AIN 317
Fundamentals of Machine Learnine

Last time... Regularization, Cross-Validation

| train data | | | | test data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fold 1 fold 2 fold 3 fold 4 | | | | |

Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

NN classifier

5-NN classifier

Today

- Learning Theory

- Probability Review

Learning Theory: Why ML Works

Computational Learning

Theory

- Entire subfield devoted to the mathematical analysis of machine learning algorithms
- Has led to several practical methods:
- PAC (probably approximately correct) learning \rightarrow boosting
- VC (Vapnik-Chervonenkis) theory
\rightarrow support vector machines
Annual conference: Conference on Learning Theory (COLT) ${ }_{5}$

The Role of Theory

- Theory can serve two roles:
- It can justify and help understand why common practice works.
- It can also serve to suggest new algorithms and approaches that turn out to work well in practice.

The Role of Theory

- Practitioners discover something that works surprisingly well.
- Theorists figure out why it works and prove something about it.
- In the process, they make it better or find new algorithms.
- Theory can also help you understand what's possible and what's not possible.

Learning and Inference

The inductive inference process:

1. Observe a phenomenon
2. Construct a model of the phenomenon
3. Make predictions

- This is more or less the definition of natural sciences!
- The goal of Machine Learning is to automate this process
- The goal of Learning Theory is to formalize it.

Pattern recognition

- We consider here the supervised learning framework for pattern recognition:
- Data consists of pairs (instance, label)
- Label is +1 or -1
- Algorithm constructs a function (instance \rightarrow label)
- Goal: make few mistakes on future unseen instances

Approximation/Interpolation

- It is always possible to build a function that fits exactly the data.

-But is it reasonable?

Which Fit is Best?

Occam's Razor

- Idea: look for regularities in the observed phenomenon
These can be generalized from the observed past to the future

William of Occam
(c. 1288 - c. 1348)
\Rightarrow choose the simplest consistent model

- How to measure simplicity?
- Physics: number of constants
- Description length
- Number of parameters

No Free Lunch

- No Free Lunch
- if there is no assumption on how the past is related to the future, prediction is impossible
- if there is no restriction on the possible phenomena, generalization is impossible
- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge
- Generalization = data + knowledge

Recall from last week... Some key concepts

- Data fits - is linear model best (model selection)?
- Simplest models do not capture all the important variations (signal) in the data: underfit
- More complex model may overfit the training data (fit not only the signal but also the noise in the data),
 especially if not enough data to constrain model
- One method of assessing fit:
- test generalization = model's ability to predict the held out data

- Regularization

$$
\begin{aligned}
& \widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} \\
& \|\mathbf{w}\|^{2} \equiv \mathbf{w}^{\mathrm{T}} \mathbf{w}=w_{0}^{2}+w_{1}^{2}+\ldots+w_{M}^{2}
\end{aligned}
$$

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

Probably Approximately Correct (PAC) Learning

- A formalism based on the realization that the best we can hope of an algorithm is that
- It does a good job most of the time (probably approximately correct)

Probably Approximately Correct (PAC) Learning

- Consider a hypothetical learning algorithm
- We have 10 different binary classification data sets.
- For each one, it comes back with functions $f_{1}, f_{2}, \ldots, f_{10}$.
- For some reason, whenever you run f_{4} on a test point, it crashes your computer. For the other learned functions, their performance on test data is always at most 5\% error.
- If this situtation is guaranteed to happen, then this hypothetical learning algorithm is a PAC learning algorithm.
\% It satisfies probably because it only failed in one out of ten cases, and it's approximate because it achieved low, but non-zero, error on the remainder of the cases.

PAC Learning

Definitions 1. An algorithm \mathcal{A} is an ($\epsilon, \delta)$-PAC learning algorithm if, for all distributions \mathcal{D} : given samples from \mathcal{D}, the probability that it returns a "bad function" is at most δ; where a "bad" function is one with test error rate more than ϵ on \mathcal{D}.

PAC Learning

- Two notions of efficiency
- Computational complexity: Prefer an algorithm that runs quickly to one that takes forever
- Sample complexity: The number of examples required for your algorithm to achieve its goals

Definition: An algorithm \mathcal{A} is an efficient (ϵ, δ)-PAC learning algorithm if it is an (ϵ, δ)-PAC learning algorithm whose runtime is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$.

