AN31

 Fundamentigl seof Machine Eearring It is quite possible ecture 8 : Maximum a Posteriori (MAP) Naïve Bayes Classifier
Recap: MLE

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$
\hat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

Recap: MLE for Bernoulli distribution

Data, $D=$

$$
D=\left\{X_{i}\right\}_{i=1}^{n}, X_{i} \in\{\mathrm{H}, \mathrm{~T}\}
$$

$$
P(\text { Heads })=\theta, P(\text { Tails })=1-\theta
$$

Flips are i.i.d.:

- Independent events
- Identically distributed according to Bernoulli distribution

MLE: Choose θ that maximizes the probability of observed data

Recap: How many flips do I need?

I flipped the coins 5 times: 3 heads, 2 tails

$$
\widehat{\theta}_{M L E}=\frac{3}{5}
$$

What if I flipped 30 heads and 20 tails?

$$
\widehat{\theta}_{M L E}=\frac{30}{50}
$$

- Which estimator should we trust more?

- The more the merrier???

Recap: Simple Bound

Let θ^{*} be the true parameter.
For $n=\alpha_{H}+\mathrm{a}_{\mathrm{T}}$, and $\widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$
For any $\varepsilon>0$:
Hoeffding's inequality:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 n \epsilon^{2}}
$$

Recap: MLE for Gaussian mean and variance

Choose $\theta=\left(\mu, \sigma^{2}\right)$ that maximizes the probability of observed data

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \quad \text { Independent draws } \\
& =\arg \max _{\theta} \prod_{i=1}^{n} \frac{1}{2 \sigma^{2}} e^{-\left(X_{i}-\mu\right)^{2} / 2 \sigma^{2}} \quad \begin{array}{l}
\text { Identically } \\
\text { distributed }
\end{array} \\
& =\arg \max _{\theta=\left(\mu, \sigma^{2}\right)} \underbrace{\frac{1}{2 \sigma^{2}} e^{-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} / 2 \sigma^{2}}}_{J(\theta)}
\end{aligned}
$$

Recap: MLE for Gaussian mean and variance

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

Note: MLE for the variance of a Gaussian is biased
[Expected result of estimation is not the true parameter!]
Unbiased variance estimator: $\widehat{\sigma}_{u n b i a s e d}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}$

Today

- Maximum a Posteriori (MAP)
- Bayes rule
- Naïve Bayes Classifier
- Application
- Text classification
- "Mind reading" = fMRI data processing

What about prior knowledge? (MAP Estimation)

What about prior knowledge?

 We know the coin is "close" to 50-50. What can we do now?The Bayesian way...

What about prior knowledge?

 We know the coin is "close" to 50-50. What can we do now?
The Bayesian way...

Rather than estimating a single θ, we obtain a distribution over possible values of θ

Prior distribution

- What prior? What distribution do we want for a prior?
- Represents expert knowledge (philosophical approach)
- Simple posterior form (engineer's approach)
- Uninformative priors: ©
- Uniform distribution
- Conjugate priors:
- Closed-form representation of posterior
- $P(\theta)$ and $P(\theta \mid D)$ have the same form

In order to proceed we will need:

Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

Chain Rule \& Bayes Rule

Chain rule:

$$
P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)
$$

Bayes rule:

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Bayes rule is important for reverse conditioning.

Bayesian Learning

Use Bayes rule:
 $P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

MLE vs. MAP

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$
\widehat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

MLE vs. MAP

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$
\widehat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

- Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and prior belief $\hat{\theta}_{M A P}=\arg \max _{\theta} P(\theta \mid D)$

$$
=\arg \max _{\theta} P(D \mid \theta) P(\theta)
$$

When is MAP same as MLE?

MAP estimation for Binomial distribution

Coin flip problem

 Beta function: $\quad B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$Likelihood is Binomial $\quad P(\mathcal{D} \mid \theta)=\binom{n}{\alpha_{H}} \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$
If the prior is Beta distribution,

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

\Rightarrow posterior is Beta distribution

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

$P(\theta)$ and $P(\theta \mid D)$ have the same form! [Conjugate prior]

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} P(\theta \mid D)=\arg \max _{\theta} P(D \mid \theta) P(\theta)=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2}
$$

Beta distribution

More concentrated as values of α, β increase

Beta conjugate prior

$$
P(\theta) \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

As $n=a_{H}+a_{T}$ increases

As we get more samples, effect of prior is "washed out"

Han Solo and Bayesian Priors

C3PO: Sir, the possibility of successfully navigating an asteroid field is approximately 3,720 to 1 !

