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Support Vector Machines
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Fundamentals of   

Machine 
Learning
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Last time…
AlexNet [Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

Details/Retrospectives:  
- first use of ReLU

- used Norm layers (not common 
anymore)

- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 



Last time.. Understanding ConvNets
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slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

http://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf



Last time… Data Augmentation
Random mix/combinations of:

- translation

- rotation

- stretching

- shearing, 

- lens distortions, … 
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Last time… Transfer Learning with 
Convolutional Networks

slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson 

1. Train on 

Imagenet

2. Small dataset:

feature extractor 

Freeze 
these


Train 
this


3. Medium dataset:

finetuning 
more data = retrain more of 
the network (or all of it)

Freeze these


Train this


tip: use only ~1/10th of 
the original learning rate 
in finetuning top layer, 
and ~1/100th on 
intermediate layers
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Today
• Support Vector Machines 


- Large Margin Separation

- Optimization Problem

- Support Vectors
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Recap: Binary Classification 
Problem

• Training data: sample drawn i.i.d. from set 
according to some distribution D,


• Problem: find hypothesis                            in H 
(classifier) with small generalization error


• Linear classification:

- Hypotheses based on hyperplanes.

- Linear separation in high-dimensional space.
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Example: Spam
• Imagine 3 features (spam is “positive” class): 


1. free (number of occurrences of “free”)

2. money (occurrences of “money”)

3. BIAS (intercept, always has value 1) 
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slide by David Sontag



Binary Decision Rule 

•  In the space of feature vectors 
–  Examples are points 

–  Any weight vector is a hyperplane 

–  One side corresponds to Y=+1 

–  Other corresponds to Y=-1 
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Binary Decision Rule
• In the space of feature vectors


- Examples are points

- Any weight vector is a hyperplane

- One side corresponds to Y = +1 

- Other corresponds to Y = -1 
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The perceptron algorithm 
•  Start with weight vector =  
•  For each training instance (xi,yi*): 

–  Classify with current weights 

–  If correct (i.e., y=yi*), no change! 
–  If wrong: update 

= ln
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Properties of the perceptron 
algorithm

• Separability: some parameters 
get the training set perfectly  
correct 


• Convergence: if the training is  
linearly separable, perceptron 
will eventually converge 
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Problems with the perceptron 
algorithm

• Noise: if the data isn’t linearly 
separable, no guarantees of 
convergence or accuracy 


• Frequently the training data is linearly 
separable! Why? 


- When the number of features is much 
larger than the number of data points, 
there is lots of flexibility 


- As a result, Perceptron can significantly 
overfit the data 


• Averaged perceptron is an algorithmic 
modification that helps with both issues 

- Averages the weight vectors across all 

iterations 12
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Linear Separators
• Which of these linear separators is optimal?
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Support Vector Machines
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Linear Separator
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Spam
Ham

slide by Alex Sm
ola




Large Margin Classifier
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Spam
Ham

slide by Alex Sm
ola




Review: Normal to a plane
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Review: Normal to a plane 

w
.x

 +
 b

 =
 0

 
-- projection of xj onto 
    the plane 

-- unit vector parallel to w 

    is the length of the vector, i.e. 

w

kwk

x̄j

xj � x̄j = �
w

kwk

xj � x̄j =
�

kwkkwk = �

�

!!"unit"vector"normal"to"w"
"

Is"the"length"of"the"vector,"i.e."

!!"projec9on"of"xj"
onto"the"plane"
"

slide by David Sontag




Scale invariance
Any other ways of 
writing the same 
dividing line? 
 

• w.x+b=0 
• 2w.x+2b=0 
• 1000w.x + 1000b = 0 
• .... 
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Scale invariance
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During'learning,'we'set'the'
scale'by'asking'that,'for'all't,''

