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Last time… Regularization, Cross-Validation

Figure credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Today
• Learning Theory


• Probability Review
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Learning Theory:  
Why ML Works 
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Computational Learning  
Theory 
• Entire subfield devoted to the  

mathematical analysis of machine  
learning algorithms 


• Has led to several practical methods: 

− PAC (probably approximately correct) learning  
→ boosting 


− VC (Vapnik–Chervonenkis) theory  
→ support vector machines  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The Role of Theory
• Theory can serve two roles:


− It can justify and help understand why 
common practice works. 


− It can also serve to suggest new algorithms 
and approaches that turn out to work well in 
practice.
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Often, it turns out to be a mix!



The Role of Theory
• Practitioners discover something that works 

surprisingly well. 


• Theorists figure out why it works and prove 
something about it. 

− In the process, they make it better or find new 

algorithms.


• Theory can also help you understand what’s 
possible and what’s not possible.

7

adapted from
 H

al Daum
e III



Learning and Inference
The inductive inference process: 

1. Observe a phenomenon

2. Construct a model of the phenomenon

3. Make predictions 


• This is more or less the definition of natural 
sciences !


• The goal of Machine Learning is to automate  
this process


• The goal of Learning Theory is to formalize it. 
8
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Pattern recognition
• We consider here the supervised learning 

framework for pattern recognition: 


− Data consists of pairs (instance, label)


− Label is +1 or −1


− Algorithm constructs a function (instance → label) 


− Goal: make few mistakes on future unseen 
instances 
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Approximation/Interpolation 
• It is always possible to build a function that fits 

exactly the data. 


• But is it reasonable?
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Which Fit is Best?
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Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 17 / 22



Occam’s Razor
• Idea: look for regularities in the observed  

phenomenon 
 

These can be generalized from the  
observed past to the future  
 
⇒ choose the simplest consistent model 


• How to measure simplicity ? 

− Physics: number of constants 

− Description length

− Number of parameters

− ...
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No Free Lunch 
• No Free Lunch 

− if there is no assumption on how the past is related to 
the future, prediction is impossible


− if there is no restriction on the possible phenomena, 
generalization is impossible 


• We need to make assumptions


• Simplicity is not absolute


• Data will never replace knowledge 


• Generalization = data + knowledge 
13
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8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

Recall from last week… Some key concepts
• Data fits – is linear model best (model selection)?


− Simplest models do not capture all the important 
variations (signal) in the data: underfit 


− More complex model may overfit the training data  
(fit not only the signal but also the noise in the data), 
especially if not enough data to constrain model 


• One method of assessing fit: 

− test generalization = model’s ability to predict  

the held out data 

• Regularization
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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Probably Approximately Correct  
(PAC) Learning

• A formalism based on the realization that 
the best we can hope of an algorithm is that 

− It does a good job most of the time (probably 

approximately correct)
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Probably Approximately Correct  
(PAC) Learning

• Consider a hypothetical learning algorithm

− We have 10 different binary classification data sets. 

− For each one, it comes back with functions f1, f2, . . . , f10. 


✦ For some reason, whenever you run f4 on a test point, it 
crashes your computer. For the other learned functions, 
their performance on test data is always at most 5% error. 


✦ If this situtation is guaranteed to happen, then this 
hypothetical learning algorithm is a PAC learning algorithm. 

✤ It satisfies probably because it only failed in one out of 

ten cases, and it’s approximate because it achieved low, 
but non-zero, error on the remainder of the cases.
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PAC Learning
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144 a course in machine learning

the previous example, e = 0.05) and d plays the role of measuring
failure (in the previous, d = 0.1).

Definitions 1. An algorithm A is an (e, d)-PAC learning algorithm if, for
all distributions D: given samples from D, the probability that it returns a
“bad function” is at most d; where a “bad” function is one with test error
rate more than e on D.

There are two notions of efficiency that matter in PAC learning. The
first is the usual notion of computational complexity. You would prefer
an algorithm that runs quickly to one that takes forever. The second
is the notion of sample complexity: the number of examples required
for your algorithm to achieve its goals. Note that the goal of both
of these measure of complexity is to bound how much of a scarse
resource your algorithm uses. In the computational case, the resource
is CPU cycles. In the sample case, the resource is labeled examples.