Han: Never tell me the odds!

$P(\theta \mid D) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$ Beta(2,7440$)$

Belief that Han will Succeed
Beta(20000,1)

Posterior Probability of Success

From Binomial to Multinomial

Example: Dice roll problem (6 outcomes instead of 2)
Likelihood is $\sim \operatorname{Multinomial}\left(\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right\}\right)$

$$
P(\mathcal{D} \mid \theta)=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{k}^{\alpha_{k}}
$$

If prior is Dirichlet distribution,

$$
P(\theta)=\frac{\prod_{i=1}^{k} \theta_{i}^{\beta_{i}-1}}{B\left(\beta_{1}, \ldots, \beta_{k}\right)} \sim \operatorname{Dirichlet}\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

$\frac{2}{2}$ Then posterior is Dirichlet distribution

$$
P(\theta \mid D) \sim \operatorname{Dirichlet}\left(\beta_{1}+\alpha_{1}, \ldots, \beta_{k}+\alpha_{k}\right)
$$

For Multinomial, conjugate prior is Dirichlet distribution. http://en.wikipedia.org/wiki/Dirichlet distribution

Bayesians vs. Frequentists

You are no good when sample is small

Application of Bayes Rule

AIDS test (Bayes rule)

Data

- Approximately 0.1\% are infected
- Test detects all infections
- Test reports positive for 1% healthy people

Probability of having AIDS if test is positive

$$
P(a=1 \mid t=1)=\frac{P(t=1 \mid a=1) P(a=1)}{P(t=1)}
$$

$$
=\frac{P(t=1 \mid a=1) P(a=1)}{P(t=1 \mid a=1) P(a=1)+P(t=1 \mid a=0) P(a=0)}
$$

$$
=\frac{1 \cdot 0.001}{1 \cdot 0.001+0.01 \cdot 0.999}=0.091
$$

Improving the diagnosis

Use a weaker follow-up test!

- Approximately 0.1\% are infected
- Test 2 reports positive for 90% infections
- Test 2 reports positive for 5% healthy people

$$
\begin{aligned}
P\left(a=0 \mid t_{1}=1, t_{2}=1\right) & =\frac{P\left(t_{1}=1, t_{2}=1 \mid a=0\right) P(a=0)}{P\left(t_{1}=1, t_{2}=1 \mid a=1\right) P(a=1)+P\left(t_{1}=1, t_{2}=1 \mid a=0\right) P(a=0)} \\
& =\frac{0.01 \cdot 0.05 \cdot 0.999}{1 \cdot 0.9 \cdot 0.001+0.01 \cdot 0.05 \cdot 0.999}=0.357
\end{aligned}
$$

$$
P\left(a=1 \mid t_{1}=1, t_{2}=1\right)=0.643
$$

AIDS test (Bayes rule)

Why can't we use Test 1 twice?

- Outcomes are not independent,
- but tests 1 and 2 conditionally independent (by assumption):

$$
p\left(t_{1}, t_{2} \mid a\right)=p\left(t_{1} \mid a\right) \cdot p\left(t_{2} \mid a\right)
$$

The Naïve Bayes Classifier

Data for

 spam filteringDelivered-To: $\frac{\text { alex.smola@gmail.com }}{\text { Received: by }} 10.216 .47 .73$ with SMTP id s51cs361171web;
Tue, 3 Jan 2012 14:17:53-0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Return-Path: alex+caf_=alex.smola=gmail.com@smola.org
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51 (version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of alex+caf_=alex.smola=gmail.com@smola.org) client-
ip=209.85.215.175;
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither permitted nor denied by best guess record for domain of
alex+caf_=alex.smola=gmail.com@smola.org)
smtp.mail=alex+caf_=alex.smola=gmail.com@smola.org; dkim=pass (test mode)
header.i=@googlemail.com
Received: by eaal1 with SMTP id 11so15092746eaa. 6
for alex.smola@gmail.com; Tue, 03 Jan 2012 14:17:51-0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362; Tue, 03 Jan 2012 14:17:51-0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204 .65 .198 with SMTP id k6cs206093bki;
Tue, 3 Jan 2012 14:17:50-0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Return-Path: althoff.tim@googlemail.com
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
(version=TLSv1/SSLv3 cipher=OTHER);
Tue, 03 Jan 2012 14:17:48-0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates 209.85.220.179 as permitted sender) client-ip=209.85.220.179;

