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Lecture 18:

Decision Trees
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Machine 
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Today
• Decision Trees

• Tree construction

• Overfitting

• Pruning

• Real-valued inputs
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Machine Learning in the ER
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Triage Information 
(Free text) 

Lab results 
(Continuous valued) 

MD comments 
(free text) 

Specialist consults 

Physician 
documentation 

Repeated vital signs 
(continuous values) 
Measured every 30 s 

T=0 

30 min 2 hrs 

Disposition 

Machine&Learning&in&the&ER&

slide by David Sontag



Can we predict infection?
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Triage Information 
(Free text) 

Lab results 
(Continuous valued) 

MD comments 
(free text) 

Specialist consults 

Physician 
documentation 

Repeated vital signs 
(continuous values) 
Measured every 30 s 

Many crucial decisions 
about a patient’s care are 
made here! 

Can&we&predict&infec>on?&

slide by David Sontag



Can we predict infection
• Previous automatic approaches based on simple criteria:


- Temperature < 96.8 °F or > 100.4 °F

- Heart rate > 90 beats/min

- Respiratory rate > 20 breaths/min 

• Too simplified... e.g., heart rate depends on age!
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Can&we&predict&infec>on?&
•  Previous&automa>c&approaches&based&on&simple&criteria:&

–  Temperature&<&96.8&°F&or&>&100.4&°F&

–  Heart&rate&>&90&beats/min&

–  Respiratory&rate&>&20&breaths/min&

•  Too&simplified…&e.g.,&heart&rate&depends&on&age!&
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Can we predict infection?
• These are the attributes we have for each patient:


- Temperature 

- Heart rate (HR)

- Respiratory rate (RR)

- Age

- Acuity and pain level

- Diastolic and systolic blood pressure (DBP, SBP) 

- Oxygen Saturation (SaO2) 


• We have these attributes + label (infection) for 
200,000 patients! 


• Let’s learn to classify infection 
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Predicting infection using decision trees
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Predic>ng&infec>on&using&decision&trees&

slide by David Sontag



Example: Image Classification
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Image classification example

[Criminisi et al, 2011]

Image classification example

[Criminisi et al, 2011]

slide by N
ando de Freitas



Example: Mushrooms
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Example: mushrooms 

http://www.usask.ca/biology/fungi/ 

slide by Jerry Zhu



Mushroom features
1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, 
sunken=s 


2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s 

3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, 
pink=p,purple=u, red=e, white=w, yellow=y 


4. bruises?: bruises=t,no=f 

5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, 
musty=m, none=n, pungent=p, spicy=s 


6. gill-attachment: attached=a, descending=d, free=f, 
notched=n 


7. ... 

10

slide by Jerry Zhu



Two mushrooms

11

Two mushrooms 
x1=x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u  
y1=p 
x2=x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g  
y2=e 
 1. cap-shape: bell=b,conical=c,convex=x,flat=f, 

knobbed=k,sunken=s  
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s  
3. cap-color: 

brown=n,buff=b,cinnamon=c,gray=g,green=r, 
pink=p,purple=u,red=e,white=w,yellow=y  

4. … 

slide by Jerry Zhu



Example: Automobile Miles-per-
gallon prediction
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Automobile Miles-per-gallon prediction 
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

slide by Jerry Zhu



Hypotheses: decision trees f :X→Y
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Hypotheses: decision trees  f  : X  Y 

•  Each internal node 
tests an attribute xi 

•  Each branch 
assigns an attribute 
value xi=v 

•  Each leaf assigns a 
class y  

•  To classify input x: 
traverse the tree 
from root to leaf, 
output the labeled y  

Cylinders&

3& 4& 5& 6& 8&

good bad bad Maker& Horsepower&

low& med& high&america& asia& europe&

bad bad good good good bad 

Human&interpretable!&
Human interpretable! 

• Each internal node 
tests an attribute xi 

• Each branch 
assigns an 
attribute value xi=v 
 


• Each leaf assigns a 
class y  

• To classify input x: 
traverse the tree 
from root to leaf, 
output the labeled y slide by David Sontag



Hypothesis space
• How many possible 

hypotheses? 

