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Lecture 17:

Kernel Trick for SVMs


Risk and Loss

Support Vector Regression
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hw, xi+ b  �1 hw, xi+ b � 1

Theorem (Minsky & Papert) 
Finding the minimum error separating hyperplane is NP hard

minimum error separator

is impossible

Last time… Soft-margin Classifier
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hw, xi+ b  �1 + ⇠

Convex optimization problem
minimize amount


of slack

hw, xi+ b � 1� ⇠

Last time… Adding Slack Variables
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⇠i � 0



hw, xi+ b  �1 + ⇠

Convex optimization problem
minimize amount


of slack

hw, xi+ b � 1� ⇠

Last time… Adding Slack Variables
• for                   point is between the margin and correctly 

classified

• for             point is misclassified⇠i � 0

0 < ⇠  1

adopted from
 Andrew

 Zisserm
an



• Hard margin problem


• With slack variables 
 
 
 
Problem is always feasible. Proof:              
                                (also yields upper bound)

minimize
w,b

1

2
kwk2 subject to yi [hw, xii+ b] � 1

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

w = 0 and b = 0 and ⇠i = 1

Last time… Adding Slack Variables
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• Optimization problem: 
 
 
 

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

Soft-margin classifier

adopted from
 Andrew

 Zisserm
an

C is a regularization parameter:

• small C allows constraints to be easily ignored  

→ large margin

• large C makes constraints hard to ignore 

→ narrow margin

• C = ∞ enforces all constraints: hard margin



Last time… Multi-class SVM
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•  Simultaneously-learn-3-sets--
of-weights:--

•  How-do-we-guarantee-the--
correct-labels?--

•  Need-new-constraints!--

The-“score”-of-the-correct--
class-must-be-be?er-than-
the-“score”-of-wrong-classes:--

Multi-class SVM 

Simultaneously learn 3 sets 
of weights: 

• How do we guarantee the 
correct labels? 

• Need new constraints! 

w+ 

w- 

wo 

The “score” of the correct 
class must be better than the 
“score” of wrong classes: 

Multi-class SVM 

Simultaneously learn 3 sets 
of weights: 

• How do we guarantee the 
correct labels? 

• Need new constraints! 

w+ 

w- 

wo 

The “score” of the correct 
class must be better than the 
“score” of wrong classes: 
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Last time… Multi-class SVM
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•  As#for#the#SVM,#we#introduce#slack#variables#and#maximize#margin:##As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 

As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 

As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 

Now#can#we#learn#it?###

As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?   

Multi-class SVM 

To predict, we use: 
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Last time… Kernels

• Original data

• Data in feature space (implicit)

• Solve in feature space using kernels

9
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Last time… Quadratic Features

10

Polynomial Features

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

Quadratic Features in R2

�(x) :=
⇣
x2

1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x0)i =

D⇣
x2

1,
p

2x1x2, x
2
2

⌘
,
⇣
x0

1
2,
p

2x0
1x

0
2, x

0
2
2
⌘E

= hx, x0i2.
Insight
Trick works for any polynomials of order d via hx, x0id.

Quadratic Features in

Dot Product

Trick works for any polynomials of order
Insight

via
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Last time.. Computational Efficiency

11

Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x0) = h�(x), �(x0)i for some feature map �.

If k(x, x0) is much cheaper to compute than �(x) . . .

Solution

Definition

5 · 105
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Last time.. Example kernels

12

Some Good Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 48

Examples of kernels k(x, x0)

Linear hx, x0i
Laplacian RBF exp (��kx � x0k)
Gaussian RBF exp

�
��kx � x0k2

�

Polynomial (hx, x0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x0)
Cond. Expectation Ec[p(x|c)p(x0|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.slide by Alex Sm

ola




Today
• The Kernel Trick for SVMs 

• Risk and Loss

• Support Vector Regression

13



The Kernel Trick 
for SVMs
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• Linear soft margin problem


• Dual problem 
 
 