Received: by vcbf13 with SMTP id f13so11295098vcb. 10
for alex@smola.org; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=googlemail.com; s=gamma;
h=mime-version:sender:date:x-google-sender-auth:message-id:subject
:from:to:content-type;
bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=;
b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60
7ngGoTzYqd+ZsyJfvQcLAWp1PCJhG8AMcnqWkx0NMeoFvIp2HQooZwxS0Cx5ZRgY+7qX
uIbbdna4lUDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
Tue, 03 Jan 2012 14:17:47-0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47-0800 (PST) Date: Tue, 3 Jan 2012 14:17:47-0800
X-Google-Sender-Auth: 6bwi6D17HjZIkxOEol38NZzyeHs
Message-ID: CAFJJHDGPBW+SdZg0MdAABiAKydDk9tpeMoDijYGjoGO-WC7osg@mail.gmail.com Subject: CS 281B. Advanced Topics in Learning and Decision Making

Naïve Bayes Assumption

Naïve Bayes assumption: Features X_{1} and X_{2} are conditionally independent given the class label Y :

$$
P\left(X_{1}, X_{2} \mid Y\right)=P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right)
$$

More generally: $\quad P\left(X_{1} \ldots X_{d} \mid Y\right)=\prod_{i=1}^{d} P\left(X_{i} \mid Y\right)$

Naïve Bayes Assumption, Example

Task: Predict whether or not a picnic spot is enjoyable
Training Data: $\quad X=\left(\begin{array}{llllll}X_{1} & X_{2} & X_{3} & \ldots & \ldots & X_{d}\end{array}\right) \quad Y$

n rows	Sky	Temp	Humid	Wind	Water	st	Enjo
	Sunny	Warm	Norm	Strong	Warm	Same	Yes
	Sunny	Wa	High	Strong	Warm	Same	Yes
	Rainy	Cold	High	Strong	War	Change	No
	Sun		Hig				

Naïve Bayes Assumption, Example

Task: Predict whether or not a picnic spot is enjoyable
Training Data: $\quad X=\left(\begin{array}{llllll}X_{1} & X_{2} & X_{3} & \ldots & \ldots & X_{d}\end{array}\right) \quad Y$

n rows	Sky	Temp	Humid	Wind	Water	recst	EnjoySpt
	Sunny	Warm	Normal	Strong	Wa	Same	Yes
	Sunny	Warm	High	Strong	Warm	Same	Yes
	ainy	Cold	High	Strong	War	Ch	No
	Sun	Warm	High	Stron	Cod	Chan	Yes

Naïve Bayes assumption: $\quad P\left(X_{1} \ldots X_{d} \mid Y\right)=\prod_{i=1}^{d} P\left(X_{i} \mid Y\right)$

Naïve Bayes Assumption, Example

Task: Predict whether or not a picnic spot is enjoyable
Training Data: $\quad X=\left(\begin{array}{llllll}X_{1} & X_{2} & X_{3} & \ldots & \ldots & X_{d}\end{array}\right) \quad Y$

n rows \uparrow| Sky | Temp | Humid | Wind | Water | Forecst |
| :--- | :--- | :--- | :--- | :---: | :---: |
| EnjoySpt | | | | | |
| Sunny | Warm | Normal | Strong Warm | Same | Yes |
| Sunny | Warm | High | Strong Warm | Same | Yes |
| Rainy | Cold | High | Strong Warm | Change | No |
| Sunny | Warm | High | Strong | Cool | Change |

Naïve Bayes assumption: $\quad P\left(X_{1} \ldots X_{d} \mid Y\right)=\prod_{i=1}^{d} P\left(X_{i} \mid Y\right)$
How many parameters to estimate?
(X is composed of d binary features, Y has K possible class labels)

