AlN311

Fundamentals of

 Machine Eearning Lecture 7: Probability Review (cont’d.)Maximum Likelihood Estimation (MLE)

Administrative

- Project proposal due November 7
- A half page description
- problem to be investigated,
- why it is interesting,
- what data you will use,
- related work.

Today

- Probabilities
- Dependence, Independence, Conditional Independence
- Parameter estimation
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori (MAP)

Today

- Probabilities
- Dependence, Independence, Conditional Independence
- Parameter estimation
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori (MAP)

Last time... Sample space

Def: A sample space Ω is the set of all

 possible outcomes of a (conceptual or physical) random experiment. (Ω can be finite or infinite.)
Examples:

- Ω may be the set of all possible outcomes of a dice roll (1,2,3,4,5,6)
- Pages of a book opened randomly. (1-157)
- Real numbers for temperature, location, time, etc

Last time... Events

We will ask the question: What is the probability of a particular event?

Def: Event A is a subset of the sample space Ω

Examples:

What is the probability of

- the book is open at an odd number
- rolling a dice the number <4
- a random person's height $\mathrm{X}: \mathrm{a}<\mathrm{X}<\mathrm{b}$

Last time... Probability

Def: Probability $P(A)$, the probability that event (subset) A happens, is a function that maps the event A onto the interval $[0,1] . P(A)$ is also called the probability measure of A.

Example:

What is the probability that the number on the dice is 2 or $4 ?$
$P(A)$ is the volume of the area.

Last time... Kolmogorov Axioms

(i) Nonnegativity: $P(A) \geq 0$ for each A event.
(ii) $P(\Omega)=1$.
(iii) σ-additivity: For disjoint sets (events) A_{i}, we have

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Consequences:

$$
\begin{aligned}
& P(\emptyset)=0 . \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) . \\
& P\left(A^{c}\right)=1-P(A) .
\end{aligned}
$$

Last time... Venn Diagram

Last time... Random Variables

Def: Real valued random variable is a function of the outcome of a randomized experiment

$$
X: \Omega \rightarrow \mathbb{R}
$$

$$
\begin{gathered}
P(a<X<b) \doteq P(\omega: a<X(\omega)<b) \\
P(X=a) \doteq P(\omega: X(\omega)=a)
\end{gathered}
$$

Examples:

D iscrete random variable examples (Ω is discrete):

- X(ω) = True if a randomly drawn person (ω) from our class (Ω) is female
- $X(\omega)=$ The hometown $X(\omega)$ of a randomly drawn person (ω) from our class (Ω)

Last time... Discrete Distributions

- Bernoulli distribution: Ber(p)
$\Omega=\{$ head, tail $\} X($ head $)=1, X($ tail $)=0$.

Last time... Discrete Distributions

- Bernoulli distribution: Ber(p)
$\Omega=\{$ head, tail $\} X($ head $)=1, X($ tail $)=0$.

$$
P(X=a)=P(\omega: X(\omega)=a)= \begin{cases}p, & \text { for } a=1 \\ 1-p, & \text { for } a=0\end{cases}
$$

Last time... Discrete Distributions

- Bernoulli distribution: $\operatorname{Ber}(\mathrm{p})$

$$
\Omega=\{\text { head, tail }\} X(\text { head })=1, X(\text { tail })=0
$$

$$
P(X=a)=P(\omega: X(\omega)=a)= \begin{cases}p, & \text { for } a=1 \\ 1-p, & \text { for } a=0\end{cases}
$$

- Binomial distribution: Bin(n,p)

Suppose a coin with head prob. p is tossed n times. What is the probability of getting k heads and $n-k$ tails?
$\Omega=\{$ possible n long head/tail series $\},|\Omega|=2^{n}$ $K(\omega)=$ number of heads in $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left\{\right.$ head, tail $^{n}=\Omega$

Last time... Discrete Distributions

- Bernoulli distribution: $\operatorname{Ber}(\mathrm{p})$

$$
\Omega=\{\text { head, tail }\} X(\text { head })=1, X(\text { tail })=0
$$

$$
P(X=a)=P(\omega: X(\omega)=a)= \begin{cases}p, & \text { for } a=1 \\ 1-p, & \text { for } a=0\end{cases}
$$

- Binomial distribution: $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$

Suppose a coin with head prob. p is tossed n times. What is the probability of getting k heads and $n-k$ tails?
$\Omega=\{$ possible n long head/tail series $\},|\Omega|=2^{n}$ $K(\omega)=$ number of heads in $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in\{\text { head, tail }\}^{n}=\Omega$

$$
P(K=k)=P(\omega: K(\omega)=k)=\sum_{\omega: K(\omega)=k} p^{k}(1-p)^{n-k}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Last time... Conditional Probability

$\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=$ Fraction of worlds in which X event is true given Y event is true.