Definition: An algorithm A is an efficient (e, d)-PAC learning al-
gorithm if it is an (e, d)-PAC learning algorithm whose runtime is
polynomial in 1

e and 1
d .

In other words, suppose that you want your algorithm to achieve
4% error rate rather than 5%. The runtime required to do so should
no go up by an exponential factor.

10.4 PAC Learning of Conjunctions

To get a better sense of PAC learning, we will start with a completely
irrelevant and uninteresting example. The purpose of this example is
only to help understand how PAC learning works.

The setting is learning conjunctions. Your data points are binary
vectors, for instance x = h0, 1, 1, 0, 1i. Someone guarantees for you
that there is some boolean conjunction that defines the true labeling
of this data. For instance, x1 ^ ¬x2 ^ x5 (“or” is not allowed). In
formal terms, we often call the true underlying classification function
the concept. So this is saying that the concept you are trying to learn
is a conjunction. In this case, the boolean function would assign a
negative label to the example above.

Since you know that the concept you are trying to learn is a con-
junction, it makes sense that you would represent your function as
a conjunction as well. For historical reasons, the function that you
learn is often called a hypothesis and is often denoted h. However,
in keeping with the other notation in this book, we will continue to
denote it f .

Formally, the set up is as follows. There is some distribution DX

over binary data points (vectors) x = hx1, x2, . . . , xDi. There is a fixed



PAC Learning
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over binary data points (vectors) x = hx1, x2, . . . , xDi. There is a fixed

In other words, to let your algorithm to achieve  
4% error rather than 5%, the runtime required  
to do so should not go up by an exponential factor!

• Two notions of efficiency

− Computational complexity: Prefer an algorithm that runs quickly 

to one that takes forever 

− Sample complexity: The number of examples required for your 

algorithm to achieve its goals 



Example: PAC Learning of Conjunctions

• Data points are binary vectors, for instance x = ⟨0, 1, 1, 0, 1⟩ 

• Some Boolean conjunction defines the true labeling of this data  

(e.g. x1 ⋀ x2 ⋀ x5)

• There is some distribution DX over binary data points (vectors)  
x = ⟨x1, x2, . . . , xD⟩. 


• There is a fixed concept conjunction c that we are trying to learn. 

• There is no noise, so for any example x, its true label is simply  

y = c(x)

• Example: 
− Clearly, the true formula cannot  

include the terms x1 , x2, ¬x3, ¬x4  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concept conjunction c that we are trying to learn. There is no noise,
so for any example x, its true label is simply y = c(x).

y x1 x2 x3 x4

+1 0 0 1 1
+1 0 1 1 1
-1 1 1 0 1

Table 10.1: Data set for learning con-
junctions.

What is a reasonable algorithm in this case? Suppose that you
observe the example in Table 10.1. From the first example, we know
that the true formula cannot include the term x1. If it did, this exam-
ple would have to be negative, which it is not. By the same reason-
ing, it cannot include x2. By analogous reasoning, it also can neither
include the term ¬x3 nor the term ¬x4.

This suggests the algorithm in Algorithm 10.4, colloquially the
“Throw Out Bad Terms” algorithm. In this algorith, you begin with a
function that includes all possible 2D terms. Note that this function
will initially classify everything as negative. You then process each
example in sequence. On a negative example, you do nothing. On
a positive example, you throw out terms from f that contradict the
given positive example. Verify that Algorithm 10.4 main-

tains an invariant that it always errs
on the side of classifying examples
negative and never errs the other
way.

?
If you run this algorithm on the data in Table 10.1, the sequence of

f s that you cycle through are:

f 0(x) = x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ x3 ^ ¬x3 ^ x4 ^ ¬x4 (10.3)

f 1(x) = ¬x1 ^ ¬x2 ^ x3 ^ x4 (10.4)

f 2(x) = ¬x1 ^ x3 ^ x4 (10.5)

f 3(x) = ¬x1 ^ x3 ^ x4 (10.6)

The first thing to notice about this algorithm is that after processing
an example, it is guaranteed to classify that example correctly. This
observation requires that there is no noise in the data.

The second thing to notice is that it’s very computationally ef-
ficient. Given a data set of N examples in D dimensions, it takes
O(ND) time to process the data. This is linear in the size of the data
set.