Naïve Bayes Assumption, Example

Task: Predict whether or not a picnic spot is enjoyable
Training Data: $\quad X=\left(\begin{array}{llllll}X_{1} & X_{2} & X_{3} & \ldots & \ldots & X_{d}\end{array}\right) \quad Y$

n rows \uparrow| Sky | Temp | Humid | Wind | Water | Forecst |
| :--- | :--- | :--- | :--- | :---: | :---: |
| EnjoySpt | | | | | |
| Sunny | Warm | Normal | Strong Warm | Same | Yes |
| Sunny | Warm | High | Strong Warm | Same | Yes |
| Rainy | Cold | High | Strong Warm | Change | No |
| Sunny | Warm | High | Strong | Cool | Change |

Naïve Bayes assumption: $\quad P\left(X_{1} \ldots X_{d} \mid Y\right)=\prod_{i=1}^{d} P\left(X_{i} \mid Y\right)$
How many parameters to estimate?
(X is composed of d binary features, Y has K possible class labels)

$$
\left(2^{\mathrm{d}}-1\right) \mathrm{K} \text { vs }(2-1) \mathrm{dK}
$$

Naïve Bayes Classifier

Given:

- Class prior $P(Y)$
- d conditionally independent features $X_{1}, \ldots X_{d}$ given the class label Y
- For each X_{i} feature, we have the conditional likelihood $P\left(X_{i} \mid Y\right)$

Naïve Bayes Decision rule:

$$
\begin{aligned}
f_{N B}(\mathrm{x}) & =\arg \max _{y} P\left(x_{1}, \ldots, x_{d} \mid y\right) P(y) \\
& =\arg \max _{y} \prod_{i=1}^{d} P\left(x_{i} \mid y\right) P(y)
\end{aligned}
$$

Naïve Bayes Algorithm for discrete features

Training data: $\left\{\left(X^{(j)}, Y^{(j)}\right)\right\}_{j=1}^{n}$

$$
X^{(j)}=\left(X_{1}^{(j)}, \ldots, X_{d}^{(j)}\right)
$$

n d-dimensional discrete features +K class labels

$$
f_{N B}(\mathrm{x})=\arg \max _{y} \prod_{i=1}^{d} P\left(x_{i} \mid \underline{y}\right) P(\underset{\sim}{y}) \quad \text { We need to estimate these probabilities! }
$$

Estimate them with MLE (Relative Frequencies)!

Naïve Bayes Algorithm for discrete features

$f_{N B}(\mathrm{x})=\arg \max _{y} \prod_{i=1}^{d} P\left(x_{i} \mid y\right) P(y) \quad$ We need to estimate these probabilities!
Estimators
For Class Prior

For Likelihood

$$
\hat{P}(y)=\frac{\left\{\# j: Y^{(j)}=y\right\}}{n}
$$

$$
\frac{\widehat{P}\left(x_{i}, y\right)}{\hat{P}(y)}=\frac{\left\{\# j: X_{i}^{(j)}=x_{i}, Y^{(j)}=y\right\} / n}{\left\{\# j: Y^{(j)}=y\right\} / n}
$$

NB Prediction for test data:

$$
\begin{aligned}
X & =\left(x_{1}, \ldots, x_{d}\right) \\
Y & =\arg \max _{y} \widehat{P}(y) \prod_{i=1}^{d} \frac{\widehat{P}\left(x_{i}, y\right)}{\widehat{P}(y)}
\end{aligned}
$$

Subtlety: Insufficient training data

What if you never see a training instance where $X_{1}=a$ when $Y=b$?
For example,
there is no $X_{1}=$ 'Earn' when $Y=$ 'SpamEmail' in our dataset.

$$
\Rightarrow P\left(X_{1}=a, Y=b\right)=0 \Rightarrow P\left(X_{1}=a \mid Y=b\right)=0
$$

$$
\Rightarrow P\left(X_{1}=a, X_{2} \ldots X_{n} \mid Y\right)=P\left(X_{1}=a \mid Y\right) \prod_{i=2}^{d} P\left(X_{i} \mid Y\right)=0
$$

Thus, no matter what the values X_{2}, \ldots, X_{d} take:

$$
P\left(Y=b \mid X_{1}=a, X_{2}, \ldots, X_{d}\right)=0
$$

What now???