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

Last time... Conditional Probability

$P(X \mid Y)=$ Fraction of worlds in which X event is true given Y event is true.

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

$P(\mathrm{flu} \mid$ headache $)=\frac{P(\mathrm{flu}, \text { headache })}{P(\text { headache })}=\frac{1 / 80}{1 / 80+7 / 80}$
Flu No Flu
Headache

No Headache

$1 / 80$	$7 / 80$
$1 / 80$	$71 / 80$

Independence

Independent random variables:

$$
\begin{aligned}
P(X, Y) & =P(X) P(Y) \\
P(X \mid Y) & =P(X)
\end{aligned}
$$

Y and X don't contain information about each other. Observing Y doesn't help predicting X. Observing X doesn't help predicting Y.

Examples:

Independent: Winning on roulette this week and next week.
Dependent: Russian roulette

Dependent / Independent

Independent X, Y

Dependent X, Y

Conditionally Independent

Conditionally independent:

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Knowing Z makes X and Y independent

Examples:

Dependent: shoe size of children and reading skills
Conditionally independent: shoe size of children and reading skills given age

Stork deliver babies:

Highly statistically significant correlation exists between stork populations and human birth rates across Europe.

Correlation \neq Causation

Number people who drowned by falling into a swimming-pool correlates with
Number of films Nicolas Cage appeared in
140 drownings

Correlation: 0.666004

Conditionally Independent

- London taxi drivers: A survey has pointed out a positive and significant correlation between the number of accidents and wearing coats. They concluded that coats could hinder movements of drivers and be the cause of accidents. A new law was prepared to prohibit drivers from wearing coats when driving.

Finally, another study pointed out that people wear coats when it rains...

Conditional Independence

Formally: X is conditionally independent of Y given Z

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

$P($ Accidents, Coats \mid Rain $)=P($ Accidents \mid Rain $) P($ Coats \mid Rain $)$

Conditional Independence

Formally: X is conditionally independent of Y given Z

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

$P($ Accidents, Coats \mid Rain $)=P($ Accidents \mid Rain $) P($ Coats \mid Rain $)$
Equivalent to:

$$
(\forall x, y, z) P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)
$$

Conditional Independence

Formally: X is conditionally independent of Y given Z

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

$P($ Accidents, Coats \mid Rain $)=P($ Accidents \mid Rain $) P($ Coats \mid Rain $)$
Equivalent to:

$$
(\forall x, y, z) P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)
$$

$P($ Thunder \mid Rain, Lightning $)=P($ Thunder \mid Lightning $)$

Note: does NOT mean Thunder is independent of Rain But given Lightning knowing Rain doesn't give more info about Thunder

Parameter estimation: MLE, MAP

Flipping a Coin

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Flipping a Coin

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:

Flipping a Coin

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:

Flipping a Coin

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:

The estimated probability is: $3 / 5$ "Frequency of heads"

Flipping a Coin

The estimated probability is: $3 / 5$ "Frequency of heads"

Questions:

(1) Why frequency of heads???
(2) How good is this estimation???
(3) Why is this a machine learning problem???

We are going to answer these questions

Question (1)

Why frequency of heads???

- Frequency of heads is exactly the maximum likelihood estimator for this problem
- MLE has nice properties (interpretation, statistical guarantees, simple)

Maximum Likelihood Estimation

MLE for Bernoulli distribution

Data, $D=$

$$
D=\left\{X_{i}\right\}_{i=1}^{n}, X_{i} \in\{\mathrm{H}, \mathrm{~T}\}
$$

$P($ Heads $)=\theta, \quad P($ Tails $)=1-\theta$

MLE for Bernoulli distribution

Data, $D=$

$$
D=\left\{X_{i}\right\}_{i=1}^{n}, X_{i} \in\{\mathrm{H}, \mathrm{~T}\}
$$

$$
P(\text { Heads })=\theta, P(\text { Tails })=1-\theta
$$

Flips are i.i.d.:

MLE for Bernoulli distribution

Data, $D=$

$$
D=\left\{X_{i}\right\}_{i=1}^{n}, X_{i} \in\{\mathrm{H}, \mathrm{~T}\}
$$

$$
P(\text { Heads })=\theta, P(\text { Tails })=1-\theta
$$

Flips are i.i.d.:

- Independent events
- Identically distributed according to Bernoulli distribution

MLE for Bernoulli distribution

Data, $D=$

$$
D=\left\{X_{i}\right\}_{i=1}^{n}, X_{i} \in\{\mathrm{H}, \mathrm{~T}\}
$$

$$
P(\text { Heads })=\theta, P(\text { Tails })=1-\theta
$$

Flips are i.i.d.:

- Independent events
- Identically distributed according to Bernoulli distribution

MLE: Choose θ that maximizes the probability of observed data

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\widehat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { independent draws }
\end{aligned}
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { independent draws } \\
& =\arg \max _{\theta} \prod_{i: X_{i}=H} \theta \prod_{i: X_{i}=T}(1-\theta) \quad \begin{array}{l}
\text { identically } \\
\text { distributed }
\end{array}
\end{aligned}
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { independent draws } \\
& =\arg \max _{\theta} \prod_{i: X_{i}=H} \theta \prod_{i: X_{i}=T}(1-\theta) \quad \begin{array}{l}
\text { identically } \\
\text { distributed }
\end{array} \\
& =\arg \max _{\theta} \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { independent draws } \\
& =\arg \max _{\theta} \prod_{i: X_{i}=H} \theta \prod_{i: X_{i}=T}(1-\theta) \quad \begin{array}{l}
\text { identically } \\
\text { distributed }
\end{array} \\
& =\arg \max _{\theta} \underbrace{\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}}_{J(\theta)}
\end{aligned}
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \underbrace{\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}}_{J(\theta)}
\end{aligned}
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \underbrace{\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}}_{J(\theta)}
\end{aligned}
$$

$$
\frac{\partial J(\theta)}{\partial \theta}=\alpha_{H} \theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}}-\left.\alpha_{T} \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}-1}\right|_{\theta=\hat{\theta}_{\mathrm{MLE}}}=0
$$

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \underbrace{\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}}_{J(\theta)}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial J(\theta)}{\partial \theta}=\alpha_{H} \theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}}-\left.\alpha_{T} \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}-1}\right|_{\theta=\hat{\theta}_{\mathrm{MLE}}}=0 \\
\alpha_{H}(1-\theta)-\left.\alpha_{T} \theta\right|_{\theta=\widehat{\theta}_{M L E}}=0
\end{gathered}
$$

Question (2)

- How good is this MLE estimation???

$$
\widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

How many flips do I need?

I flipped the coins 5 times: 3 heads, 2 tails

$$
\widehat{\theta}_{M L E}=\frac{3}{5}
$$

What if I flipped 30 heads and 20 tails?

$$
\widehat{\theta}_{M L E}=\frac{30}{50}
$$

- Which estimator should we trust more?

- The more the merrier???

Simple Bound

Let θ^{*} be the true parameter.
For $n=\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{T}}$, and $\widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$
For any $\varepsilon>0$:

Hoeffding's inequality:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}
$$

Probably Approximate Correct (PAC) Learning

I want to know the coin parameter θ, within $\varepsilon=0.1$ error with probability at least $1-\delta=0.95$.

How many flips do I need?

$$
P\left(\left|\widehat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}
$$

Sample complexity:

$$
n \geq \frac{\ln (2 / \delta)}{2 \epsilon^{2}}
$$

Question (3)

Why is this a machine learning problem???

- improve their performance (accuracy of the predicted prob.)
- at some task (predicting the probability of heads)
- with experience (the more coins we flip the better we are)

What about continuous features?

Let us try Gaussians...

$$
p(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)=\mathcal{N}_{x}(\mu, \sigma)
$$

MLE for Gaussian mean and variance

Choose $\theta=\left(\mu, \sigma^{2}\right)$ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { Independent draws } \\
& =\arg \max _{\theta} \prod_{i=1}^{n} \frac{1}{2 \sigma^{2}} e^{-\left(X_{i}-\mu\right)^{2} / 2 \sigma^{2}} \quad \begin{array}{l}
\text { Identically } \\
\text { distributed }
\end{array} \\
& =\arg \max _{\theta=\left(\mu, \sigma^{2}\right)} \underbrace{\frac{1}{2 \sigma^{2}} e^{-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / 2 \sigma^{2}}}_{J(\theta)}
\end{aligned}
$$

MLE for Gaussian mean and variance

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

Note: MLE for the variance of a Gaussian is biased
[Expected result of estimation is not the true parameter!]
Unbiased variance estimator: $\widehat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}$