• Support vector expansion
f(x) =

X

i

↵iyi hxi, xi+ b

maximize
↵

� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i 2 [0, C]

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

The Kernel Trick for SVMs
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f(x) =
X

i

↵iyik(xi, x) + b

maximize
↵

� 1

2

X

i,j

↵i↵jyiyjk(xi, xj) +
X

i

↵i

subject to
X

i

↵iyi = 0 and ↵i 2 [0, C]

• Linear soft margin problem


• Dual problem 
 
 

• Support vector expansion

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw,�(xi)i+ b] � 1� ⇠i and ⇠i � 0

The Kernel Trick for SVMs
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C=1
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C=1
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support  
vectors

support  
vectors

y=0

y = 1

y = -1



C=2
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C=5
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C=10
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C=20
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C=50
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C=100
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C=1
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C=2
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C=5
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C=10
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C=20
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C=2
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slide by Alex Sm
ola




C=50
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C=2
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And now with a 
narrower kernel
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And now with a very 
wide kernel
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226 Pattern Recognition

Figure 7.10 2D toy example of a binary classification problem solved using a soft margin
SVC. In all cases, a Gaussian kernel (7.27) is used. From left to right, we decrease the
kernel width. Note that for a large width, the decision boundary is almost linear, and
the data set cannot be separated without error (see text). Solid lines represent decision
boundaries; dotted lines depict the edge of the margin (where (7.34) becomes an equality
with ξi = 0).

was used, but the kernel width c was varied. For large values of c, the classifier is
almost linear, and it cannot separate the data set without errors. For a small width
(right), the data set is practically memorized. For an intermediate width (middle),
a trade-off is made between allowing some training errors and using a “simple”
decision boundary.

In practice, both the kernel parameters and the value of C (or ν) are often chosenParameter Choice
using cross validation. To this end, we first split the data set into p parts of equal
size, say, p = 10. We then perform ten training runs. Each time, we leave out one of
the ten parts and use it as an independent test set for optimizing the parameters.
In the simplest case, we choose the parameters which work best, on average over
the ten runs. It is common practice, however, to then train on the full training
set, using these average parameters. There are some problems with this. First, it
amounts to optimizing the parameters on the same set as the one used for training,
which can lead to overfitting. Second, the optimal parameter settings for data sets
of size m and 9

10m, respectively, do not usually coincide. Typically, the smaller set
will requrie a slightly stronger regularization. This could mean a wider Gaussian
kernel, a smaller polynomial degree, a smaller C, or a larger ν. Even worse, it is
theoretically possible that there is a so-called phase transition (e.g., [376]) in the
learning curve between the two sample sizes. This means that the generalization
error as a function of the sample size could change dramatically between 9

10m and
m. Having said all this, practicioners often do not care about these theoretical
precautions, and use the unchanged parameters with excellent results. For further
detail, see Section 12.3.

In some cases, one can try to avoid the whole procedure by using an educated
guess. Below, we list several methods.

Use parameter setting that have worked well for similar problems. Here, some
care has to be exercised in the scaling of kernel parameters. For instance, when
using an RBF kernel, c must be rescaled to ensure that ‖xi − xj‖2/c typically lies

• Increasing C allows for more nonlinearities

• Decreases number of errors

• SV boundary need not be contiguous

• Kernel width adjusts function class

Nonlinear Separation

slide by Alex Sm
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Overfitting?
• Huge feature space with kernels: should we 

worry about overfitting? 
• SVM objective seeks a solution with large margin


- Theory says that large margin leads to good 
generalization (we will see this in a couple of lectures) 

• But everything overfits sometimes!!!  
• Can control by: 


- Setting C 

- Choosing a better Kernel

- Varying parameters of the Kernel (width of Gaussian, 

etc.)
54
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Risk and Loss

55

slide by Alex Sm
ola




• Constrained quadratic program 
 
 

• Risk minimization setting 
 
 
 
