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Last time… Support Vector Machines

2

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear functionslide by Alex Sm
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hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

maximize
w,b

1

kwk subject to yi [hxi, wi+ b] � 1

slide by Alex Sm
ola


Last time… Support Vector Machines



hw, xi+ b = �1 hw, xi+ b = 1

w

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

optimization problem

slide by Alex Sm
ola


Last time… Support Vector Machines



w

minimize
w,b

1

2
kwk2 subject to yi [hxi, wi+ b] � 1

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i � 0

w =
X

i

yi↵ixi
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Last time… Support Vector Machines



Last time… Large Margin Classifier

6

hw, xi+ b = �1 hw, xi+ b = 1

w

support  
vectors

↵i = 0

↵i > 0 =) yi [hw, xii+ b] = 1



Today
• Soft margin classification

• Multi-class classification

• Introduction to kernels

7



Soft Margin  
Classification

8



hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function linear separator

is impossible

Large Margin Classifier
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hw, xi+ b  �1 hw, xi+ b � 1

Theorem (Minsky & Papert) 
Finding the minimum error separating hyperplane is NP hard

minimum error separator

is impossible

Large Margin Classifier
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hw, xi+ b  �1 + ⇠

Convex optimization problem
minimize amount


of slack

hw, xi+ b � 1� ⇠

Adding Slack Variables
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• Primal optimization problem


• Lagrange function


• First order optimality conditions in x


• Solve for x and plug it back into L  
 
(keep explicit constraints)

minimize
x

f(x) subject to ci(x)  0

L(x,↵) = f(x) +
X

i

↵ici(x)

@xL(x,↵) = @xf(x) +
X

i

↵i@xci(x) = 0

maximize
↵

L(x(↵),↵)

Convex Programs for Dummies
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• Hard margin problem


• With slack variables 
 
 
 
Problem is always feasible. Proof:              
                                (also yields upper bound)

minimize
w,b

1

2
kwk2 subject to yi [hw, xii+ b] � 1

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

w = 0 and b = 0 and ⇠i = 1

Adding Slack Variables
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• Primal optimization problem 
 

• Lagrange function 
 
 
Optimality in w,b,ξ is at saddle point with α,η


• Derivatives in w,b,ξ need to vanish

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

Dual Problem
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• Lagrange function


• Derivatives in w, b need to vanish 
 
 

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

@wL(w, b, ⇠,↵, ⌘) = w �
X

i

↵iyixi = 0

@bL(w, b, ⇠,↵, ⌘) =
X

i

↵iyi = 0

@⇠iL(w, b, ⇠,↵, ⌘) = C � ↵i � ⌘i = 0

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i 2 [0, C]

bound

influence

Dual Problem
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w

w =
X

i

yi↵ixi

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i 2 [0, C]

↵i = 0 =) yi [hw, xii+ b] � 1

0 < ↵i < C =) yi [hw, xii+ b] = 1

↵i = C =) yi [hw, xii+ b]  1

↵i [yi [hw, xii+ b] + ⇠i � 1] = 0

⌘i⇠i = 0

Karush Kuhn Tucker Conditions
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C=1
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C=2
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• Dual problem


• If problem is small enough (1000s of variables) 
we can use off-the-shelf solver (CVXOPT, 
CPLEX, OOQP, LOQO)


• For larger problem use fact that only SVs 
matter and solve in blocks (active set method).

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i 2 [0, C]

Solving the optimization problem
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Multi-class classification
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Multi-class classification
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What'about'mulJple'classes?'

19%

slide by Eric Xing



Multi-class classification
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How do we do multi-class classification? 

slide by Eric Xing



One versus all classification
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•  Learn&3&classifiers:&
–  &.&vs.&{o,+},&weights&w.&

– +&vs.&{o,.},&weights&w+&

– o&vs.&{+,.},&weights&wo&

•  Predict&label&using:&

One versus all classification 

Learn 3 classifiers: 
• - vs {o,+}, weights w- 
• + vs {o,-}, weights w+ 

• o vs {+,-}, weights wo 

Predict label using: 

w+ 

w- 

Any problems? 

