lllustration: Frank Rosenblatt's Perceptron
FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)
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Last time... Logistic Regression

Assumes the following functional form for P(Y|X):

1
exp(wo + >, w; X;)

P(Y =1|X) = 5

Logistic function applied to linear
function of the data

Logistic
function 1
(or Sigmoid): 1 + exp(—2)

logit (z)
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Last time.. Logistic Regression vs.
Gaussian Naive Bayes

- LR is a linear classifier
- decision rule is a hyperplane

- LR optimized by maximizing conditional likelihood
- no closed-form solution
- concave ! global optimum with gradient ascent

- Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

- Solution differs because of objective (loss) function

- In general, NB and LR make different assumptions
- NB: Features independent given class! assumption on P(X|Y)
- LR: Functional form of P(Y|X), no assumption on P(X]|Y)

- Convergence rates
- GNB (usually) needs less data
- LR (usually) gets to better solutions in the limit
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Linear Discriminant
Functions



Linear Discriminant Function

- Linear discriminant function for a vector x

y(x) = w' X + wg
where w Is called weight vector, and wy Is a bias.

- The classification function is
C(x) = sign(w'x + wo)

where step function sign(-) is defined as

. +1, a=0
sign(a) = —1, a<0
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Properties of Linear Discriminant
Functions

* The decision surface, shown in red,
IS perpendicular to w, and its

displacement from the origin is
controlled by the bias parameter wy.

* The signed orthogonal distance of
a general point x from the decision

surface is given by y(x)/llwll

. ° V(x)gives a signed measure of the
perpendicular distance r of the
point x from the decision surface

- y(x) =0 for x on the decision surface. The normal distance
from the origin to the decision surface is

- S0 wy determines the location of the decision surface.



Properties of Linear SN

Discriminant Functions . g
- Let X =X I’HWH S

—wg
[[w]l

where x, is the projection x on the decision surface. Then

r
Nl
w X 4+ wo=w x| +wy+ r||w|
y(x) = r|[w|

L
[w]]

- Simpler notion: define w = (wy,w) and x = (1,x) so that

y(x) = w'x

ni @D Ag eplis



Multiple Classes: Simple Extension

- One-versus-the-rest classifier: classify Cx and samples
not in Ck.
- One-versus-one classifier: classify every pair of classes.

ni7 80 Aq apls



Multiple Classes: K-Class Discriminant

+ A single K-class discriminant comprising K linear functions

T
yk(X) — WkX Wrk0o
- Decision function

C(x) =k, if ye(x) > y;(x) Vj # k

- The decision boundary between class Cx and C; is given
by yi(x) = yi(x)

(Wi — W) X + (w0 — wjo) = 0

ni @D Ag eplis



Property of the Decision Regions

The decision regions of the K-class discriminant y,(X) = W, X + wyg are singly
connected and convex.

ni @D Ag eplis
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Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant y,(X) = W, X + wyg are singly

connected and convex.

If two points x4 and xg both lie
INnside the same decision region
R, then any point x that lies on

the line connecting these two
points must also lie in R, and

hence the decision region must

be singly connected and
CONVEX.

11
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- The mean vectors of the two classes

Fisher’s Linear Discriminant

- Pursue the optimal linear projection on which the two classes

can be maximally separated | |

y = wlx A way to view a linear
classification model is in
terms of dimensionality

1 1 reduction.
m; — — X,, M= — X,
=N 2 2= 3 2

neC neC,
4t - 4
...:0.... -, . ... “’ .. ... i
2 ol :;.:'—I.E::E ’ ?’ At ...-|-.'
~ A
_ \\. , . . | _ \s
0 0 -
“a, \ ]
ol ‘
Dt 1 -2r
..~
. oS . . . .
- 2 6 -2 2 6

Difference of means Fisher’s Linear Discriminant 12
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What’s a Good Projection?

» After projection, the two classes are separated as much as

possible. Measured by the distance between projected center
2
(WT(m1 — mz)) =w/(m —my)(m; —my)'w
— w! Spw

where Sz = (m; — mx)(m; — m»)’ is called between-class covariance
matrix.

where w!Syw

Sw =) (% —my)(x, —m;)" + Y (x, — myp)(x, —my)”

neCy neC,
13



Fisher’s Linear Discriminant

Fisher criterion: maximize the ratio w.r.t. w

J(w) Between—-class variance w!Spw
W) = p—
Within-class wvariance w!Syww

Recall the quotient rule: for f(x) = %

1oy & (Wh(x) — g(x)h'(x)
f (X) o hz(x)

Setting vJ(w) = 0, we obtain

(W' Spw)Sww = (W Syyw)Spw

(W' Spw)Sww = (W' Syyw)(m, — m;) ((m2 — ml)TW)

Terms wi’Spw, w/Syw and (my—m;)’w are scalars, and we only care
about directions. So the scalars are dropped. Therefore

W X S‘;l(mz — ml)

ni @D Ag eplis
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From Fisher’s Linear Discriminant to
Classifiers

- Fisher’s Linear Discriminant is not a classifier; it only decides

on an optimal projection to convert high-dimensional
classification problem to 1D.