However, in order to be an efficient (e, d)-PAC learning algorithm,
you need to be able to get a bound on the sample complexity of this
algorithm. Sure, you know that its run time is linear in the number
of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most e (in all but d-
many cases)? Perhaps N has to be gigantic (like 22D/e ) to (probably)
guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
been thrown out, but wasn’t. Then you say: well, bad things happen.
Then you notice that if this bad thing happened, you must not have



Example: PAC Learning 
of Conjunctions

f 0(x) = x1 ⋀ ¬x1 ⋀ x2 ⋀ ¬x2 ⋀ x3 ⋀ ¬x3 ⋀ x4 ⋀ ¬x4

f 1(x) = ¬x1 ⋀ ¬x2 ⋀ x3 ⋀ x4

f 
2(x) = ¬x1 ⋀ x3 ⋀ x4 

f 
3(x) = ¬x1 ⋀ x3 ⋀ x4

• After processing an example, it is guaranteed to classify that 
example correctly (provided that there is no noise)


• Computationally very efficient 
− Given a data set of N examples in D dimensions, it takes O (ND) 

time to process the data. This is linear in the size of the data set. 20
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Algorithm 30 BinaryConjunctionTrain(D)
1: f  x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ · · · ^ xD ^ ¬xD // initialize function
2: for all positive examples (x,+1) in D do
3: for d = 1 . . . D do
4: if xd = 0 then
5: f  f without term “xd”
6: else
7: f  f without term “¬xd”
8: end if
9: end for

10: end for
11: return f

seen any positive training examples with x8 = 0. So example with
x8 = 0 must have low probability (otherwise you would have seen
them). So bad things must not be that common.

Theorem 13. With probability at least (1� d): Algorithm 10.4 requires at
most N = . . . examples to achieve an error rate  e.

Proof of Theorem 13. Let c be the concept you are trying to learn and
let D be the distribution that generates the data.

A learned function f can make a mistake if it contains any term t
that is not in c. There are initially 2D many terms in f , and any (or
all!) of them might not be in c. We want to ensure that the probability
that f makes an error is at most e. It is sufficient to ensure that

For a term t (e.g., ¬x5), we say that t “negates” an example x if
t(x) = 0. Call a term t “bad” if (a) it does not appear in c and (b) has
probability at least e/2D of appearing (with respect to the unknown
distribution D over data points).

First, we show that if we have no bad terms left in f , then f has an
error rate at most e.

We know that f contains at most 2D terms, since is begins with 2D
terms and throws them out.

The algorithm begins with 2D terms (one for each variable and
one for each negated variable). Note that f will only make one type
of error: it can call positive examples negative, but can never call a
negative example positive. Let c be the true concept (true boolean
formula) and call a term “bad” if it does not appear in c. A specific
bad term (e.g., ¬x5) will cause f to err only on positive examples
that contain a corresponding bad value (e.g., x5 = 1). TODO... finish
this

What we’ve shown in this theorem is that: if the true underly-
ing concept is a boolean conjunction, and there is no noise, then the
“Throw Out Bad Terms” algorithm needs N  . . . examples in order
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The second thing to notice is that it’s very computationally ef-
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O(ND) time to process the data. This is linear in the size of the data
set.

However, in order to be an efficient (e, d)-PAC learning algorithm,
you need to be able to get a bound on the sample complexity of this
algorithm. Sure, you know that its run time is linear in the number
of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most e (in all but d-
many cases)? Perhaps N has to be gigantic (like 22D/e ) to (probably)
guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
been thrown out, but wasn’t. Then you say: well, bad things happen.
Then you notice that if this bad thing happened, you must not have

“Throw Out Bad Terms”



• Is this an efficient (ε, δ)-PAC learning algorithm?


• What about sample complexity?

− How many examples N do you need to see in order to 

guarantee that it achieves an error rate of at most ε  
(in all but δ- many cases)? 


− Perhaps N has to be gigantic (like         ) to (probably) guarantee 
a small error. 
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Algorithm 30 BinaryConjunctionTrain(D)
1: f  x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ · · · ^ xD ^ ¬xD // initialize function
2: for all positive examples (x,+1) in D do
3: for d = 1 . . . D do
4: if xd = 0 then
5: f  f without term “xd”
6: else
7: f  f without term “¬xd”
8: end if
9: end for

10: end for
11: return f

seen any positive training examples with x8 = 0. So example with
x8 = 0 must have low probability (otherwise you would have seen
them). So bad things must not be that common.