> In other words, to let your algorithm to achieve 4% error rather than 5\%, the runtime required to do so should not go up by an exponential factor!

Example: PAC Learning of Conjunctions

- Data points are binary vectors, for instance $\mathbf{x}=\langle 0,1,1,0,1\rangle$
- Some Boolean conjunction defines the true labeling of this data (e.g. $x_{1} \wedge x_{2} \wedge x_{5}$)
- There is some distribution \mathcal{D}_{X} over binary data points (vectors) $\mathbf{x}=\left\langle x_{1}, x_{2}, \ldots, x_{\mathrm{D}}\right\rangle$.
- There is a fixed concept conjunction c that we are trying to learn.
- There is no noise, so for any example x, its true label is simply $y=c(\mathbf{x})$
- Clearly, the true formula cannot include the terms $x_{1}, x_{2}, \neg x_{3}, \neg x_{4}$

y	x_{1}	x_{2}	x_{3}	x_{4}
+1	O	O	I	I
+I	O	I	I	I
-I	I	I	O	I

Example: PAC Learning
$f \leftarrow x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \wedge \cdots \wedge x_{D} \wedge \neg x_{D}$
for all positive examples $(x,+1)$ in \mathbf{D} do
for $d=1 \ldots D$ do
if $x_{d}=o$ then
$f \leftarrow f$ without term " x_{d} "
else
end if
end for
end for
return f
$f^{0}(\mathbf{x})=x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{4}$
$f^{1}(\mathbf{x})=\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge x_{4}$
$f^{2}(\mathbf{x})=\neg x_{1} \wedge x_{3} \wedge x_{4}$
$f^{3}(\mathbf{x})=\neg x_{1} \wedge x_{3} \wedge x_{4}$

- After processing an example, it is guaranteed to classify that example correctly (provided that there is no noise)
- Computationally very efficient
- Given a data set of N examples in D dimensions, it takes $\mathrm{O}(N D)$ time to process the data. This is linear in the size of the data set.

```
Example: PAC Learning of Conjunctions
\begin{tabular}{c|cccc}
\(y\) & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) \\
\hline+1 & O & O & I & I \\
+I & O & I & I & I \\
-I & I & I & O & I
\end{tabular}
```

Algorithm 30 BinaryConjunctionTrain(D)
: $f \leftarrow x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \wedge \cdots \wedge x_{D} \wedge \neg x_{D}$
2: for all positive examples $(x,+1)$ in \mathbf{D} do
for $d=1 \ldots D$ do
$f \leftarrow f$ without term " x_{d} "
else
end if
end for
end for
return f

- Is this an efficient (ε, δ)-PAC learning algorithm?
- What about sample complexity?
- How many examples N do you need to see in order to guarantee that it achieves an error rate of at most ε (in all but δ - many cases)?
- Perhaps N has to be gigantic (like $2^{2^{D / \epsilon}}$) to (probably) guarantee a small error.

```
Example: PAC Learning of Conjunctions
\begin{tabular}{c|cccc}
\(y\) & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) \\
\hline+1 & O & O & I & I \\
+I & O & I & I & I \\
-I & I & I & O & I
\end{tabular}
```

Algorithm 30 BinaryConjunctionTrain(D)

```
for all positive examples (x,+1) in D do
    for }d=1\ldotsD\mathrm{ do
        if }\mp@subsup{x}{d}{}=o\mathrm{ then
            f}\leftarrowf\mathrm{ without term " }\mp@subsup{x}{d}{}\mathrm{ "
            else
        end if
        end for
    end for
    return
```

- Prove that the number of samples N required to (probably) achieve a small error is not-too-big.
- Sketch of the proof:
- Say there is some term (say $\neg x_{8}$) that should have been thrown out, but wasn't.
- If this was the case, then you must not have seen any positive training examples with $x_{8}=0$.
- So example with $x_{8}=0$ must have low probability (otherwise you would have seen them). So such a thing is not that common

Vapnik-Chervonenkis (VC) Dimension

- A classic measure of complexity of infinite hypothesis classes based on this intuition.
- The VC dimension is a very classification-oriented notion of complexity
- The idea is to look at a finite set of unlabeled examples
- no matter how these points were labeled, would we be able to find a hypothesis that correctly classifies them
- The idea is that as you add more points, being able to represent an arbitrary labeling becomes harder and harder.