- A bias (threshold) is needed to form a linear classifier (multiple

thresholds lead to nonlinear classifiers). The final classifier has
the form

y(x) = sign(w'x 4 wo)
where the nonlinear activation function sign(-) is a step

function
sign(a) +1, a=0
a:
. —1, a<O

How to decide the bias wy?

15



Perceptron

16
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Biology and Learning

- Basic Ildea

- Good behavior should be rewarded, bad behavior
punished (or not rewarded). This improves system fithess.

- Killing a sabertooth tiger should be rewarded ...
- Correlated events should be combined.
- Pavlov’s salivating dog.

+ Training mechanisms

- Behavioral modification of individuals (learning)
Successful behavior is rewarded (e.g. food).

- Hard-coded behavior in the genes (instinct)
The wrongly coded animal does not reproduce.

18
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Nervous
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The oldest known drawing of the
nervous system by lbn al-Haytham
(published in 1083)
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Olfactory bulb, Camillo Golgi, 1875
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Santiago Ramon Y Cajal & The Neuron Doctrine

- Neuron as the discrete distinct entities in the brain
as opposed to a continuous network.

pyramidal neuron. Cajal, 1899 purkinje neuron. Cajal, 1899

lwaJeg pases Aq aplis

20



IwaJleg paseg Aq apl|s

Santiago Ramon Y Cajal & The Neuron Doctrine

Photo from the Nobel Foundation Photo from the Nobel Foundation

archive. archive.
Camillo Golgi Santiago Ramén y Caijal

Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Physiology or Medicine 1906
was awarded jointly to Camillo Golgi and Santiago
Ramon y Cajal "in recognition of their work on the

structure of the nervous system" o1



Network of Neurons
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Electricity in the brain
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Whole-cell recording in an awake Action potentials in a live monkey brain.
rat. Contantinople and Bruno, 2009 Saez and Salzman, 2009.

(Each row, 4 seconds.)
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Electricity in the brain

GPT-4: 106 neurons, 101
parameters (weights), 100 layers

human brain: 107 neurons, 1015 synapses

24
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+ Dendrite (input bus)

+ Synapse (interface)

Neurons

- Soma (CPU)

Cell body - combines signals ®

Nerve cell

\
)

Combines the inputs from Synapse
several other nerve cells

Dendrite

Interface and parameter store between neurons

- Axon (cable)

May be up to 1m long and will transport the activation
signal to neurons at different locations

25



Neurons

synaptic
weights

output

flx) = szﬂfz = (w, z)



Perceptron

. . xr T
- Weighted linear @
combination wy
+ Nonlinear |
. . : synaptic
decision function weights

- Linear offset (bias)

flz) = o ({w,z) +b)

- Linear separating hyperplanes

X3

* 0

output

(spam/ham, novel/typical, click/no click)

- Learning

Estimating the parameters w and b



Perceptron
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Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important
(and should be corrected)

30



Background: Hyperplanes

Hyperplane (Definition 1):
H={x:w'x=>b

Hyperplane (Definition 2):
H={x:0"x=0
and z! =1}

0=1[bw,... wyl"

Half-spaces:
HT = {x: 6'x > 0and z, = 1}

H™ ={x:0"x<0andz, =1}

31



(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xW1), W), (%2, @),

wherex € R andy € {+1, -1}

Prediction: Output determined by hyperplane.
y = he(x) = Sigﬂ(HTX) sign(a) = {1’ ifa >0

—1, otherwise
Assume 0 = [b,wy,...,wy]" andz, =1
Learning: Iterative procedure:
* initialize parameters to vector of all zeroes
* while not converged
* receive next example (x, y()
 predict y’ = h(x®)
* if positive mistake: add x(V) to parameters
* if negative mistake: subtract x() from parameters

reyp AusH B Asjwion ne Aq epis
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(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xW), WY, (x2), 42, ...
wherex ¢ R” andy € {+1, -1}

Prediction: Output determined by hyperplane.
§ = he(x) = sign(6" x) sign(a) = {1» fa20

—1, otherwise
Assume @ = [b,wy,...,wy]" andz, =1

Learning:
Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x'V,yV)), (x2),4(2)),...})

2 60 > Initialize parameters
3 forie {1,2,...}do > For each example
4: i + sign(6” xV)) > Predict
5 if  # y'*) then > If mistake
6 0 — 0 + yIx() > Update parameters
7 return 6

33
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(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (x), M), (x2) ¢y
wherex € RM andy € {+1, -1}

