
Erkut Erdem // Hacettepe University // Fall 2023

Lecture 5:

ML Methodology

AIN311

Fundamentals of  
Machine Learning

Illustration: detail from The Alchemist Discovering Phosphorus by Joseph Wright (1771)

About class projects

• This semester the theme is Machine Learning for Sustainability.
• To be done in pairs.
• Deliverables: Proposal, blog posts, progress report, project

presentations (classroom + video presentations), final report and code

• For more details please check the project webpage:  

https://web.cs.hacettepe.edu.tr/~erkut/ain311.f23/project.html.
2

https://web.cs.hacettepe.edu.tr/~erkut/ain311.f23/project.html

3

Recall from last time… Linear RegressionLeast-Squares Regression

Define a model

Linear: y(x) = w0 + w1x

Standard loss/cost/objective function measures the squared error between y
and the true value t

Linear model: `(w) =
NX

n=1

[t(n) � (w0 + w1x
(n))]2

For a particular hypothesis (y(x) defined by a choice of w, drawn in red),
what does the loss represent geometrically?

How do we obtain weights w = (w0,w1)?

For the linear model, what kind of a function is `(w)?

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 10 / 22

Least-Squares Regression

Define a model

Linear: y(x) = w0 + w1x

Standard loss/cost/objective function measures the squared error between y
and the true value t

Linear model: `(w) =
NX

n=1

[t(n) � (w0 + w1x
(n))]2

The loss for the red hypothesis is the sum of the squared vertical errors
(squared lengths of green vertical lines)

How do we obtain weights w = (w0,w1)?

For the linear model, what kind of a function is `(w)?

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 10 / 22

y(x) = w0 + w1x

`(w) =
NX

n=1

h
t(n) � (w0 + w1x

(n))
i2

w = (w0, w1)

w w + 2�
⇣
t(n) � y(x(n))

⌘
x(n)

Gradient Descent Update Rule:

Closed Form Solution:
w =

�
XTX

��1
XT t

Which Fit is Best?

from Bishop

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 17 / 22

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

Recall from last time… Some key concepts
• Data fits – is linear model best (model selection)?

− Simplest models do not capture all the important
variations (signal) in the data: underfit

− More complex model may overfit the training data  
(fit not only the signal but also the noise in the data),
especially if not enough data to constrain model

• One method of assessing fit:

− test generalization = model’s ability to predict  

the held out data

• Regularization

4

slide by Richard Zem
el

10 1. INTRODUCTION

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

10 1. INTRODUCTION

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.

E
R

M
S

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

Today
• Machine Learning Methodology

- validation

- cross-validation (k-fold, leave-one-out)

- model selection   

5

Machine Learning  
Methodology

6

Recap: Regression
• In regression, labels yi are

continuous

• Classification/regression are
solved very similarly

• Everything we have done so
far transfers to classification
with very minor changes

• Error: sum of distances from
examples to the fitted
model

7

slide by O
lga Veksler

x

y

1 4 8

6

3

Training/Test Data Split
• Talked about splitting data in training/test sets

- training data is used to fit parameters

- test data is used to assess how classifier generalizes to

new data

• What if classifier has “non‐tunable” parameters?

- a parameter is “non‐tunable” if tuning (or training) it on
the training data leads to overfitting

- Examples:

‣ k in kNN classifier

‣ number of hidden units in a multilayer neural network (MNN)

‣ number of hidden layers in MNN

‣ etc …

8

slide by O
lga Veksler

Example of Overfitting
• Want to fit a polynomial machine f (x,w)

• Instead of fixing polynomial degree,  
make it parameter d

- learning machine f (x,w,d)

• Consider just three choices for d

- degree 1
- degree 2

- degree 3  

• Training error is a bad measure to choose d

− degree 3 is the best according to the training error, but overfits

the data

9

slide by O
lga Veksler

x

y

Training/Test Data Split

• What about test error? Seems appropriate

− degree 2 is the best model according to the test error

• Except what do we report as the test error now?

• Test error should be computed on data that was not used for
training at all!

• Here used “test” data for training, i.e. choosing model
10

slide by O
lga Veksler

Validation data
• Same question when choosing among several classifiers

- our polynomial degree example can be looked at as
choosing among 3 classifiers (degree 1, 2, or 3)

11

slide by O
lga Veksler

Validation data
• Same question when choosing among several classifiers

- our polynomial degree example can be looked at as
choosing among 3 classifiers (degree 1, 2, or 3)