Theorem 13. With probability at least (1� d): Algorithm 10.4 requires at
most N = . . . examples to achieve an error rate  e.

Proof of Theorem 13. Let c be the concept you are trying to learn and
let D be the distribution that generates the data.

A learned function f can make a mistake if it contains any term t
that is not in c. There are initially 2D many terms in f , and any (or
all!) of them might not be in c. We want to ensure that the probability
that f makes an error is at most e. It is sufficient to ensure that

For a term t (e.g., ¬x5), we say that t “negates” an example x if
t(x) = 0. Call a term t “bad” if (a) it does not appear in c and (b) has
probability at least e/2D of appearing (with respect to the unknown
distribution D over data points).

First, we show that if we have no bad terms left in f , then f has an
error rate at most e.

We know that f contains at most 2D terms, since is begins with 2D
terms and throws them out.

The algorithm begins with 2D terms (one for each variable and
one for each negated variable). Note that f will only make one type
of error: it can call positive examples negative, but can never call a
negative example positive. Let c be the true concept (true boolean
formula) and call a term “bad” if it does not appear in c. A specific
bad term (e.g., ¬x5) will cause f to err only on positive examples
that contain a corresponding bad value (e.g., x5 = 1). TODO... finish
this

What we’ve shown in this theorem is that: if the true underly-
ing concept is a boolean conjunction, and there is no noise, then the
“Throw Out Bad Terms” algorithm needs N  . . . examples in order

Example: PAC Learning 
of Conjunctions
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concept conjunction c that we are trying to learn. There is no noise,
so for any example x, its true label is simply y = c(x).

y x1 x2 x3 x4

+1 0 0 1 1
+1 0 1 1 1
-1 1 1 0 1

Table 10.1: Data set for learning con-
junctions.

What is a reasonable algorithm in this case? Suppose that you
observe the example in Table 10.1. From the first example, we know
that the true formula cannot include the term x1. If it did, this exam-
ple would have to be negative, which it is not. By the same reason-
ing, it cannot include x2. By analogous reasoning, it also can neither
include the term ¬x3 nor the term ¬x4.

This suggests the algorithm in Algorithm 10.4, colloquially the
“Throw Out Bad Terms” algorithm. In this algorith, you begin with a
function that includes all possible 2D terms. Note that this function
will initially classify everything as negative. You then process each
example in sequence. On a negative example, you do nothing. On
a positive example, you throw out terms from f that contradict the
given positive example. Verify that Algorithm 10.4 main-

tains an invariant that it always errs
on the side of classifying examples
negative and never errs the other
way.

?
If you run this algorithm on the data in Table 10.1, the sequence of

f s that you cycle through are:

f 0(x) = x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ x3 ^ ¬x3 ^ x4 ^ ¬x4 (10.3)

f 1(x) = ¬x1 ^ ¬x2 ^ x3 ^ x4 (10.4)

f 2(x) = ¬x1 ^ x3 ^ x4 (10.5)

f 3(x) = ¬x1 ^ x3 ^ x4 (10.6)

The first thing to notice about this algorithm is that after processing
an example, it is guaranteed to classify that example correctly. This
observation requires that there is no noise in the data.

The second thing to notice is that it’s very computationally ef-
ficient. Given a data set of N examples in D dimensions, it takes
O(ND) time to process the data. This is linear in the size of the data
set.

However, in order to be an efficient (e, d)-PAC learning algorithm,
you need to be able to get a bound on the sample complexity of this
algorithm. Sure, you know that its run time is linear in the number
of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most e (in all but d-
many cases)? Perhaps N has to be gigantic (like 22D/e ) to (probably)
guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
been thrown out, but wasn’t. Then you say: well, bad things happen.
Then you notice that if this bad thing happened, you must not have
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of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most e (in all but d-
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guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
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“Throw Out Bad Terms”



• Prove that the number of samples N required to (probably) 
achieve a small error is not-too-big. 


• Sketch of the proof: 

− Say there is some term (say ¬x8) that should have been thrown 

out, but wasn’t. 

− If this was the case, then you must not have seen any positive 

training examples with x8 = 0. 

