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Last time... Soft-margin Classifier

minimum error separator
Theorem (Minsky & Papert) IS Impossible
Finding the minimum error separating hyperplane is NP hard
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Last time... Adding Slack Variables

, minimize amount
- Convex optimization problem ot slack



Last time... Adding Slack Variables

- for 0 < £ <1 point is between the margin and correctly
classified
- for &, > 0 point is misclassified !

(w,x) +b < —14¢
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minimize amount
Convex optimization problem of slack



Last time... Adding Slack Variables

Hard margin problem

1
minirglize 5 |w||* subject to y; [(w, z;) + b] > 1

« With slack variables

o1 2
minimize 5HwH —I—CZ&

w,b

subject to y; [(w,x;) +b] > 1 —¢&; and & > 0

Problem is always feasible. Proof:
w=0and b=0and & =1 (also yields upper bound)
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Soft-margin classifier

« Optimization problem:
mmlmlze — |wH +CZ€Z

subject to y; [(w, ;) + b] >1—-&and & >0

C is a regularization parameter:

- small C allows constraints to be easily ignored
— large margin

- large C makes constraints hard to ignore
— narrow margin

-+ C = o« enforces all constraints: hard margin




Last time... Multi-class SVM

* Simultaneously learn 3 sets
of weights:

* How do we guarantee the
correct labels?

e Need new constraints!

The “score” of the correct

class must be better than
the “score” of wrong classes:

Vi) x; + p¥i) ~ ). x; + p\v) Vg, oy £ N

Buix ou3 Aq epils



Buix ou3 Aq epils

Last time... Multi-class SVM

* As forthe SVM, we introduce slack variables and maximize margin:
minimizey ;, >, w(¥) wlv) C> &
W(yj).Xj + p¥) > w(y').xj 1) 11 — i, VY # y;, Vi

s _ N
To predict, we use:

U < argmax wy - T + by
_ k y

¥

&

0
o

Now can we learnit? =

O




Bjlows xa|y Aq apl|s

L ast time... Kernels
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+ Original data
- Data in feature space (implicit)
+ Solve in feature space using kernels



Last time... Quadratic Features

Quadratic Features in R?
P(x) = ($1,\/_$1:1:2,:1:2)
Dot Product

Insight
Trick works for any polynomials of ordervia (x, 2/).
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Last time.. Computational Efficiency

Problem

® Extracting features can sometimes be very costly.
® Example: second order features in 1000 dimensions.
This leads to 5 - 10° numbers. For higher order polyno-
mial features much worse.
Solution

Don’t compute the features, try to compute dot products
implicitly. For some features this works . ..

Definition
A kernel function £ : X x X — R is a symmetric function
in its arguments for which the following property holds

k(x,2") = (O(x), d(2")) for some feature map ©.

Bjlows xa|y Aq apl|s

If k(x,2") is much cheaper to compute than &(zx) ...
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Last time.. Example kernels

Examples of kernels k(z, 2/)

Linear (2, 2)

Laplacian RBF exp (—Allz — 2||)

Gaussian RBF exp (—A||lz — 2||?)
Polynomial (z,2) +c))",e>0, d €N
B-Spline Boyii(x — ')

Cond. Expectation  E.[p(x|c)p(z'|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.
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Today

- The Kernel Trick for SVMs
- Risk and Loss
+ Support Vector Regression

13



The Kernel Trick
for SVMs



The Kernel Trick for SVMs

» Linear soft margin problem
minimize — Hw|| + C’Zfz

w,b
subject to y; [(w, x;) + b] >1—¢& and & >0
* Dual problem

max1m1ze— — E QY Y (T, Tj) + E o
i,

subject to Zaiyi =0 and «a; € |0, C]

« Support vector expansion

= Z&z‘yz‘ (zi,x) + b



The Kernel Trick for SVMs

» Linear soft margin problem
minimize — HwH + C’Z&,

w,b

subject to y; [(w,@(x;)) +b] > 1 —&; and & > 0
* Dual problem

max1m1ze—— g ;oYY k(X T5) + g o7
o

subject to Zaiy@- =0 and o; € |0,C]

» Support vector expansion

= Z%‘yz‘k(xz‘,w) +0
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vectors

support
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And now with a
narrower kernel
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And now with a very
wide kernel
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Nonlinear Separation

Increasing C allows for more nonlinearities
Decreases number of errors

SV boundary need not be contiguous
Kernel width adjusts function class
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Overfitting?

- Huge feature space with kernels: should we
worry about overfitting?

- SVM objective seeks a solution with large margin

- Theory says that large margin leads to good
generalization (we will see this in a couple of lectures)

- But everything overfits sometimes!!!

+ Can control by:

- Setting C
- Choosing a better Kernel

- Varying parameters of the Kernel (width of Gaussian,
etc.)
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Risk and Loss

55



Loss function point of view

» (Constrained quadratic program
o] 2
minimize > |w||” + C’Zfz
subject to y; [(w,x;) +b] >1—&; and & > 0
» Risk minimization setting

| 2
minimize - |w||” + CZmaX 0,1 — vy, [(w, z;) + b]]

Follows from finding minimal slack variable
for given (w,b) pair.