Prediction: Output determine Implementation Trick: same
§ = he(x) = sign(6' x) | behavior as our “add on
positive mistake and
subtract on negative
mistake’ version, because
y() takes care of the sign

Assume 0 = [b, w1, ..., W]

Learning:
Algorithm 1 Perceptron Learning Al

procedure PERCEPTRON(D = {(

1
2: 0«0 > Initialize parameters
3: forie {1,2,...}do > For each example
4: i + sign(6” x) @ > Predict
5:
6
7

if  # y'*) then > If mistake
0 — 6 + yx() > Update parameters
return 6

34
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(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

i: procedure PERCEPTRON(D = {(x(1), ¢y, ... (x) (N
2 60 > Initialize parameters
3 while not converged do

4 for: € {1,2,...,N} do > For each example
5: { < sign(@” x®) > Predict
6 if § # y(») then > If mistake
7 0 «— 0+ yWx() > Update parameters
8 return 0

35
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(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

36



The Perceptron

initialize w =0and b6 =0
repeat
if y; [(w,z;) + 0] <0 then
w +— w—+ y;x; and b <+ b+ y;
end if

until all classified correctly

» Nothing happens if classified correctly
. Weight vector is linear combination w = »

» Classifier is linear Combination of 1€l
inner products f(z) =) v (z;, @

=y

ejows xa|y Aq apl|s
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Convergence Theorem

- If there exists some (w*,b*) with unit length and
yi (i, w™) +b*] > p for all

then the perceptron converges to a linear

separator after a number of steps bounded by

(b*Q 4 1) (TQ 4+ ]_) p_2 where H.TzH <r

38
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Consequences

* Only need to store errors.
This gives a compression bound for perceptron.

« Stochastic gradient descent on hinge loss
[(x;, y;, w,b) = max (0,1 — y; [{w, x;) + b])
» Fails with noisy data

do NOT train your

avatar with perceptrons



Hardness: margin vs. size

40
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Concepts & version space

- Realizable concepts
- Some function exists that can separate data and is included in
the concept space
- For perceptron - data is linearly separable

- Unrealizable concept
- Data not separable
- We don’t have a suitable function class (often hard to distinguish)

ejows xa|y Aq apl|s
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Minimum error separation

+ XOR - not linearly separable
* Nonlinear separation is trivial
+ Caveat (Minsky & Papert)

Finding the minimum error linear separator
Is NP hard (this killed Neural Networks in the 70s).
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Nonlinear Features

+ Regression
We got nonlinear functions by preprocessing

+ Perceptron
- Map data into feature space = — ¢(x)
- Solve problem in this space
- Query replace (z,z") by (¢(z),¢(x')) for code

- Feature Perceptron
- Solution in span of ¢(x;)

55



Quadratic Features

X X X X X
X X X
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_+ Separating surfaces are
Circles, hyperbolae, parabolae
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Constructing Features
(very naive OCR system)
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More feature engineering

- Two Interlocking Spirals

Transform the data into a radial and angular part
(x1,22) = (rsin ¢, r cos @)

- Handwritten Japanese Character Recognition
- Break down the images into strokes and recognize it
- Lookup based on stroke order

- Medical Diagnosis
- Physician’s comments
- Blood status / ECG / height / weight / temperature ...
- Medical knowledge

ejows xa|y Aq apl|s
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The Perceptron on features

initialize w, b = 0
repeat
Pick (iliz', yz) from data
w' = w + y;P(x;)
b = b+,
until y;(w - ®(z;) +b) > 0 for all ¢

- Nothing happens if classified correctly

- Weight vector is linear combination w =" y;¢(x;)

- Classifier is linear combination of i€l
inner products f(z) =) v (¢(x:), ¢(x)) + b

=y
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Solving XOR

(CEl) L2, 5131332)

B XOR not linearly separable
: + Mapping into 3 dimensions makes it easily solvable
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Extensions of Perceptron

- Voted Perceptron
- generalizes better than (standard) perceptron

- memory intensive (keeps around every
weight vector seen during training, so each
one can vote)

- Averaged Perceptron

- empirically similar performance to voted
perceptron

- can be implemented in a memory efficient
way (running averages are efficient)
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Extensions of Perceptron

+ Kernel Perceptron
- Choose a kernel K(x’, x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple

- Structured Perceptron

- Basic idea can also be applied wheny
ranges over an exponentially large set

- Mistake bound does not depend on the size
of that set
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Summary: Perceptron

+ Perceptron is a linear classifier

- Simple learning algorithm: when a mistake is
made, add / subtract the features

- Perceptron will converge if the data are linearly
separable, it will not converge if the data are
linearly inseparable

+ For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

- Extensions support nonlinear separators and
structured prediction

oz



Next Lecture:
Multi-layer Perceptron