Follows from finding minimal slack variable 
for given (w,b) pair.  

minimize
w,b

1

2
kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

minimize
w,b

1

2
kwk2 + C

X

i

max [0, 1� yi [hw, xii+ b]]

empirical risk

Loss function point of view

slide by Alex Sm
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• Soft margin loss

• Binary loss

max(0, 1� yf(x))

{yf(x) < 0}

convex upper 
bound

binary loss 
function margin

Soft margin as proxy for binary

slide by Alex Sm
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• Logistic

• Huberized loss


• Soft margin

8
><

>:

0 if f(x) > 1
1
2 (1� f(x))2 if f(x) 2 [0, 1]
1
2 � f(x) if f(x) < 0

max(0, 1� f(x))
(asymptotically)


linear

(asymptotically) 0

log
h
1 + e�f(x)

i

More loss functions
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R[f ] := Ex,y⇠p(x,y) [{yf(x) > 0}]

Remp[f ] :=
1

m

mX

i=1

{yif(xi) > 0}

Rreg[f ] :=
1

m

mX

i=1

max(0, 1� yif(xi)) + �⌦[f ]

regularization

how to control ƛ

Risk minimization view
• Find function f minimizing classification error


• Compute empirical average 
 

− Minimization is nonconvex

− Overfitting as we minimize empirical error


• Compute convex upper bound on the loss

• Add regularization for capacity control 

 
 

slide by Alex Sm
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Support Vector  
Regression

60



Regression Estimation
• Find function f minimizing regression error


• Compute empirical average 
 
 
Overfitting as we minimize empirical error


• Add regularization for capacity control 
 
 

61

R[f ] := Ex,y⇠p(x,y) [l(y, f(x))]

Remp[f ] :=
1

m

mX

i=1

l(yi, f(xi))

Rreg[f ] :=
1

m

mX

i=1

l(yi, f(xi)) + �⌦[f ]

slide by Alex Sm
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Squared loss

62

l(y, f(x)) =
1

2
(y � f(x))2

slide by Alex Sm
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l1 loss

63

l(y, f(x)) = |y � f(x)|
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ε-insensitive Loss

64

l(y, f(x)) = max(0, |y � f(x)|� ✏)

slide by Alex Sm
ola


allow some deviation 
without a penalty



Penalized least mean squares
• Optimization problem 
 

• Solution

65

@w [. . .] =
1

m

mX

i=1

⇥
xix

>
i w � xiyi

⇤
+ �w

=


1

m
XX> + �1

�
w � 1

m
Xy = 0

hence w =
⇥
XX> + �m1

⇤�1
Xy

Conjugate Gradient 
Sherman Morrison WoodburyOuter product 

matrix in X

minimize
w

1

2m

mX

i=1

(yi � hxi, wi)2 +
�

2
kwk2
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Penalized least mean squares 
... now with kernels

• Optimization problem 
 

• Representer Theorem (Kimeldorf & Wahba, 1971)

66

minimize
w

1

2m

mX

i=1

(yi � h�(xi), wi)2 +
�

2
kwk2

kwk2 =
��wk

��2 + kw?k2

empirical 
risk dependentw?

wk
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• Optimization problem 
 

• Representer Theorem (Kimeldorf & Wahba, 1971)
• Optimal solution is in span of data
• Proof - risk term only depends on data via
• Regularization ensures that orthogonal part is 0

• Optimization problem in terms of w  
 
 
solve for                            as linear system

�(xi)

w =
X

i

↵i�(xi)

minimize
↵

1

2m

mX

i=1

⇣
yi �

X

j

Kij↵j

⌘2
+

�

2

X

i,j

↵i↵jKij

minimize
w

1

2m

mX

i=1

(yi � h�(xi), wi)2 +
�

2
kwk2

↵ = (K +m�1)�1y

Penalized least mean squares 
... now with kernels



• Optimization problem 
 

• Representer Theorem (Kimeldorf & Wahba, 1971)
• Optimal solution is in span of data
• Proof - risk term only depends on data via
• Regularization ensures that orthogonal part is 0