• Solution: split the labeled data into three parts

12

slide by O
lga Veksler

Training
≈ 60%

Validation
≈ 20%

Test
≈ 20%

train tunable  
parameters w

train other 
parameters, 
or to select 
classifier

use only to 
assess final 
performance

labeled data

Training/Validation

13

slide by O
lga Veksler

Training
≈ 60%

Validation
≈ 20%

Test
≈ 20%

Training error: 
computed on training 

example

Validation
error:  

computed on 
validation 
examples

Test error: 
computed

on 
test

examples

labeled data

Training/Validation/Test Data

• Training Data

• Validation Data

- d = 2 is chosen

• Test Data

- 1.3 test error computed for d = 2
14

slide by O
lga Veksler

validation error: 3.3 validation error: 1.8 validation error: 3.4

Choosing Parameters: Example

• Need to choose number of hidden units for a MNN

- The more hidden units, the better can fit training data

- But at some point we overfit the data

15

slide by O
lga Veksler

error

Validation error

Training error

number of base functions50

Diagnosing Underfitting/Overfitting

16

slide by O
lga Veksler

Underfitting

• large training error

• large validation error

Just Right

• small training error

• small validation error

Overfitting

• small training error

• large validation error

Fixing Underfitting/Overfitting
• Fixing Underfitting

- getting more training examples will not help

- get more features

- try more complex classifier

‣ if using MLP, try more hidden units 

• Fixing Overfitting

- getting more training examples might help

- try smaller set of features

- Try less complex classifier

‣ If using MLP, try less hidden units

17

slide by O
lga Veksler

Train/Test/Validation Method
• Good news

- Very simple 

• Bad news:

- Wastes data

- in general, the more data we have, the better are the estimated
parameters

- we estimate parameters on 40% less data, since 20% removed
for test and 20% for validation data

- If we have a small dataset our test (validation) set might just
be lucky or unlucky

• Cross Validation is a method for performance
evaluation that wastes less data

18

slide by O
lga Veksler

Small Dataset

19

slide by O
lga Veksler

Linear Model: Quadratic Model: Join the dots Model:

Mean Squared Error = 2.4 Mean Squared Error = 0.9 Mean Squared Error = 2.2

x

y

x

y

x

y

LOOCV (Leave-one-out Cross Validation)

20

slide by O
lga Veksler

x

y

For k=1 to n

1. Let (xk,yk) be the kth example

2. Temporarily remove (xk,yk)

from the dataset

3. Train on the remaining n-1

examples

4. Note your error on (xk,yk)

When you’ve done all points,
report the mean error

LOOCV (Leave-one-out Cross Validation)

21

slide by O
lga Veksler

x

y

For k=1 to n

1. Let (xk,yk) be the kth example

2. Temporarily remove (xk,yk)

from the dataset

3. Train on the remaining n-1

examples

4. Note your error on (xk,yk)

When you’ve done all points,
report the mean error

LOOCV (Leave-one-out Cross Validation)

22

slide by O
lga Veksler

x

y

For k=1 to n

1. Let (xk,yk) be the kth example

2. Temporarily remove (xk,yk)

from the dataset

3. Train on the remaining n-1

examples

4. Note your error on (xk,yk)

When you’ve done all points,
report the mean error

LOOCV (Leave-one-out Cross Validation)

23

slide by O
lga Veksler

x

y

For k=1 to n

1. Let (xk,yk) be the kth example

2. Temporarily remove (xk,yk)

from the dataset

3. Train on the remaining n-1

examples

4. Note your error on (xk,yk)

When you’ve done all points,
report the mean error

LOOCV (Leave-one-out Cross Validation)

24

slide by O
lga Veksler

x

y

For k=1 to n

1. Let (xk,yk) be the kth example

2. Temporarily remove (xk,yk)

from the dataset

3. Train on the remaining n-1

examples

4. Note your error on (xk,yk)

When you’ve done all points,
report the mean error

LOOCV (Leave-one-out Cross Validation)

25

slide by O
lga Veksler

x

y

x

y

x

y

MSELOOCV
 = 2.12

x

y

x

y

x

y

x

y

x

y

x

y

LOOCV for Quadratic Regression

26

slide by O
lga Veksler

MSELOOCV
 = 0.96

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

LOOCV for Joint The Dots

27

slide by O
lga Veksler

MSELOOCV
 = 3.33

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

Which kind of Cross Validation?

• Can we get the best of both worlds?

28

Which�kind�of�Cross�Validation?

Downside Upside

TestͲset may�give�unreliable��
estimate�of�future�

performance

cheap

LeaveͲoneͲ
out

expensive� doesn’t�waste�
data

• Can�we�get�the�best�of�both�worlds?

slide by O
lga Veksler

K-Fold Cross Validation

29

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

slide by O
lga Veksler

x

y

K-Fold Cross Validation

30

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

slide by O
lga Veksler

x

y

K-Fold Cross Validation

31

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

• For the green partition: train on all points not
in green partition. Find test‐set sum of
errors on green points

slide by O
lga Veksler

x

y

K-Fold Cross Validation

32

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

• For the green partition: train on all points not
in green partition. Find test‐set sum of
errors on green points

• For the red partition: train on all points not in
red partition. Find the test‐set sum of errors
on red pointsslide by O

lga Veksler

x

y

K-Fold Cross Validation

33

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

• For the green partition: train on all points not
in green partition. Find test‐set sum of
errors on green points

• For the red partition: train on all points not in
red partition. Find the test‐set sum of errors
on red points

• Report the mean error

slide by O
lga Veksler

x

y

Linear Regression
MSE3FOLD = 2.05

K-Fold Cross Validation

34

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

• For the green partition: train on all points not
in green partition. Find test‐set sum of
errors on green points

• For the red partition: train on all points not in
red partition. Find the test‐set sum of errors
on red points

• Report the mean error

slide by O
lga Veksler

Quadratic Regression
MSE3FOLD = 1.1

x

y

K-Fold Cross Validation

35

• Randomly break the dataset into k partitions

• In this example, we have k=3 partitions

colored red green and blue

• For the blue partition: train on all points not

in the blue partition. Find test‐set sum of
errors on blue points

• For the green partition: train on all points not
in green partition. Find test‐set sum of
errors on green points

• For the red partition: train on all points not in
red partition. Find the test‐set sum of errors
on red points

• Report the mean error

slide by O
lga Veksler

Join the dots
MSE3FOLD = 2.93

x

y

Which kind of Cross Validation?