Could we learn this dataset?  

wo 
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Multi-class SVM
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•  Simultaneously-learn-3-sets--
of-weights:--

•  How-do-we-guarantee-the--
correct-labels?--

•  Need-new-constraints!--

The-“score”-of-the-correct--
class-must-be-be?er-than-
the-“score”-of-wrong-classes:--

Multi-class SVM 

Simultaneously learn 3 sets 
of weights: 

• How do we guarantee the 
correct labels? 

• Need new constraints! 

w+ 

w- 

wo 

The “score” of the correct 
class must be better than the 
“score” of wrong classes: 

Multi-class SVM 

Simultaneously learn 3 sets 
of weights: 

• How do we guarantee the 
correct labels? 

• Need new constraints! 

w+ 

w- 

wo 

The “score” of the correct 
class must be better than the 
“score” of wrong classes: 
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Multi-class SVM
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•  As#for#the#SVM,#we#introduce#slack#variables#and#maximize#margin:##As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 
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As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 
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Kernels

52
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• Regression 
We got nonlinear functions by preprocessing


• Perceptron

• Map data into feature space

• Solve problem in this space

• Query replace         by                for code


• Feature Perceptron

• Solution in span of 

x ! �(x)

hx, x0i h�(x),�(x0)i

�(xi)

Non-linear features
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• Separating surfaces are 
Circles, hyperbolae, parabolae

Non-linear features
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Solving XOR

• XOR not linearly separable

• Mapping into 3 dimensions makes it easily solvable

55

(x1, x2) (x1, x2, x1x2)
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Quadratic Features
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Polynomial Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

Quadratic Features in R2

�(x) :=
⇣
x2

1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x0)i =

D⇣
x2

1,
p

2x1x2, x
2
2

⌘
,
⇣
x0

1
2,
p

2x0
1x

0
2, x

0
2
2
⌘E

= hx, x0i2.
Insight
Trick works for any polynomials of order d via hx, x0id.

Quadratic Features in

Dot Product

Trick works for any polynomials of order
Insight

via
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Linear Separation  
with Quadratic Kernels
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Computational Efficiency
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Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x0) = h�(x), �(x0)i for some feature map �.

If k(x, x0) is much cheaper to compute than �(x) . . .

Solu%on

Defini%on

5 · 105
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• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products 

Recap: The Perceptron

59

initialize w = 0 and b = 0
repeat

if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b
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Recap: The Perceptron on features

• Nothing happens if classified correctly

• Weight vector is linear combination

• Classifier is linear combination of 

inner products 
60

Perceptron on Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 37

argument: X := {x1, . . . , xm} ⇢ X (data)
Y := {y1, . . . , ym} ⇢ {±1} (labels)

function (w, b) = Perceptron(X, Y, ⌘)
initialize w, b = 0
repeat

Pick (xi, yi) from data
if yi(w · �(xi) + b)  0 then

w0 = w + yi�(xi)
b0 = b + yi

until yi(w · �(xi) + b) > 0 for all i
end

Important detail
w =

X

j

yj�(xj) and hence f (x) =
P

j yj(�(xj) · �(x)) + b
w =

X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b

slide by Alex Sm
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The Kernel Perceptron
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w =
X

i2I

yi�(xi)

Kernel Perceptron

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 42

argument: X := {x1, . . . , xm} ⇢ X (data)
Y := {y1, . . . , ym} ⇢ {±1} (labels)

function f = Perceptron(X, Y, ⌘)
initialize f = 0
repeat

Pick (xi, yi) from data
if yif (xi)  0 then

f (·) f (·) + yik(xi, ·) + yi

until yif (xi) > 0 for all i
end

Important detail
w =

X

j

yj�(xj) and hence f (x) =
P

j yjk(xj, x) + b.

f(x) =
X

i2I

yi h�(xi),�(x)i+ b =
X

i2I

yik(xi, x) + b

• Nothing happens if classified correctly

• Weight vector is linear combination


• Classifier is linear combination of inner products 
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Processing Pipeline

• Original data

• Data in feature space (implicit)

• Solve in feature space using kernels

62
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Polynomial Kernels
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Polynomial Kernels in Rn

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Idea
We want to extend k(x, x0) = hx, x0i2 to

k(x, x0) = (hx, x0i + c)d where c > 0 and d 2 N.