− So example with x8 = 0 must have low probability (otherwise you 

would have seen them). So such a thing is not that common 
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Algorithm 30 BinaryConjunctionTrain(D)
1: f  x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ · · · ^ xD ^ ¬xD // initialize function
2: for all positive examples (x,+1) in D do
3: for d = 1 . . . D do
4: if xd = 0 then
5: f  f without term “xd”
6: else
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8: end if
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seen any positive training examples with x8 = 0. So example with
x8 = 0 must have low probability (otherwise you would have seen
them). So bad things must not be that common.

Theorem 13. With probability at least (1� d): Algorithm 10.4 requires at
most N = . . . examples to achieve an error rate  e.

Proof of Theorem 13. Let c be the concept you are trying to learn and
let D be the distribution that generates the data.

A learned function f can make a mistake if it contains any term t
that is not in c. There are initially 2D many terms in f , and any (or
all!) of them might not be in c. We want to ensure that the probability
that f makes an error is at most e. It is sufficient to ensure that

For a term t (e.g., ¬x5), we say that t “negates” an example x if
t(x) = 0. Call a term t “bad” if (a) it does not appear in c and (b) has
probability at least e/2D of appearing (with respect to the unknown
distribution D over data points).

First, we show that if we have no bad terms left in f , then f has an
error rate at most e.

We know that f contains at most 2D terms, since is begins with 2D
terms and throws them out.

The algorithm begins with 2D terms (one for each variable and
one for each negated variable). Note that f will only make one type
of error: it can call positive examples negative, but can never call a
negative example positive. Let c be the true concept (true boolean
formula) and call a term “bad” if it does not appear in c. A specific
bad term (e.g., ¬x5) will cause f to err only on positive examples
that contain a corresponding bad value (e.g., x5 = 1). TODO... finish
this

What we’ve shown in this theorem is that: if the true underly-
ing concept is a boolean conjunction, and there is no noise, then the
“Throw Out Bad Terms” algorithm needs N  . . . examples in order
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so for any example x, its true label is simply y = c(x).

y x1 x2 x3 x4
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-1 1 1 0 1

Table 10.1: Data set for learning con-
junctions.

What is a reasonable algorithm in this case? Suppose that you
observe the example in Table 10.1. From the first example, we know
that the true formula cannot include the term x1. If it did, this exam-
ple would have to be negative, which it is not. By the same reason-
ing, it cannot include x2. By analogous reasoning, it also can neither
include the term ¬x3 nor the term ¬x4.

This suggests the algorithm in Algorithm 10.4, colloquially the
“Throw Out Bad Terms” algorithm. In this algorith, you begin with a
function that includes all possible 2D terms. Note that this function
will initially classify everything as negative. You then process each
example in sequence. On a negative example, you do nothing. On
a positive example, you throw out terms from f that contradict the
given positive example. Verify that Algorithm 10.4 main-

tains an invariant that it always errs
on the side of classifying examples
negative and never errs the other
way.
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If you run this algorithm on the data in Table 10.1, the sequence of

f s that you cycle through are:

f 0(x) = x1 ^ ¬x1 ^ x2 ^ ¬x2 ^ x3 ^ ¬x3 ^ x4 ^ ¬x4 (10.3)

f 1(x) = ¬x1 ^ ¬x2 ^ x3 ^ x4 (10.4)

f 2(x) = ¬x1 ^ x3 ^ x4 (10.5)

f 3(x) = ¬x1 ^ x3 ^ x4 (10.6)

The first thing to notice about this algorithm is that after processing
an example, it is guaranteed to classify that example correctly. This
observation requires that there is no noise in the data.

The second thing to notice is that it’s very computationally ef-
ficient. Given a data set of N examples in D dimensions, it takes
O(ND) time to process the data. This is linear in the size of the data
set.

However, in order to be an efficient (e, d)-PAC learning algorithm,
you need to be able to get a bound on the sample complexity of this
algorithm. Sure, you know that its run time is linear in the number
of example N. But how many examples N do you need to see in order
to guarantee that it achieves an error rate of at most e (in all but d-
many cases)? Perhaps N has to be gigantic (like 22D/e ) to (probably)
guarantee a small error.