> Definitions 2. For data drawn from some space \mathcal{X}, the $V C$ dimension of a hypothesis space \mathcal{H} over \mathcal{X} is the maximal K such that: there exists a set $X \subseteq \mathcal{X}$ of size $|X|=K$, such that for all binary labelings of X, there exists a function $f \in \mathcal{H}$ that matches this labeling.

How many points can a linear

 boundary classify exactly? (1-D)- 2 points:

Yes!

- 3 points:

No!

$$
\begin{aligned}
& \cdots+\cdots+\cdots=\cdots \\
& \cdots+\cdots=\cdots=\cdots \\
& \text { ………झ...... } \\
& \cdots \cdot=. .+\cdots=\cdots \\
& \text { etc (8 total) }
\end{aligned}
$$

How many points can a linear boundary classify exactly? (2-D)

- 3 points:

Yes!

$0 \quad 0 \mid \longrightarrow$

- 4 points:
$+\quad=$
凸
etc.
No!

$$
4+\quad=4
$$

Basic Probability Review

Probability

- A is non-deterministic event - Can think of A as a boolean-valued variable
- Examples
- A = your next patient has cancer
- A = Novak Djokovic wins French Open 2022

Interpreting Probabilities

If I flip this coin, the probability that it will come up heads is 0.5

- Frequentist Interpretation: If we flip this coin many times, it will come up heads about half the time. Probabilities are the expected frequencies of events over repeated trials.
- Bayesian Interpretation: I believe that my next toss of this coin is equally likely to come up heads or tails. Probabilities quantify subjective beliefs about single events.
- Viewpoints play complementary roles in machine learning:
- Bayesian view used to build models based on domain knowledge, and automatically derive learning algorithms
- Frequentist view used to analyze worst case behavior of learning algorithms, in limit of large datasets
- From either view, basic mathematics is the same!

Axioms of Probability

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $\mathrm{P}($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $\mathrm{P}($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Event space of all possible \longrightarrow worlds

Its area is 1

$P(A)=$ Area of reddish oval

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $\mathrm{P}($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can t get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A can t get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

Discrete Random Variables

$X \longrightarrow$ discrete random variable
$\mathcal{X} \longrightarrow \quad \begin{aligned} & \text { sample space of possible outcomes, } \\ & \text { which may be finite or countably infinite }\end{aligned}$
$x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable

Discrete Random Variables

$X \longrightarrow$ discrete random variable $\mathcal{X} \longrightarrow \quad \begin{aligned} & \text { sample space of possible outcomes, } \\ & \text { which may be finite or countably infinite }\end{aligned}$
$x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X=x) \longrightarrow$ probability distribution (probability mass function) $p(x) \longrightarrow$ shorthand used when no ambiguity

$$
0 \leq p(x) \leq 1 \text { for all } x \in \mathcal{X} \quad \sum_{x \in \mathcal{X}} p(x)=1
$$

uniform distribution

$$
\mathcal{X}=\{1,2,3,4\}
$$

degenerate distribution

Joint Distribution

Marginalization

- Marginalization
- Events: $P(A)=P(A$ and $B)+P(A$ and not $B)$
- Random variables $P(X=x)=\sum_{y} P(X=x, Y=y)$

Marginal Distributions

$$
p(x)=\sum_{y \in \mathcal{Y}} p(x, y)
$$

Conditional Probabilities

- $P(Y=y \mid X=x)$
- What do you believe about $Y=y$, if I tell you $X=x$?
- P(Max Verstappen winning the 2023 Monaco Grand Prix)?
- What if I tell you:
- He has won the Formula One World Champion title for 2021 and 2022.
- He has won the Monaco Grand Prix 1/7 he has raced there.