• Optimization problem in terms of w  
 
 
solve for                            as linear system

�(xi)

w =
X

i

↵i�(xi)

minimize
↵

1

2m

mX

i=1

⇣
yi �

X

j

Kij↵j

⌘2
+

�

2

X

i,j

↵i↵jKij

minimize
w

1

2m

mX

i=1

(yi � h�(xi), wi)2 +
�

2
kwk2

↵ = (K +m�1)�1y

Penalized least mean squares 
... now with kernels
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18 A Tutorial Introduction

x

x

x x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

y

x

y − f(x)

loss

Figure 1.8 In SV regression, a tube with radius ε is fitted to the data. The trade-
off between model complexity and points lying outside of the tube (with positive slack
variables ξ) is determined by minimizing (1.48).

Note that the term ‖w‖2 is the same as in pattern recognition (cf. (1.41)); for
further details, cf. Chapter 9.

We can transform this into a constrained optimization problem by introducing
slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f(xi) − yi > ε and yi − f(xi) > ε, respectively.
We denote them by ξ and ξ∗, respectively, and collectively refer to them as ξ(∗).
The optimization problem consists in finding

min
w∈H,ξ(∗)∈Rm,b∈R

τ(w, ξ, ξ∗) =
1

2
‖w‖2 + C

m
∑

i=1

(ξi + ξ∗i ) (1.48)

subject to f(xi)− yi ≤ ε+ ξi (1.49)

yi − f(xi) ≤ ε+ ξ∗i (1.50)

ξi, ξ
∗
i ≥ 0 (1.51)

for all i = 1, . . . ,m.
Note that according to (1.49) and (1.50), any error smaller than ε does not require

a nonzero ξi or ξ∗i and hence does not enter the objective function (1.48).
Generalization to kernel -based regression estimation is carried out in an analo-

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem: for C > 0, ε ≥ 0 chosen a priori,

max
α,α∗∈Rm

W (α,α∗) = −ε
m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi

−1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj), (1.52)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . ,m, and

m
∑

i=1

(αi − α∗
i ) = 0. (1.53)

don’t care about deviations within the tube

slide by Alex Sm
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SVM Regression 
(ϵ-insensitive loss)



• Optimization Problem (as constrained QP)


• Lagrange Function

70

minimize
w,b

1

2
kwk2 + C

mX

i=1

[⇠i + ⇠⇤i ]

subject to hw, xii+ b  yi + ✏+ ⇠i and ⇠i � 0

hw, xii+ b � yi � ✏� ⇠⇤i and ⇠⇤i � 0

L =
1

2
kwk2 + C

mX

i=1

[⇠i + ⇠⇤i ]�
mX

i=1

[⌘i⇠i + ⌘⇤i ⇠
⇤
i ] +

mX

i=1

↵i [hw, xii+ b� yi � ✏� ⇠i] +
mX

i=1

↵⇤
i [yi � ✏� ⇠⇤i � hw, xii � b]slide by Alex Sm

ola


SVM Regression 
(ϵ-insensitive loss)



• First order conditions


• Dual problem

71

@wL = 0 = w +
X

i

[↵i � ↵⇤
i ]xi

@bL = 0 =
X

i

[↵i � ↵⇤
i ]

@⇠iL = 0 = C � ⌘i � ↵i

@⇠⇤i L = 0 = C � ⌘⇤i � ↵⇤
i

minimize
↵,↵⇤

1

2
(↵� ↵⇤)>K(↵� ↵⇤) + ✏1>(↵+ ↵⇤) + y>(↵� ↵⇤)

subject to 1>(↵� ↵⇤) = 0 and ↵i,↵
⇤
i 2 [0, C]
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SVM Regression 
(ϵ-insensitive loss)