Naïve Bayes Alg - Discrete features

Training data: $\left\{\left(X^{(j)}, Y^{(j)}\right)\right\}_{j=1}^{n} \quad X^{(j)}=\left(X_{1}^{(j)}, \ldots, X_{d}^{(j)}\right)$
Use your expert knowledge \& apply prior distributions:

- Add m "virtual" examples
- Same as assuming conjugate priors

Assume priors: $Q(Y=b) \quad Q\left(X_{i}=a, Y=b\right)$ MAP Estimate:

$$
\widehat{P}\left(X_{i}=a \mid Y=b\right)=\frac{\left\{\# j: X_{i}^{(j)}=a, Y^{(j)}=b\right\}+m Q\left(X_{i}=a, Y=b\right)}{\left\{\# j: Y^{(j)}=b\right\}+m Q(Y=b)}
$$

Case Study: Text Classification

Positive or negative movie review?

- unbelievably disappointing
()
- Full of zany characters and richly applied satire, and some great plot twists
, this is the greatest screwball comedy ever filmed
\& It was pathetic. The worst part about it was the boxing scenes.

What is the subject of this article?

MEDLINE Article

MeSH Subject Category Hierarchy

- Antogonists and Inhibitors
- Blood Supply
- Chemistry
- Drug Therapy
- Embryology
- Epidemiology
- ...

Text Classification

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis

Text Classification: definition

- Input:
- a document d
- a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$
- Output: a predicted class $c \in C$

Hand-coded rules

- Rules based on combinations of words or other features
- spam: black-list-address OR ("dollars" AND"have been selected")
- Accuracy can be high
- If rules carefully refined by expert
- But building and maintaining these rules is expensive

Text Classification and Naive Bayes

- Classify emails
- Y = \{Spam, NotSpam $\}$
- Classify news articles
- $\mathrm{Y}=\{$ what is the topic of the article?\}

What are the features X ?
 The text!

Let X_{i} represent $\mathrm{ith}^{\text {th }}$ word in the document

X_{i} represents $i^{\text {th }}$ word in document

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard. ϵ
From: xxx@yyy.zzz.edu (John Doe)
Subject: Re: This year's biggest and worst (opinic Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of his own, but because some thugs in Toronto decided

NB for Text Classification

A problem: The support of $P(X \mid Y)$ is huge!

- Article at least 1000 words, $X=\left\{X_{1}, \ldots, X_{1000}\right\}$
$-X_{i}$ represents $i^{\text {th }}$ word in document, i.e., the domain of X_{i} is the entire vocabulary, e.g., Webster Dictionary (or more).
$X_{i} \in\{1, \ldots, 50000\} \Rightarrow K\left(1000^{50000}-1\right)$
parameters to estimate without the NB assumption....

$$
h_{M A P}(\mathrm{x})=\arg \max _{1 \leq k \leq K} P(Y=k) P\left(X_{1}=x_{1}, \ldots, X_{1000}=x_{1000} \mid Y=k\right)
$$

NB for Text Classification

$$
X_{i} \in\{1, \ldots, 50000\} \Rightarrow K\left(1000^{50000}-1\right) \text { parameters to estimate.... }
$$

NB assumption helps a lot!!!

If $P\left(X_{i}=x_{i} \mid Y=y\right)$ is the probability of observing word x_{i} at the $i^{t h}$ position in a document on topic y
$\Rightarrow 1000 \mathrm{~K}(50000-1)$ parameters to estimate with NB assumption

NB assumption helps, but still lots of parameters to estimate.

$$
h_{N B}(\mathbf{x})=\arg \max _{y} P(y) \prod_{i=1}^{\text {LengthDoc }} P\left(X_{i}=x_{i} \mid y\right)
$$

Bag of words model

Typical additional assumption: Position in document doesn't matter:

$$
P\left(X_{i}=x_{i} \mid Y=y\right)=P\left(X_{k}=x_{i} \mid Y=y\right)
$$

- "Bag of words" model - order of words on the page ignored The document is just a bag of words: i.i.d. words
- Sounds really silly, but often works very well!
$\Rightarrow \mathrm{K}(50000-1)$ parameters to estimate

The probability of a document with words $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$

> LengthDoc

$$
\prod_{i=1} P\left(x_{i} \mid y\right)=\prod_{w=1}^{W} P(w \mid y)^{\text {count }_{w}}
$$

The bag of words representation

> I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet.