The goal is to prove that the number of samples N required to
(probably) achieve a small error is not-too-big. The general proof
technique for this has essentially the same flavor as almost every PAC
learning proof around. First, you define a “bad thing.” In this case,
a “bad thing” is that there is some term (say ¬x8) that should have
been thrown out, but wasn’t. Then you say: well, bad things happen.
Then you notice that if this bad thing happened, you must not have
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Vapnik-Chervonenkis  
(VC) Dimension

• A classic measure of complexity of infinite hypothesis classes 
based on this intuition. 


• The VC dimension is a very classification-oriented notion of 
complexity 

− The idea is to look at a finite set of unlabeled examples 

− no matter how these points were labeled, would we be able to 

find a hypothesis that correctly classifies them 


• The idea is that as you add more points, being able to 
represent an arbitrary labeling becomes harder and harder. 
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their “size” or “complexity.” A prototypical way of doing this is to
measure the complexity of a hypothesis class as the number of different
things it can do.

As a silly example, consider boolean conjunctions again. Your
input is a vector of binary features. However, instead of representing
your hypothesis as a boolean conjunction, you choose to represent
it as a conjunction of inequalities. That is, instead of writing x1 ^
¬x2 ^ x5, you write [x1 > 0.2] ^ [x2 < 0.77] ^ [x5 < p/4]. In this
representation, for each feature, you need to choose an inequality
(< or >) and a threshold. Since the thresholds can be arbitrary real
values, there are now infinitely many possibilities: |H| = 2D⇥• = •.
However, you can immediately recognize that on binary features,
there really is no difference between [x2 < 0.77] and [x2 < 0.12] and
any other number of infinitely many possibilities. In other words,
even though there are infinitely many hypotheses, there are only finitely
many behaviors.

Figure 10.2: thy:vcex: figure with three
and four examples

The Vapnik-Chernovenkis dimension (or VC dimension) is a
classic measure of complexity of infinite hypothesis classes based on
this intuition3. The VC dimension is a very classification-oriented no-

3 Yes, this is the same Vapnik who
is credited with the creation of the
support vector machine.

tion of complexity. The idea is to look at a finite set of unlabeled ex-
amples, such as those in Figure 10.2. The question is: no matter how
these points were labeled, would we be able to find a hypothesis that
correctly classifies them. The idea is that as you add more points,
being able to represent an arbitrary labeling becomes harder and
harder. For instance, regardless of how the three points are labeled,
you can find a linear classifier that agrees with that classification.
However, for the four points, there exists a labeling for which you
cannot find a perfect classifier. The VC dimension is the maximum
number of points for which you can always find such a classifier. What is that labeling? What is it’s

name??You can think of VC dimension as a game between you and an
adversary. To play this game, you choose K unlabeled points however
you want. Then your adversary looks at those K points and assigns
binary labels to them them however he wants. You must then find a
hypothesis (classifier) that agrees with his labeling. You win if you
can find such a hypothesis; he wins if you cannot. The VC dimension
of your hypothesis class is the maximum number of points K so that
you can always win this game. This leads to the following formal
definition, where you can interpret there exists as your move and for
all as adversary’s move.

Definitions 2. For data drawn from some space X , the VC dimension of
a hypothesis space H over X is the maximal K such that: there exists a set
X ✓ X of size |X| = K, such that for all binary labelings of X, there exists
a function f 2 H that matches this labeling.



How many points can a linear 
boundary classify exactly? (1-D) 
• 2 points: 


Yes!


• 3 points: 

No!
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etc (8 total)
VC-dimension = 2



How many points can a linear 
boundary classify exactly? (2-D) 
• 3 points: 


Yes! 
 
 

• 4 points: 

No!
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Basic Probability 
Review

26



Probability
• A is non-deterministic event 

–  Can think of A as a boolean-valued 
variable


• Examples 
–  A = your next patient has cancer 
–  A = Novak Djokovic wins French Open 
2022
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Parameter estimation: 
MLE, MAP

Estimating Probabilities

12

Our first machine learning problem: 

Interpreting Probabilities
                            If I flip this coin, the probability that it will come up      

                           heads is 0.5  
• Frequentist Interpretation: If we flip this coin many times, it will 

come up heads about half the time. Probabilities are the expected 
frequencies of events over repeated trials.  

• Bayesian Interpretation: I believe that my next toss of this coin 
is equally likely to come up heads or tails. Probabilities quantify 
subjective beliefs about single events.  