Conditional Probabilities

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\ln$ worlds that where B is true, fraction where A is true
- Example
- H: "Have a headache"
- F: "Coming down with Flu"

$$
\begin{aligned}
& P(H)=1 / 10 \\
& P(F)=1 / 40 \\
& P(H \mid F)=1 / 2
\end{aligned}
$$

Headaches are rare and flu is rarer, but if you re coming down with flu there s a 5050 chance you ll have a headache.

Conditional Distributions

X

$$
p(x, y \mid Z=z)=\frac{p(x, y, z)}{p(z)_{42}}
$$

Independent Random Variables

$P(x, y)$

for all $x \in \mathcal{X}, y \in \mathcal{Y}$

Equivalent conditions on conditional probabilities:

$$
\begin{aligned}
& p(x \mid Y=y)=p(x) \text { and } p(y)>0 \text { for all } y \in \mathcal{Y} \\
& p(y \mid X=x)=p(y) \text { and } p(x)>0 \text { for all } x \in \mathcal{X}
\end{aligned}
$$

Bayes Rule (Bayes Theorem)

$$
\begin{gathered}
p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y) \\
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime} \in \mathcal{Y}} p\left(y^{\prime}\right) p\left(x \mid y^{\prime}\right)} \\
\propto p(x \mid y) p(y)
\end{gathered}
$$

- A basic identity from the definition of conditional probability
- Used in ways that have no thing to do with Bayesian statistics!
- Typical application to learning and data analysis:

$$
\begin{aligned}
& Y \longrightarrow \\
& \text { unknown parameters we would like to infer } \\
& X=x \text { observed data available for learning } \\
& p(y) \text { prior distribution (domain knowledge) } \\
& p(x \mid y) \longrightarrow \text { likelihood function (measurement model) } \\
& p(y \mid x) \longrightarrow \text { posterior distribution (learned information) }
\end{aligned}
$$

Binary Random Variables

- Bernoulli Distribution: Single toss of a (possibly biased) coin

$$
\begin{aligned}
\mathcal{X} & =\{0,1\} \\
0 & \leq \theta \leq 1 \\
\operatorname{Ber}(x \mid \theta) & =\theta^{\delta(x, 1)}(1-\theta)^{\delta(x, 0)}
\end{aligned}
$$

- Binomial Distribution: Toss a single (possibly biased) coin n times, and report the number k of times it comes up

$$
\mathcal{K}=\{0,1,2, \ldots, n\}
$$

$$
\begin{gathered}
0 \leq \theta \leq 1 \\
\operatorname{Bin}(k \mid n, \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \quad\binom{n}{k}=\frac{n!}{(n-k)!k!}
\end{gathered}
$$

Binomial Distributions

Bean Machine (Sir Francis Galton)

http://en.wikipedia.org/wiki/ Bean machine

Categorical Random Variables

- Multinoulli Distribution: Single roll of a (possibly biased) die

$$
\begin{aligned}
& \mathcal{X}=\{0,1\}^{K}, \sum_{k=1}^{K} x_{k}=1 \quad \begin{array}{c}
\text { binary vector } \\
\text { encoding }
\end{array} \\
& \theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right), \theta_{k} \geq 0, \sum_{k=1}^{K} \theta_{k}=1 \\
& \operatorname{Cat}(x \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{x_{k}}
\end{aligned}
$$

- Multinomial Distribution: Roll a single (possibly biased) die n times, and report the number n_{k} of each possible outcome

$$
\operatorname{Mu}(x \mid n, \theta)=\binom{n}{n_{1} \ldots n_{K}} \prod_{k=1}^{K} \theta_{k}^{n_{k}} \quad n_{k}=\sum_{i=1}^{n} x_{i k}
$$

Aligned DNA Sequences

$c g$ a t ac $g g g g t c g a \operatorname{a}$
c a at cc ga g at cg ca
ca at cc gt gt $t \mathrm{~g} g \mathrm{~g} a$
ca at cg g ca $t g c g g g$
c ga g c c g c gt ac ga a
ca ta cg g ag ca cg a a
t a atccgggcatgta
c gag cc ga g t ac ag a
cc at cc g cg ta ag c a
g ga t ac ga g at g ac a

Multinomial Model of DNA

Next Lecture:

Maximum Likelihood Estimation (MLE)