The bag of words representation

```
I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun... It
manages to be whimsical and
romantic while laughing at the
conventions of the fairy tale
genre. I would recommend it to
just about anyone. I've seen it
several times, and I'm always
happy to see it again whenever
I have a friend who hasn't seen
it yet.
```


The bag of words representation: using a subset of words

```
x love xxxxxxxxxxxxxxxx sweet
xxxxxxx satirical xxxxxxxxxx
xxxxxxxxxxx great xxxxxxx
```



```
xxxxxxxxxxxxx whimsical xxxx
romantic xxxx laughing
```



```
xxxxxxxxxxxxx recommend xxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x several mxxmxxxxxxmxxxmxx
xxxxx happy xxxxxxxxx again
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
```


The bag of words representation

$$
\begin{aligned}
\hat{P}(c) & =\frac{N_{c}}{N} \\
\hat{P}(w \mid c) & =\frac{\operatorname{count}(w, c)+1}{\operatorname{count}(c)+|V|}
\end{aligned}
$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	c
	2	Chinese Chinese Shanghai	c
	3	Chinese Macao	c
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Chinese Tokyo Japan	$?$

$$
\begin{aligned}
\hat{P}(c) & =\frac{N_{c}}{N} \\
\hat{P}(w \mid c) & =\frac{\operatorname{count}(w, c)+1}{\operatorname{count}(c)+|V|}
\end{aligned}
$$

Training	1	Chinese Beijing Chinese	c
	2	Chinese Chinese Shanghai	c
	3	Chinese Macao	c
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Chinese Tokyo Japan	$?$

Priors:

$$
\begin{aligned}
& P(c)=\frac{3}{4} \\
& P(j)=\frac{1}{4}
\end{aligned}
$$

$$
\hat{P}(c)=\frac{N_{c}}{N}
$$

$$
\hat{P}(w \mid c)=\frac{\operatorname{count}(w, c)+1}{\operatorname{count}(c)+|V|}
$$

Training	1	Chinese Beijing Chinese	c
	2	Chinese Chinese Shanghai	c
	3	Chinese Macao	c
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Chinese Tokyo Japan	$?$

Priors:

$$
\begin{aligned}
& P(c)=\frac{3}{4} \\
& P(j)=\frac{1}{4}
\end{aligned}
$$

Conditional Probabilities:
$\mathrm{P}($ Chinesel $c)=(5+1) /(8+6)=6 / 14=3 / 7$
$\mathrm{P}($ Tokyol $c)=(0+1) /(8+6)=1 / 14$
$\mathrm{P}($ Japan $1 c)=(0+1) /(8+6)=1 / 14$
$\mathrm{P}($ Chinesel $j)=(1+1) /(3+6)=2 / 9$
$\mathrm{P}($ Tokyol $j)=(1+1) /(3+6)=2 / 9$
$P($ Japan $1 j)=(1+1) /(3+6)=2 / 9$

$$
\begin{aligned}
\hat{P}(c) & =\frac{N_{c}}{N} \\
\hat{P}(w \mid c) & =\frac{\operatorname{count}(w, c)+1}{\operatorname{count}(c)+|V|}
\end{aligned}
$$

Training	1	Chinese Beijing Chinese	c
	2	Chinese Chinese Shanghai	c
	3	Chinese Macao	c
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Chinese Tokyo Japan	$?$

Priors:

$$
\begin{aligned}
& P(c)=\frac{3}{4} \\
& P(j)=\frac{1}{4}
\end{aligned}
$$

Choosing a class:

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{cld}_{5}\right) \propto 3 / 4 *(3 / 7)^{3} * 1 / 14 * 1 / 14 \\
\approx 0.0003
\end{gathered}
$$