''for'yt = +1,'
and'for'yt = -1,''
'
That'is,'we'want'to'sa8sfy'all'of'
the'linear'constraints''
'

w · xt + b � 1

w · xt + b  �1

yt(w · xt + b) � 1 8t

slide by David Sontag




Large Margin Classifier
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hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear functionslide by Alex Sm
ola
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hw, xi+ b = �1 hw, xi+ b = 1

hx+ � x�, wi
2 kwk =

1

2 kwk [[hx+, wi+ b]� [hx�, wi+ b]] =
1

kwk

margin

w

Large Margin Classifier

slide by Alex Sm
ola




22

hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

maximize
w,b

1

kwk subject to yi [hxi, wi+ b] � 1

Large Margin Classifier

slide by Alex Sm
ola




hw, xi+ b = �1 hw, xi+ b = 1

w

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

optimization problem

Large Margin Classifier

slide by Alex Sm
ola




• Primal optimization problem


• Lagrange function


• First order optimality conditions in x


• Solve for x and plug it back into L  
 
(keep explicit constraints)

minimize
x

f(x) subject to ci(x)  0

L(x,↵) = f(x) +
X

i

↵ici(x)

@xL(x,↵) = @xf(x) +
X

i

↵i@xci(x) = 0

maximize
↵

L(x(↵),↵)

Convex Programs for Dummies

slide by Alex Sm
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• Primal optimization problem 
 

• Lagrange function 
 
 
Optimality in w, b is at saddle point with α


• Derivatives in w, b need to vanish

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

constraint

Dual Problem

slide by Alex Sm
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• Lagrange function


• Derivatives in w, b need to vanish 
 
 

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

@wL(w, b, a) = w �
X

i

↵iyixi = 0

@bL(w, b, a) =
X

i

↵iyi = 0

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i � 0

Dual Problem
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w

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i � 0

w =
X

i

yi↵ixi

Support Vector Machines
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w

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

w =
X

i

yi↵ixi

Karush Kuhn Tucker 
Optimality condition

↵i [yi [hw, xii+ b]� 1] = 0

↵i = 0

↵i > 0 =) yi [hw, xii+ b] = 1

Support Vectors
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w

w =
X

i

yi↵ixi

• Weight vector w as weighted linear combination of instances

• Only points on margin matter (ignore the rest and get same 

solution)

• Only inner products matter


− Quadratic program

− We can replace the inner product by a kernel


• Keeps instances away from the margin

Properties

slide by Alex Sm
ola




Example
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Example
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• Maximum 
robustness relative 
to uncertainty


• Symmetry 
breaking


• Independent of 
correctly classified 
instances


• Easy to find for 
easy problems

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

7.2 The Role of the Margin 201

∆x ∈ H is bounded in norm by some r > 0. Clearly, if we manage to separate the
training set with a margin ρ > r, we will correctly classify all test points: Since all
training points have a distance of at least ρ to the hyperplane, the test patterns
will still be on the correct side (Figure 7.3, cf. also [146]).

o

o

o

+

+

+

o

+

r

ρ

Figure 7.3 Two-dimensional toy example of a classification problem: Separate ‘o’ from
‘+’ using a hyperplane. Suppose that we add bounded noise to each pattern. If the optimal
margin hyperplane has margin ρ, and the noise is bounded by r < ρ, then the hyperplane
will correctly separate even the noisy patterns. Conversely, if we ran the perceptron
algorithm (which finds some separating hyperplane, but not necessarily the optimal one)
on the noisy data, then we would recover the optimal hyperplane in the limit r → ρ.

If we knew ρ beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than ρ, then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.1

1. Rosenblatt’s perceptron algorithm [423] is one of the simplest conceivable iterative
procedures for computing a separating hyperplane. In its simplest form, it proceeds as
follows. We start with an arbitrary weight vector w0. At step n ∈ N, we consider the
training example (xn, yn). If it is classified correctly using the current weight vector (i.e.,
if sgn 〈xn,wn−1〉 = yn), we set wn := wn−1; otherwise, we set wn := wn−1+ηyixi (here,
η > 0 is a learning rate). We thus loop over all patterns repeatedly, until we can complete
one full pass through the training set without a single error. The resulting weight vector
will thus classify all points correctly. Novikoff [369] proved that this procedure terminates,
provided that the training set is separable with a nonzero margin.

Why Large Margins?

slide by Alex Sm
ola




Watch: Patrick Winston, 
Support Vector Machines

33https://www.youtube.com/watch?v=_PwhiWxHK8o

https://www.youtube.com/watch?v=_PwhiWxHK8o


Next Lecture: 
Soft Margin Classification,


Multi-class SVMs
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