Prove that such a kernel corresponds to a dot product.
Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x0) = (hx, x0i + c)d =
mX

i=0

✓
d

i

◆
(hx, x0i)i cd�i

Individual terms (hx, x0i)i are dot products for some �i(x).
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Kernel Conditions
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Are all k(x, x0) good Kernels?

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43

Computability
We have to be able to compute k(x, x0) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x0) = k(x0, x) due to the symmetry of the
dot product h�(x), �(x0)i = h�(x0), �(x)i.

Dot Product in Feature Space
Is there always a � such that k really is a dot product?
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Mercer’s Theorem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44

The Theorem
For any symmetric function k : X ⇥ X ! R which is
square integrable in X⇥ X and which satisfies

Z

X⇥X

k(x, x0)f (x)f (x0)dxdx0 � 0 for all f 2 L2(X)

there exist �i : X ! R and numbers �i � 0 where
k(x, x0) =

X

i

�i�i(x)�i(x
0) for all x, x0 2 X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we haveX

i

X

j

k(xi, xj)↵i↵j � 0

Mercer’s Theorem

65

slide by Alex Sm
ola




Properties

66

Properties of the Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45

Distance in Feature Space
Distance between points in feature space via

d(x, x0)2 :=k�(x) � �(x0)k2

=h�(x), �(x)i � 2h�(x), �(x0)i + h�(x0), �(x0)i
=k(x, x) + k(x0, x0) � 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

Kij = h�(xi), �(xj)i = k(xi, xj)

where xi are the training patterns.
Similarity Measure
The entries Kij tell us the overlap between �(xi) and
�(xj), so k(xi, xj) is a similarity measure.
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Properties
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Properties of the Kernel Matrix

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

K is Positive Semidefinite
Claim: ↵>K↵ � 0 for all ↵ 2 Rm and all kernel matrices
K 2 Rm⇥m. Proof:
mX

i,j

↵i↵jKij =
mX

i,j

↵i↵jh�(xi), �(xj)i

=

*
mX

i

↵i�(xi),
mX

j

↵j�(xj)

+
=

�����

mX

i=1

↵i�(xi)

�����

2

Kernel Expansion
If w is given by a linear combination of �(xi) we get

hw, �(x)i =

*
mX

i=1

↵i�(xi), �(x)

+
=

mX

i=1

↵ik(xi, x).
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Examples
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Some Good Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 48

Examples of kernels k(x, x0)

Linear hx, x0i
Laplacian RBF exp (��kx � x0k)
Gaussian RBF exp

�
��kx � x0k2

�

Polynomial (hx, x0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x0)
Cond. Expectation Ec[p(x|c)p(x0|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.slide by Alex Sm

ola




Linear Kernel
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Linear Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 49
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Laplacian Kernel
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Laplacian Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 50
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Gaussian Kernel
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Gaussian Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 51

slide by Alex Sm
ola




Polynomial of order 3

72

Polynomial (Order 3)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 52
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B3 Spline Kernel
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B3-Spline Kernel

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 53
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Kernels in Computer Vision
• Features x = histogram (of color, texture, etc)


• Common Kernels

- Intersection Kernel

- Chi-square Kernel

74
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Image credit: Subhransu Maji



RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel Example 
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RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel Example 
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RBF Kernel Example 
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RBF Kernel: 



RBF Kernel Example 
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RBF Kernel Example 
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RBF Kernel: 

KNN vs. SVM



RBF Kernel Example 
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RBF Kernel: 

KNN vs. SVM



RBF Kernel Example 
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RBF Kernel: 

KNN vs. SVM



RBF Kernel Example 
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RBF Kernel: 

KNN vs. SVM



SVM + Kernels: Takeaways 
• Maximizing the margin of a linear separator is a good 

training criteria 

• Support Vector Machines (SVMs) learn a max-margin linear 
classifier 

• The SVM optimization problem can be solved with black-box 
Quadratic Programming (QP) solvers


• Learned decision boundary is defined by its support vectors 

• Kernel methods allow us to work in a transformed feature 
space without explicitly representing that space


• The kernel-trick can be applied to SVMs, as well as many 
other algorithms

92
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Next Lecture: 
Kernel Trick for SVMs,


Support Vector Regression
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