• Viewpoints play complementary roles in machine learning: 
- Bayesian view used to build models based on domain  

knowledge, and automatically derive learning algorithms

- Frequentist view used to analyze worst case behavior of  

learning algorithms, in limit of large datasets 

• From either view, basic mathematics is the same!
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The Axioms Of Probability
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Axioms of Probability
• 0<= P(A) <= 1

• P(empty-set) = 0

• P(everything) = 1

• P(A or B) = P(A) + P(B) – P(A and B)
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Interpreting the Axioms

31-
6

Visualizing A

Event space of 
all possible 
worlds

Its area is 1
Worlds in which A is False

Worlds in which 
A is true

P(A) = Area of
reddish oval

• 0<= P(A) <= 1

• P(empty-set) = 0

• P(everything) = 1

• P(A or B) = P(A) + P(B) – P(A and B)
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Interpreting the Axioms
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The Axioms Of Probability
� 0 <= P(A) <= 1
� P(True) = 1
� P(False) = 0
� P(A or B) = P(A) + P(B) - P(A and B)

The area of A can�t get 
any smaller than 0

And a zero area would 
mean no world could 
ever have A true 

• 0<= P(A) <= 1

• P(empty-set) = 0

• P(everything) = 1

• P(A or B) = P(A) + P(B) – P(A and B)
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Interpreting the Axioms
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Interpreting the axioms
� 0 <= P(A) <= 1
� P(True) = 1
� P(False) = 0
� P(A or B) = P(A) + P(B) - P(A and B)

The area of A can�t get 
any bigger than 1

And an area of 1 would 
mean all worlds will have 
A true 

• 0<= P(A) <= 1

• P(empty-set) = 0

• P(everything) = 1

• P(A or B) = P(A) + P(B) – P(A and B)
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Interpreting the Axioms
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A

B

Interpreting the axioms
� 0 <= P(A) <= 1
� P(True) = 1
� P(False) = 0
� P(A or B) = P(A) + P(B) - P(A and B)

P(A or B)

BP(A and B)

Simple addition and subtraction

• 0<= P(A) <= 1

• P(empty-set) = 0

• P(everything) = 1

• P(A or B) = P(A) + P(B) – P(A and B)
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Discrete Random Variables
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Discrete Random Variables 
X
X

p(X = x)
p(x)

0  p(x)  1 for all x 2 X
X

x2X
p(x) = 1

discrete random variable 
sample space of possible outcomes, 
which may be finite or countably infinite 

x 2 X outcome of sample of discrete random variable 
probability distribution (probability mass function) 

shorthand used when no ambiguity 

uniform distribution degenerate distribution 

X = {1, 2, 3, 4}
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Discrete Random Variables
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Discrete Random Variables 
X
X

p(X = x)
p(x)

0  p(x)  1 for all x 2 X
X

x2X
p(x) = 1

discrete random variable 
sample space of possible outcomes, 
which may be finite or countably infinite 

x 2 X outcome of sample of discrete random variable 
probability distribution (probability mass function) 

shorthand used when no ambiguity 

uniform distribution degenerate distribution 

X = {1, 2, 3, 4}
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Joint Distribution
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Marginalization
• Marginalization


− Events: P(A) = P(A and B) + P(A and not B)


− Random variables

38

P(X = x) = P(X = x,Y = y)
y
∑
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Marginal Distributions
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Marginal Distributions 

p(x, y) =
X

z2Z
p(x, y, z) p(x) =

X

y2Y
p(x, y)

y

z 
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Conditional Probabilities
• P(Y=y | X=x)


• What do you believe about Y=y, if I tell you X=x?


• P(Max Verstappen winning the 2023 Monaco 
Grand Prix)?


• What if I tell you:

− He has won the Formula One World Champion title for 

2021 and 2022.