Conditional Probabilities:
$\mathrm{P}($ Chinese $c)=(5+1) /(8+6)=6 / 14=3 / 7$
$\mathrm{P}($ Tokyolc $)=(0+1) /(8+6)=1 / 14$
$P($ Japan $1 c)=(0+1) /(8+6)=1 / 14$

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{j} \mathrm{ld}_{5}\right) \propto 1 / 4 *(2 / 9)^{3} * 2 / 9 * 2 / 9 \\
\approx 0.0001
\end{gathered}
$$

$\mathrm{P}($ Chinese $j)=(1+1) /(3+6)=2 / 9$
$\mathrm{P}($ Tokyo $j)=(1+1) /(3+6)=2 / 9$
$P($ Japan $1 j)=(1+1) /(3+6)=2 / 9$

Twenty news groups results

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics
comp.os.ms-windows.misc
misc.forsale rec.autos comp.sys.ibm.pc.hardware rec.motorcycles comp.sys.mac.hardware rec.sport.baseball comp.windows.x rec.sport.hockey
alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
sci.space
sci.crypt
sci.electronics
talk.politics.misc
talk.politics.guns

Naïve Bayes: 89\% accuracy

What if features are continuous?

e.g., character recognition: X_{i} is intensity at i^{t} pixel

Gaussian Naïve Bayes (GNB):

$$
P\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sigma_{i k} \sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}}
$$

Different mean and variance for each class k and each pixel i.
Sometimes assume variance

- is independent of Y (i.e., σ_{i}),
- or independent of X_{i} (i.e., σ_{k})
- or both (i.e., σ)

Estimating parameters: Y discrete, X_{i} continuous

$$
\begin{aligned}
h_{N B}(\mathbf{x}) & =\arg \max _{y} P(y) \prod_{i} P\left(X_{i}=x_{i} \mid y\right) \\
& \approx \arg \max _{k} \hat{P}(Y=k) \prod_{i} \mathcal{N}\left(\hat{\mu}_{i k}, \widehat{\sigma}_{i k}\right) \quad \widehat{\mu}_{M L E}=\frac{1}{N} \sum_{j=1}^{N} x_{j}
\end{aligned}
$$

$$
\widehat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{N-1} \sum_{j=1}^{N}\left(x_{j}-\widehat{\mu}\right)^{2}
$$

Estimating parameters:
 Y discrete, X_{i} continuous

Maximum likelihood estimates:

$$
\hat{\mu}_{M L E}=\frac{1}{N} \sum_{j=1}^{N} x_{j}
$$

$$
\hat{\mu}_{i k}=\frac{1}{\sum_{j} \delta\left(Y^{j}=y_{k}\right)} \sum_{j} X_{i}^{j} \delta\left(Y^{j}=y_{\mathbf{i}^{\text {th }} \text { pixel in }}^{\left.y_{k}\right)} \text { (} \mathbf{k}^{\text {th }}\right. \text { class }
$$

$\mathrm{j}^{\text {th }}$ training image

$$
\hat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{N-1} \sum_{j=1}^{N}\left(x_{j}-\hat{\mu}\right)^{2}
$$

$$
\widehat{\sigma}_{i k}^{2}=\frac{1}{\sum_{j} \delta\left(Y^{j}=y_{k}\right)-1} \sum_{j}\left(X_{i}^{j}-\widehat{\mu}_{i k}\right)^{2} \delta\left(Y^{j}=y_{k}\right)
$$

Case Study: Classifying Mental States

Example: GNB for classifying mental states

$\sim 1 \mathrm{~mm}$ resolution
~2 images per sec.
15,000 voxels/image non-invasive, safe measures Blood Oxygen Level Dependent (BOLD) response

[Mitchell et al.]

Learned Naïve Bayes Models - Means for P(BrainActivity | WordCategory)

Pairwise classification accuracy:
78-99\%, 12 participants
Tool words
Building

What you should know...

Naïve Bayes classifier

- What's the assumption
- Why we use it
- How do we learn it
- Why is Bayesian (MAP) estimation important

Text classification

- Bag of words model

Gaussian NB

- Features are still conditionally independent
- Each feature has a Gaussian distribution given class

Next Class:

Logistic Regression, Discriminant vs. Generative Classification