• What functions can 
be represented?
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Hypothesis space 
•  How many possible 

hypotheses? 

•  What functions can be 
represented? 

Cylinders&

3& 4& 5& 6& 8&

good bad bad Maker& Horsepower&

low& med& high&america& asia& europe&

bad bad good good good bad 

slide by David Sontag



What functions can be represented?
• Decision trees can 

represent any function of 
the input attributes! 

• For Boolean functions, path 
to leaf gives truth table row 

• But, could require 
exponentially many 
nodes…
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What&func>ons&can&be&represented?&

•  Decision&trees&can&represent&
any&func>on&of&the&input&
aYributes!&

•  For&Boolean&func>ons,&path&
to&leaf&gives&truth&table&row&

•  But,&could&require&
exponen>ally&many&nodes…&

Expressiveness

Discrete-input, discrete-output case:
– Decision trees can express any function of the input attributes.
– E.g., for Boolean functions, truth table row � path to leaf:

FT

A

B

F T

B

A B A xor B
F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Continuous-input, continuous-output case:
– Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Need some kind of regularization to ensure more compact decision trees

CS194-10 Fall 2011 Lecture 8 7

(Figure&from&Stuart&Russell)&

cyl=3 ∨ (cyl=4 ∧ (maker=asia ∨ maker=europe)) ∨ … 
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bad bad good good good bad 
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– Can approximate any function arbitrarily closely
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w/ one path to leaf for each example (unless f nondeterministic in x)
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Need some kind of regularization to ensure more compact decision trees

CS194-10 Fall 2011 Lecture 8 7
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Cylinders&

3& 4& 5& 6& 8&

good bad bad Maker& Horsepower&

low& med& high&america& asia& europe&

bad bad good good good bad 
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Are all decision trees equal?
• Many trees can represent the same concept

• But, not all trees will have the same size


- e.g.,φ=(A∧B)∨(¬A∧ C) — ((A and B) or (not A and C)) 
 
 
 
 
 
 

• Which tree do we prefer?
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Are&all&decision&trees&equal?&
•  Many&trees&can&represent&the&same&concept&

•  But,&not&all&trees&will&have&the&same&size!&
–  e.g.,&φ&=&(A&�&B)&∨&(¬A&� C)&hh&((A&and&B)&or&(not&A&and&C))&
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Learning decision trees is hard!!!
• Learning the simplest (smallest) decision tree is 

an NP-complete problem [Hyafil & Rivest ’76] 

• Resort to a greedy heuristic: 

- Start from empty decision tree

- Split on next best attribute (feature)

- Recurse

17

slide by David Sontag



A Decision Stump
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A very small decision tree 

 Internal node 
question:  “what  is  the  

number of  
cylinders”? 

Leaves: classify by 
majority vote 

slide by Jerry Zhu



Key idea: Greedily learn trees using 
recursion
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Key&idea:&Greedily&learn&trees&using&
recursion(

Take the 
Original 
Dataset.. 

And partition it 
according 
to the value of 
the attribute we 
split on 

Records 
in which 
cylinders 

= 4  

Records 
in which 
cylinders 

= 5 

Records 
in which 
cylinders 

= 6  

Records 
in which 
cylinders 

= 8 

slide by David Sontag



Recursive Step
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Recursive&Step&

Records in 
which cylinders 

= 4  

Records in 
which cylinders 

= 5 

Records in 
which cylinders 

= 6  

Records in 
which cylinders 

= 8 

Build tree from 
These records.. 

Build tree from 
These records.. 

Build tree from 
These records.. 

Build tree from 
These records.. 

slide by David Sontag



Second level of tree
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Second&level&of&tree&

Recursively build a tree from the seven 
records in which there are four cylinders 
and the maker was based in Asia 

(Similar recursion in 
the other cases) 

slide by David Sontag



 

1. Do not split when all 
examples have the same 

label 

2. Can not split when we run 
out of questions 

The full 
decision tree 

22
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Splitting: Choosing a good attribute
• Would we prefer to split on X1 or 

X2? 
 