Properties
• Ignores ‘typical’ instances with small error

• Only upper or lower bound active at any 

time

• QP in 2n variables as cheap as SVM 

problem

• Robustness with respect to outliers


- l1 loss yields same problem without epsilon

- Huber’s robust loss yields similar problem 

but with added quadratic penalty on 
coefficients

72
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Regression example

73

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

270 Regression Estimation

sinc x + 0.1sinc x - 0.1approximation

sinc x + 0.2sinc x - 0.2approximation

sinc x + 0.5sinc x - 0.5approximation

Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.
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Regression example
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Regression example
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Regression example
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9.3 ν-SV Regression 271

Figure 9.4 Left to right: regression (solid line), datapoints (small dots) and SVs (big
dots) for an approximation of sincx (dotted line) with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs.

redundant — even without these patterns in the training set, the SVM would have
constructed exactly the same function f . We might be tempted to use this property
as an efficient means of data compression, namely by storing only the support
patterns, from which the estimate can be reconstructed completely. Unfortunately,
this approach turns out not to work well in the case of noisy high-dimensional data,
since for moderate approximation quality, the number of SVs can be rather high
[555].

9.3 ν-SV Regression

The parameter ε of the ε-insensitive loss is useful if the desired accuracy of the
approximation can be specified beforehand. In some cases, however, we just want
the estimate to be as accurate as possible, without having to commit ourselves to
a specific level of accuracy a priori. We now describe a modification of the ε-SVR
algorithm, called ν-SVR, which automatically computes ε [466].

To estimate functions (9.2) from empirical data (9.3) we proceed as follows. At
each point xi, we allow an error ε. Everything above ε is captured in slack variables
ξ(∗)i , which are penalized in the objective function via a regularization constant
C, chosen a priori. The size of ε is traded off against model complexity and slack
variables via a constant ν ≥ 0:

min
w∈H,ξ(∗)∈Rm,ε,b∈R

τ(w, ξ(∗), ε) =
1

2
‖w‖2 + C ·

(

νε+
1

m

m
∑

i=1

(ξi + ξ∗i )

)

, (9.31)

subject to (〈w,xi〉+ b)− yi ≤ ε+ ξi, (9.32)

yi − (〈w,xi〉+ b) ≤ ε+ ξ∗i , (9.33)

ξ(∗)i ≥ 0, ε ≥ 0. (9.34)

For the constraints, we introduce multipliers α(∗)
i , η(∗)i ,β ≥ 0, and obtain the

Lagrangian,Primal Problem
ν-SVR

L(w, b,α(∗),β, ξ(∗), ε,η(∗)) = (9.35)

1

2
‖w‖2 + Cνε+

C

m

m
∑

i=1

(ξi + ξ∗i )− βε−
m
∑

i=1

(ηiξi + η∗i ξ
∗
i )

Support VectorsSupport VectorsSupport Vectors
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Huber’s robust loss
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quadratic

linear

l(y, f(x)) =

(
1
2 (y � f(x))2 if |y � f(x)| < 1

|y � f(x)|� 1
2 otherwise

trimmed mean

estimatior
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Summary
• Advantages: 

- Kernels allow very flexible hypotheses

- Poly-time exact optimization methods rather than 

approximate methods

- Soft-margin extension permits mis-classified 

examples

- Variable-sized hypothesis space

- Excellent results (1.1% error rate on handwritten 

digits vs. LeNet’s 0.9%)

• Disadvantages: 

- Must choose kernel parameters

- Very large problems computationally intractable

- Batch algorithm
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Software
• SVMlight: one of the most widely used SVM packages. 

Fast optimization, can handle very large datasets, C++ 
code. 


• LIBSVM
• Both of these handle multi-class, weighted SVM for 

unbalanced data, etc.

• There are several new approaches to solving the SVM 

objective that can be much faster:

- Stochastic subgradient method (discussed in a few 

lectures)

- Distributed computation (also to be discussed)


• See http://mloss.org, “machine learning open 
source software”
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Next Lecture: 
Decision Trees
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