− He has won the Monaco Grand Prix 1/7 he has raced 

there.
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Conditional Probabilities
• P(A | B) = In worlds that where B is true,  

                fraction where A is true


• Example

− H: “Have a headache”

− F: “Coming down with Flu”

4114

Conditional Probability
�P(A|B) = Fraction of worlds in which B is true 

that also have A true

F

H

H = �Have a headache�
F = �Coming down with Flu�

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

�Headaches are rare and flu 
is rarer, but if you�re coming 
down with �flu there�s a 50-
50 chance you�ll have a 
headache.�

14

Conditional Probability
�P(A|B) = Fraction of worlds in which B is true 

that also have A true

F

H

H = �Have a headache�
F = �Coming down with Flu�

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

�Headaches are rare and flu 
is rarer, but if you�re coming 
down with �flu there�s a 50-
50 chance you�ll have a 
headache.�
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Conditional Distributions
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Independent Random Variables

43

Independent Random Variables 

p(x, y) = p(x)p(y)

X ? Y

for all x 2 X , y 2 Y

Equivalent conditions on conditional probabilities: 
p(x | Y = y) = p(x) and p(y) > 0 for all y 2 Y
p(y | X = x) = p(y) and p(x) > 0 for all x 2 X
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Bayes Rule (Bayes Theorem)

• A basic identity from the definition of conditional probability

• Used in ways that have no thing to do with Bayesian statistics! 

• Typical application to learning and data analysis:

44

Bayes Rule (Bayes Theorem) 
p(x, y) = p(x)p(y | x) = p(y)p(x | y)

•  A basic identity from the definition of conditional probability 
•  Used in ways that have nothing to do with Bayesian statistics! 
•  Typical application to learning and data analysis: 

p(y | x) = p(x, y)

p(x)
=

p(x | y)p(y)P
y02Y p(y0)p(x | y0)

/ p(x | y)p(y)

posterior distribution (learned information) p(y | x)

unknown parameters we would like to infer 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) p(x | y)

Y
X = x

p(y)

Bayes Rule (Bayes Theorem) 
p(x, y) = p(x)p(y | x) = p(y)p(x | y)

•  A basic identity from the definition of conditional probability 
•  Used in ways that have nothing to do with Bayesian statistics! 
•  Typical application to learning and data analysis: 

p(y | x) = p(x, y)

p(x)
=

p(x | y)p(y)P
y02Y p(y0)p(x | y0)

/ p(x | y)p(y)

posterior distribution (learned information) p(y | x)

unknown parameters we would like to infer 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) p(x | y)

Y
X = x

p(y)slide by Erik Suddherth



Binary Random Variables
• Bernoulli Distribution: Single toss of a (possibly biased) 

coin 
 
 
 

 

• Binomial Distribution: Toss a single (possibly biased) 
coin n times, and report the number k of times it comes 
up heads

45

Binary Random Variables 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

Ber(x | ✓) = ✓�(x,1)(1� ✓)�(x,0)

X = {0, 1}
0  ✓  1

Binomial Distribution:  Toss a single (possibly biased) coin 
n times, and record the number k of times it comes up heads 

0  ✓  1
K = {0, 1, 2, . . . , n}

Bin(k | n, ✓) =
✓

n
k

◆
✓k(1� ✓)n�k

✓
n
k

◆
=

n!

(n� k)!k!
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Binomial Distributions
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Binomial Distributions 
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Bean Machine (Sir Francis Galton)

47

http://en.wikipedia.org/wiki/
Bean_machine

http://en.wikipedia.org/wiki/Bean_machine
http://en.wikipedia.org/wiki/Bean_machine


Categorical Random Variables
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Categorical Random Variables 
Multinoulli Distribution:  Single roll of a (possibly biased) die 

X = {0, 1}K ,
KX

k=1

xk = 1

✓ = (✓1, ✓2, . . . , ✓K), ✓k � 0,
KX

k=1

✓k = 1

binary vector 
encoding 

Cat(x | ✓) =
KY

k=1

✓xk
k

Multinomial Distribution:  Roll a single (possibly biased) die 
n times, and record the number nk of each possible outcome 

nk =
nX

i=1

xikMu(x | n, ✓) =
✓

n
n1 . . . nK

◆ KY

k=1

✓nk
k
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• Multinoulli Distribution: Single roll of a (possibly biased) die 
 
 
 

 
 
 
 

• Multinomial Distribution: Roll a single (possibly biased) die  
n times, and report the number nk of each possible 
outcome



Aligned DNA Sequences
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Aligned DNA Sequences 
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Multinomial Model of DNA
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Multinomial Model of DNA 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
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Sequence Position
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Next Lecture: 
Maximum Likelihood Estimation 

(MLE)
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