 
 
 
 
 
 
Idea: use counts at leaves to 
define probability distributions, 
so we can measure uncertainty!
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Spliong:&choosing&a&good&aYribute&

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

F T F 

F F F 

X1  

Y=t : 4 
Y=f : 0  

t f 

Y=t : 1 
Y=f : 3  

X2  

Y=t : 3 
Y=f : 1  

t f 

Y=t : 2 
Y=f : 2  

Would we prefer to split on X1 or X2?   

Idea: use counts at leaves to define 
probability distributions, so we can 
measure uncertainty! 

Spliong:&choosing&a&good&aYribute&

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

F T F 

F F F 

X1  

Y=t : 4 
Y=f : 0  

t f 

Y=t : 1 
Y=f : 3  

X2  

Y=t : 3 
Y=f : 1  

t f 

Y=t : 2 
Y=f : 2  

Would we prefer to split on X1 or X2?   

Idea: use counts at leaves to define 
probability distributions, so we can 
measure uncertainty! 

slide by David Sontag



Measuring uncertainty
• Good split if we are more certain about 

classification after split

- Deterministic good (all true or all false)

- Uniform distribution bad

- What about distributions in between?

24

Measuring&uncertainty&
•  Good&split&if&we&are&more&certain&about&
classifica>on&aper&split&
– Determinis>c&good&(all&true&or&all&false)&
– Uniform&distribu>on&bad&
– What&about&distribu>ons&in&between?&

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4 

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8 

slide by David Sontag



Entropy
• Entropy H(Y) of a random variable Y 

 
 
 
 

• More uncertainty, more entropy! 

• Information Theory interpretation: 
H(Y) is the expected number of  
bits needed to encode a randomly 
drawn value of Y (under most 
efficient code)

25

Entropy&
Entropy&H(Y)&of&a&random&variable&Y 

More uncertainty, more entropy! 

Information Theory interpretation: 
 H(Y) is the expected number of bits 
needed  to encode a randomly 
drawn value of Y  (under most 
efficient code)  

Probability&of&heads&

En
tr
op

y&

Entropy&of&a&coin&flip&

Entropy&
Entropy&H(Y)&of&a&random&variable&Y 

More uncertainty, more entropy! 

Information Theory interpretation: 
 H(Y) is the expected number of bits 
needed  to encode a randomly 
drawn value of Y  (under most 
efficient code)  

Probability&of&heads&

En
tr
op

y&

Entropy&of&a&coin&flip&

slide by David Sontag



High, Low Entropy
• “High Entropy”


- Y is from a uniform like distribution

- Flat histogram

- Values sampled from it are less predictable 

• “Low Entropy”

- Y is from a varied (peaks and valleys) 

distribution

- Histogram has many lows and highs

- Values sampled from it are more predictable

26

slide by Vibhav G
ogate



     Entropy Example
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Entropy&Example&

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

P(Y=t) = 5/6 

P(Y=f) = 1/6 

H(Y) = - 5/6 log2 5/6 - 1/6 log2 1/6 

         = 0.65 

Probability&of&heads&

En
tr
op

y&

Entropy&of&a&coin&flip&

Entropy&Example&

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

P(Y=t) = 5/6 

P(Y=f) = 1/6 

H(Y) = - 5/6 log2 5/6 - 1/6 log2 1/6 

         = 0.65 

Probability&of&heads&

En
tr
op

y&

Entropy&of&a&coin&flip&

slide by David Sontag



Conditional Entropy
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Condi>onal&Entropy&
Condi>onal&Entropy&H( Y |X)&of&a&random&variable&Y&condi>oned&on&a&

random&variable&X 

X1  

Y=t : 4 
Y=f : 0  

t f 

Y=t : 1 
Y=f : 1  

P(X1=t) = 4/6 

P(X1=f) = 2/6 

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

Example: 