Soft margin as proxy for binary

»  Soft margin loss max(0,1 —yf(x))
» Binary loss {yf(z) <0}

A

convex upper
bound

binary loss
function

margin
L N\
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More loss functions

| o

Logistic log {1 + e—f@]

Huberized loss

0 if f(z)>1

s(1—f(z))* if f(x) € [0,1]

L flx) i f(2) <0
Soft margin

max(0,1 — f(x))
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Risk minimization view

Find function f minimizing classification error
R[f] = Eaz,yfvp(x,y) [{yf(x) > O}]
Compute empirical average

Remplf] = — >~ {uif (w:) > 0}

— Minimization is nonconvex
— Overfitting as we minimize empirical error

Compute convex upper bound on the loss
Add regularization for capacity control

Regf] = = > max(0,1 - y:f () £AOL/]

1=1

how to control A




Support Vector
Regression



Regression Estimation

+ Find function f minimizing regressicn error

- Compute emplrlcal average

emp Z l yz

Overfitting as we minimize empirical error
- Add regularization for capacity control

Zl yir (i) + AQ[f]
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Squared loss

14

12}

10
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171 loss

63
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e-lnsensitive Loss

4.0

allow some deviation
without a penalty

3.5F

3.0F

2.5F

2.0F

oz



Penalized least mean squares

- Optimization problem

« e . 1 - 2 )\ 2
~ minimize 5 — Z(yz — (T, w))" + 5 |w]]
- Solution =1
R T S
Ow -] = - Z [:czmz w xzyz} + \w

hence w = :XXT + )\ml} 1Xy
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Penalized least mean squares
... how with kernels

-+ Optimization problem

1 «— A
miniumize - ;(yz — <¢(£Ez),w>)2 + 5 Hsz

+  Representer Theorem (Kimeldorf & Wahba, 1971)

2 2 2
w Jwl|” = [|wy||” + [lw]

66



Penalized least mean squares
. how with kernels

Optimization problem

. e 1 — 2 A 2
minimize - ;(yz — (@@i),w))” + 5 |lw]

Representer Theorem (Kimeldorf & Wahba, 1971)
Optimal solution is in span of data w =) a;¢(x;)
Proof - risk term only depends on data via ¢(z:)
Regqularization ensures that orthogonal part is O

Optimization problem in terms of w

mmhmlze—Z(yz ZKZJO@) + = Z@z% i

solve fora = (K + m)\l) y as linear system



Penalized least mean squares
. how with kernels

Optimization problem
1 — A

minimize — Z(yz — <¢(5Ez)»

w 2m “
1=1

Optimal solution is in span of data | w =) a¢(x;)
Proof - risk term only depends on dataviawtz
Regqularization ensures that orthogonal part is O

Optimization problem in terms of w
mlmmlze - Z(yz ZKUQJ) — Zozzoz] i

solve fora = (K + m)\l) y as linear system



SVM Regression
(e-insensitive loss)

don’t care about deviations within the tube

69



SVM Regression

(e-insensitive loss)
- Optimization Problem (as constrained QP)

minimize — HwH —I—C’Z &+ &

w,b

subject to (w,z;) +b<y; +e+& and & >0

(w,z;) +b>y; —e—& and & —>O
- Lagrange Function

1 m
L:§HUJH2—|—CZ[€@+£ Z nz§z+nz
1=1 1=1

Z&i[<w7$i> ol yi—E—fi]+Z@§k yi —€—§& —(w,x;) — ]
i=1 i=1
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SVM Regression
(e-insensitive loss)

- First order conditions

8wL:O:w—I—Z[Oz7;—ozf]xi

(9bL:O:Z[ozi—ozf';]

857;L:O:C—m—ozi
6’5§L:O:C—n;’<—af§

- Dual problem

1
minimize 5(04 —a") ' Kla—a*)+el' (a+a")+y' (o — a*)

o,

subject to 1" (v — *) = 0 and o, af € [0, C]

Ia



Properties

- Ignores ‘typical’ instances with small error
- Only upper or lower bound active at any
time

- QP in 2n variables as cheap as SVM

problem

+ Robustness with respect to outliers

- |1 loss yields same problem without epsilon

- Huber’s robust loss yields similar problem
but with added quadratic penalty on
coefficients

(2
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Regression example

|
sinc x + Q.
sing x-0.1 —-
approximation -----

< - 7
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Regression example

approximation

Ssi,lnncqxfo 8% -

74
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Regression example

approximation

SsiPnCQXfo 8? .
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Regression example

Support Vectors

/6



Huber’s robust loss

sy —f@)?* ifly—fl@)) <1
l(y7 f($)) — {y _ f(:z:)| — % otherwise

trimmed mean
estimatior
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Summary

 Advantages:

Kernels allow very flexible hypotheses

Poly-time exact optimization methods rather than
approximate methods

Soft-margin extension permits mis-classified
examples

Variable-sized hypothesis space

Excellent results (1.1% error rate on handwritten
digits vs. LeNet’s 0.9%)

* Disadvantages:
- Must choose kernel parameters
- Very large problems computationally intractable

- Batch algorithm

/8
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Software

-+ SVMlight; one of the most widely used SVM packages.
Fast optimization, can handle very large datasets, C++
code.

« LIBSVM

- Both of these handle multi-class, weighted SVM for
unbalanced data, etc.

+ There are several new approaches to solving the SVM

objective that can be much faster:

- Stochastic subgradient method (discussed in a few
lectures)

- Distributed computation (also to be discussed)

- See http://mloss.org, “machine learning open
source software”
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http://mloss.org
http://mloss.org

Next Lecture:
Decision Trees

80



