Illustration: detail from The Alchemist Discovering Phosphorus by Joseph Wright (1771)

AINSI Fundamentals of Machine Learning

Lecture 5: ML Methodology

Erkut Erdem // Hacettepe University // Fall 2023

About class projects

- This semester the theme is Machine Learning for Sustainability.
- To be done in pairs.
- Deliverables: Proposal, blog posts, progress report, project presentations (classroom + video presentations), final report and code
- For more details please check the project webpage: <u>https://web.cs.hacettepe.edu.tr/~erkut/ain311.f23/project.html</u>.

Recall from last time... Linear Regression

 $\mathbf{w} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{t}$

3

concepts:

M = 1

 w_0^{\star}

 w_1^{\star}

 w_2^{\star}

 w_{6}^{\star} w_{7}^{\star} w_{8}^{\star}

 w_{q}^{\star}

- One method of assessing fit:
 - test generalization = model's ability to predict the held out data $\frac{1}{0}$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$$

Today

- Machine Learning Methodology
 - validation
 - cross-validation (k-fold, leave-one-out)
 - model selection

Machine Learning Methodology

Recap: Regression

- In regression, labels yⁱ are continuous
- Classification/regression are solved very similarly
- Everything we have done so far transfers to classification with very minor changes
- Error: sum of distances from examples to the fitted model

slide by Olga Veksler

Training/Test Data Split

- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data
- What if classifier has "non-tunable" parameters?
 - a parameter is "non-tunable" if tuning (or training) it on the training data leads to overfitting
 - Examples:
 - k in kNN classifier
 - number of hidden units in a multilayer neural network (MNN)
 - number of hidden layers in MNN
 - ► etc ...

Example of Overfitting

- Want to fit a polynomial machine $f(\mathbf{x}, \mathbf{w})$
- Instead of fixing polynomial degree, make it parameter d
 - learning machine $f(\mathbf{x}, \mathbf{w}, \mathbf{d})$
- \cdot Consider just three choices for d
 - degree 1
 - degree 2
 - degree 3

- Training error is a bad measure to choose d
 - degree 3 is the best according to the training error, but overfits the data

- What about test error? Seems appropriate
 degree 2 is the best model according to the test error
- Except what do we report as the test error now?

slide by Olga Veksler

- Test error should be computed on data that was not used for training at all!
 - Here used "test" data for training, *i.e.* choosing model

Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)

Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

labeled data

Training	Validation	Test
≈ 60%	≈ 20%	≈ 20%
train tunable parameters w	train other parameters, or to select classifier	use only to assess final performance

Training/Validation

labeled data

Training	Validation	Test
≈ 60%	≈ 20%	≈ 20%
Training error:	Validation	Test error:
computed on training	error:	computed
example	computed on	on

validation

examples

test

examples

Training/Validation/Test Data

validation error: 3.3

validation error: 1.8

validation error: 3.4

- Training Data
- Validation Data
 d = 2 is chosen
 - Test Data
 - 1.3 test error computed for d = 2

Choosing Parameters: Example

Need to choose number of hidden units for a MNN

- The more hidden units, the better can fit training data
- But at some point we overfit the data

Diagnosing Underfitting/Overfitting

Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

Fixing Underfitting/Overfitting

- Fixing Underfitting
 - getting more training examples will not help
 - get more features
 - try more complex classifier
 - if using MLP, try more hidden units
- Fixing Overfitting
 - getting more training examples might help
 - try smaller set of features
 - Try less complex classifier
 - If using MLP, try less hidden units

Train/Test/Validation Method

- Good news
 - Very simple
- Bad news:
 - Wastes data
 - in general, the more data we have, the better are the estimated parameters
 - we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 - If we have a small dataset our test (validation) set might just be lucky or unlucky

Cross Validation is a method for performance evaluation that wastes less data

Small Dataset

Mean Squared Error = 2.4

Mean Squared Error = 0.9

Mean Squared Error = 2.2

For k=1 to n

1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example
- 2. Temporarily remove (x^k,y^k)from the dataset

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example
- Temporarily remove (x^k,y^k)
 from the dataset
- 3. Train on the remaining n-1 examples

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example
- Temporarily remove (x^k,y^k)
 from the dataset
- 3. Train on the remaining n-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$

For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example
- Temporarily remove (x^k,y^k)
 from the dataset
- 3. Train on the remaining n-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$

When you've done all points, report the mean error

slide by Olga Veksler

LOOCV for Quadratic Regression

slide by Olga Veksler

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave-one- out	expensive	doesn't waste data

Can we get the best of both worlds?

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
 - For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points

Linear Regression MSE_{3FOLD} = 2.05

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
 - For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Quadratic Regression MSE_{3FOLD} = 1.1

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
 - For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Join the dots MSE_{3FOLD} = 2.93

- Randomly break the dataset into k partitions
- In this example, we have k=3 partitions colored red green and blue
 - For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave- one-out	expensive	doesn't waste data
10-fold	wastes 10% of the data,10 times more expensive than test set	only wastes 10%, only 10 times more expensive instead of n times
3-fold	wastes more data than 10- fold, more expensive than test set	slightly better than test-set
N-fold	Identical to Leave-one-out	

 Instead of computing the sum squared errors on a test set, you should compute...

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a test set

- What's LOOCV of 1-NN?
- What's LOOCV of 3-NN?
- What's LOOCV of 22-NN?

- Choosing k for k-nearest neighbors
- Choosing Kernel parameters for SVM
- Any other "free" parameter of a classifier
- Choosing Features to use
- Choosing which classifier to use

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Step 2: Choose model that gave the best CV score
Train with all the data, and that's the final model you'll use

- Why stop at k=6?
 - No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 - No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for k = 1 through 1000?
 - Try: k=1, 2, 4, 8, 16, 32, 64, ..., 1024
 - Then do hillclimbing from an initial guess at k

Next Lecture: Learning Theory & Probability Review