H(Y|X1) = - 4/6 (1 log2 1 + 0 log2 0) 

                    - 2/6 (1/2 log2 1/2 + 1/2 log2 1/2) 

             = 2/6 

slide by David Sontag



Information gain
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Informa>on&gain&
•  Decrease&in&entropy&(uncertainty)&aper&spliong&

X1 X2 Y 

T T T 

T F T 

T T T 

T F T 

F T T 

F F F 

In our running example: 

IG(X1) = H(Y) – H(Y|X1) 
           =  0.65 – 0.33  

IG(X1) > 0  we prefer the split! slide by David Sontag



Learning decision trees
• Start from empty decision tree

• Split on next best attribute (feature)


- Use, for example, information gain to select 
attribute: 
 
 

• Recurse

30

Learning&decision&trees&

•  Start&from&empty&decision&tree&
•  Split&on&next(best(a4ribute((feature)(
– Use,&for&example,&informa>on&gain&to&select&
aYribute:&

•  Recurse&

slide by David Sontag



When to stop?

• First split looks good! But, when do we 
stop?

31

When&to&stop?&

First split looks good! But, when do we stop? slide by David Sontag



32

Base Case 
One 

Don’t split a 
node if all 
matching 

records have 
the same 

output value 

slide by David Sontag
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Base Case 
Two 

Don’t split a 
node if data 
points are 

identical on 
remaining 
attributes 

slide by David Sontag



Base Cases: An idea
• Base Case One: If all records in current data 

subset have the same output then don’t recurse 
• Base Case Two: If all records have exactly the 

same set of input attributes then don’t recurse
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Base&Cases:&An&idea&
•  Base&Case&One:&If&all&records&in&current&data&
subset&have&the&same&output&then&don’t&recurse&

•  Base&Case&Two:&If&all&records&have&exactly&the&
same&set&of&input&aYributes&then&don’t&recurse&

Proposed Base Case 3: 
If all attributes have small 
information gain then don’t 

recurse 

• This is not a good idea 

slide by David Sontag



The problem with proposed case 3
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The&problem&with&proposed&case&3&

y = a XOR b 

The information gains: 

slide by David Sontag



If we omit proposed case 3:
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If&we&omit&proposed&case&3:&

y = a XOR b 
The resulting decision tree: 

Instead, perform 
pruning after building a 
tree 

slide by David Sontag



Decision trees will overfit
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Decision&trees&will&overfit&

slide by David Sontag



Decision trees will overfit
• Standard decision trees have no learning bias


- Training set error is always zero!

• (If there is no label noise)


- Lots of variance

- Must introduce some bias towards simpler 

trees 

• Many strategies for picking simpler trees

- Fixed depth

- Fixed number of leaves 

• Random forests
38
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Real-valued inputs
• What should we do if some of the inputs are real-valued?
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RealhValued&inputs&
What&should&we&do&if&some&of&the&inputs&are&realhvalued?&

Infinite 
number of 
possible split 
values!!! 

slide by David Sontag



“One branch for each numeric value” idea:

40

“One&branch&for&each&numeric&value”&
idea:&

Hopeless: hypothesis with such a high 
branching factor will shatter any dataset 
and overfit 

Hopeless: hypothesis with such a high branching 
factor will shatter any dataset and overfit


slide by David Sontag



Threshold splits
• Binary tree: split on 

attribute X at value t 

- One branch: X < t 

- Other branch: X ≥ t 

• Requires small change

- Allow repeated splits 

on same variable 
along a path

41

Threshold&splits&

•  Binary&tree:&split&on&
aYribute&X&at&value&t&

– One&branch:&X&<&t&
– Other&branch:&X&≥&t&

Year&

<78& ≥78&

good bad 

•  Requires small change 
•  Allow repeated splits on same 

variable along a path 

Year&

<70& ≥70&

good bad 

slide by David Sontag



The&set&of&possible&thresholds&

•  Binary&tree,&split&on&aYribute&X&
–  One&branch:&X&<&t&
–  Other&branch:&X&≥&t&

