbf{n} times
3-fold	wastes more data than 10- fold, more expensive than test set	slightly better than test-set
\mathbf{N}-fold	Identical to Leave-one-out	

Cross-validation for classification

- Instead of computing the sum squared errors on a test set, you should compute...

Cross-validation for classification

- Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

Cross-validation for classification

- Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

Cross-validation for classification

- Choosing k for k-nearest neighbors
- Choosing Kernel parameters for SVM
- Any other "free" parameter of a classifier
- Choosing Features to use
- Choosing which classifier to use

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

\mathbf{f}_{i}	Training Error
\mathbf{f}_{1}	
\mathbf{f}_{2}	
\mathbf{f}_{3}	
\mathbf{f}_{4}	
\mathbf{f}_{5}	
\mathbf{f}_{6}	

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

\mathbf{f}_{i}	Training Error	10-FOLD-CV Error
\mathbf{f}_{1}		
\mathbf{f}_{2}		
\mathbf{f}_{3}		
\mathbf{f}_{4}		
\mathbf{f}_{5}		
\mathbf{f}_{6}		

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

$\mathbf{f}_{\mathbf{i}}$	Training Error	10-FOLD-CV Error	Choice
\mathbf{f}_{1}			
\mathbf{f}_{2}			
\mathbf{f}_{3}			$\sqrt{ }$
\mathbf{f}_{4}			
\mathbf{f}_{5}			
\mathbf{f}_{6}			

CV-based Model Selection

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Algorithm	Training Error	10-fold-CV Error	Choice
$\mathbf{k}=1$			
$\mathbf{k}=2$			
$\mathbf{k}=3$			
$\mathbf{k}=4$			$\sqrt{ }$
$\mathbf{k}=5$			
$\mathbf{k}=6$			

Step 2: Choose model that gave the best CV score

- Train with all the data, and that's the final model you'll use

CV-based Model Selection

- Why stop at $\mathrm{k}=6$?
- No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
- No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for $\mathrm{k}=1$ through 1000?
- Try: k=1, 2, 4, 8, 16, 32, 64, ... ,1024
- Then do hillclimbing from an initial guess at k

Next Lecture: Learning Theory \& Probability Review