36

Which�kind�of�Cross�Validation?
Downside Upside

TestͲset may�give�unreliable��
estimate�of�future�

performance
cheap

LeaveͲ
oneͲout

expensive�
doesn’t�waste�data

10Ͳfold wastes�10%�of�the�data,10�
times�more�expensive�than�

test�set

only�wastes�10%,�only�10�
times�more�expensive�
instead�of�n times

3Ͳfold wastes�more�data�than�10Ͳ
fold,�more�expensive�than�

test�set
slightly�better�than�testͲset

NͲfold Identical�to�LeaveͲoneͲout

slide by O
lga Veksler

Cross-validation for classification
• Instead of computing the sum squared

errors on a test set, you should compute...

37

slide by Andrew
 M

oore

Cross-validation for classification
• Instead of computing the sum squared

errors on a test set, you should compute…

		 The total number of misclassifications on a test set

38

slide by Andrew
 M

oore

Cross-validation for classification
• Instead of computing the sum squared

errors on a test set, you should compute…

		 The total number of misclassifications on a test set

39

CrossͲvalidation�for�classification
• Instead�of�computing�the�sum�squared�errors�
on�a�test�set,�you�should�compute…

The�total�number�of�misclassifications�on�a�testset

• What’s LOOCV of 1-NN?

• What’s LOOCV of 3-NN?

• What’s LOOCV of 22-NN?

from Andrew Moore (CMU)

- 	What’s LOOCV of 1-NN?

- 	What’s LOOCV of 3-NN?

- 	What’s LOOCV of 22-NN?

slide by Andrew
 M

oore

Cross-validation for classification
• Choosing k for k‐nearest neighbors

• Choosing Kernel parameters for SVM

• Any other “free” parameter of a classifier

• Choosing Features to use

• Choosing which classifier to use

40

slide by Andrew
 M

oore

CV-based Model Selection
• We’re trying to decide which algorithm to use.

• We train each machine and make a table...

41

CVͲbased�Model�Selection
• We’re�trying�to�decide�which�algorithm�to�use.

• We�train�each�machine�and�make�a�table…

fi Training�Error 10ͲFOLDͲCV�Error Choice

f1
f2
f3 ¹

f4
f5
f6

slide by O
lga Veksler

CV-based Model Selection
• We’re trying to decide which algorithm to use.

• We train each machine and make a table...

42

CVͲbased�Model�Selection
• We’re�trying�to�decide�which�algorithm�to�use.

• We�train�each�machine�and�make�a�table…

fi Training�Error 10ͲFOLDͲCV�Error Choice

f1
f2
f3 ¹

f4
f5
f6

slide by O
lga Veksler

CV-based Model Selection
• We’re trying to decide which algorithm to use.

• We train each machine and make a table...

43

CVͲbased�Model�Selection
• We’re�trying�to�decide�which�algorithm�to�use.

• We�train�each�machine�and�make�a�table…

fi Training�Error 10ͲFOLDͲCV�Error Choice

f1
f2
f3 ¹

f4
f5
f6

slide by O
lga Veksler

CV-based Model Selection
• Example: Choosing “k” for a k‐nearest‐neighbor regression.

• Step 1: Compute LOOCV error for six different model classes:

44

CVͲbased�Model�Selection
• Example:�Choosing�“k” for�a�kͲnearestͲneighbor�regression.

• Step�1:�Compute�LOOCV�error�for�six�different�model�classes:

• Step�2:�Choose�model�that�gave�best�CV�score

• Train�it�with�all�the�data,�and�that’s�the�final�model�you’ll�use

Algorithm Training�Error 10ͲfoldͲCV�Error Choice

k=1

k=2

k=3

k=4 ¹

k=5

k=6

• Step 2: Choose model that gave the best CV score

• Train with all the data, and that’s the final model you’ll use

slide by O
lga Veksler

CV-based Model Selection
• Why stop at k=6?

- No good reason, except it looked like things were getting
worse as K was increasing

• Are we guaranteed that a local optimum of K vs LOOCV
will be the global optimum?

- No, in fact the relationship can be very bumpy

• What should we do if we are depressed at the expense
of doing LOOCV for k = 1 through 1000?

- Try: k=1, 2, 4, 8, 16, 32, 64, ... ,1024

- Then do hillclimbing from an initial guess at k

45

slide by O
lga Veksler

Next Lecture:
Learning Theory &

Probability Review

46