•  Search&through&possible&values&of&t"
–  Seems&hard!!!&

•  But&only&a&finite&number&of&t’s&are&important:&

–  Sort&data&according&to&X&into&{x1,…,xm}&
–  Consider&split&points&of&the&form&xi&+&(xi+1&–&xi)/2&

–  Morever,&only&splits&between&examples&of&different&classes&maYer!&

(Figures&from&Stuart&Russell)&

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

Xj

c1 c2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

Xj

c2c1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
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Xj

c1 c2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

Xj

c2c1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

The set of possible thresholds
• Binary tree, split on attribute X


- One branch: X < t

- Other branch: X ≥ t


• Search through possible values of t

- Seems hard!!!


• But only a finite number of t’s are important: 
 

• Sort data according to X into {x1,...,xm}

• Consider split points of the form xi + (xi+1 – xi )/2 

• Moreover, only splits between examples from different 

classes matter!  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The&set&of&possible&thresholds&

•  Binary&tree,&split&on&aYribute&X&
–  One&branch:&X&<&t&
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No! Moving split point along the empty space between two observed values
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Xj
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Xj
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Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

Xj

c1 c2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

Xj

c2c1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

slide by David Sontag



Picking the best threshold
• Suppose X is real valued with threshold t 

• Want IG(Y | X:t), the information gain for Y when 
testing if X is greater than or less than t 

• Define:

- H(Y | X:t) = p(X<t)H(Y | X<t)+p(X>=t)H(Y | X>=t)
- IG(Y | X:t) = H(Y) - H(Y | X:t)
- IG*(Y | X) = maxt IG(Y | X:t)  

• Use: IG*(Y | X) for continuous variables

43

slide by David Sontag
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Example 
with MPG

Example&
with&MPG&

slide by David Sontag
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Example 
tree for our 
continuous 

dataset

Example&
tree&for&our&
con>nuous&
dataset&

slide by David Sontag



Demo time…

46



What you need to know about 
decision trees

• Decision trees are one of the most popular ML tools 

- Easy to understand, implement, and use

- Computationally cheap (to solve heuristically)  

• Information gain to select attributes (ID3, C4.5,...)  
• Presented for classification, can be used for 

regression and density estimation too  
• Decision trees will overfit!!!


- Must use tricks to find “simple trees”, e.g., 

• Fixed depth/Early stopping

• Pruning 


- Or, use ensembles of different trees (random forests) 
47
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Decision Trees vs SVM

48

10.7 “Off-the-Shelf” Procedures for Data Mining 351

TABLE 10.1. Some characteristics of different learning methods. Key: ▲= good,
◆=fair, and ▼=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

▼ ▼ ▲ ▲ ▼

Handling of missing values ▼ ▼ ▲ ▲ ▲

Robustness to outliers in
input space

▼ ▼ ▲ ▼ ▲

Insensitive to monotone
transformations of inputs

▼ ▼ ▲ ▼ ▼

Computational scalability
(large N)

▼ ▼ ▲ ▲ ▼

Ability to deal with irrel-
evant inputs

▼ ▼ ▲ ▲ ▼

Ability to extract linear
combinations of features

▲ ▲ ▼ ▼ ◆

Interpretability ▼ ▼ ◆ ▲ ▼

Predictive power ▲ ▲ ▼ ◆ ▲

siderations play an important role. Also, the data are usually messy: the
inputs tend to be mixtures of quantitative, binary, and categorical vari-
ables, the latter often with many levels. There are generally many missing
values, complete observations being rare. Distributions of numeric predic-
tor and response variables are often long-tailed and highly skewed. This
is the case for the spam data (Section 9.1.2); when fitting a generalized
additive model, we first log-transformed each of the predictors in order to
get a reasonable fit. In addition they usually contain a substantial fraction
of gross mis-measurements (outliers). The predictor variables are generally
measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship
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Hastie et al.,”The Elements of Statistical Learning: Data Mining, Inference, and Prediction”, Springer (2009)  
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Next Lecture: 
Ensemble Methods
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