

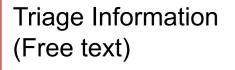
Today

- Decision Trees
- Tree construction
- Overfitting
- Pruning
- Real-valued inputs

Machine Learning in the ER

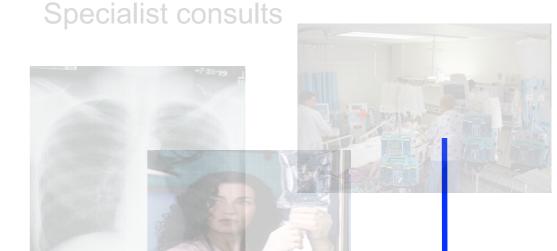
Physician documentation **Triage Information** Specialist consults (Free text) MD comments (free text) 2 hrs 30 min T=0Repeated vital signs Disposition (continuous values) Measured every 30 s Lab results (Continuous valued)

Can we predict infection?



MD comments (free text)

Physician documentation



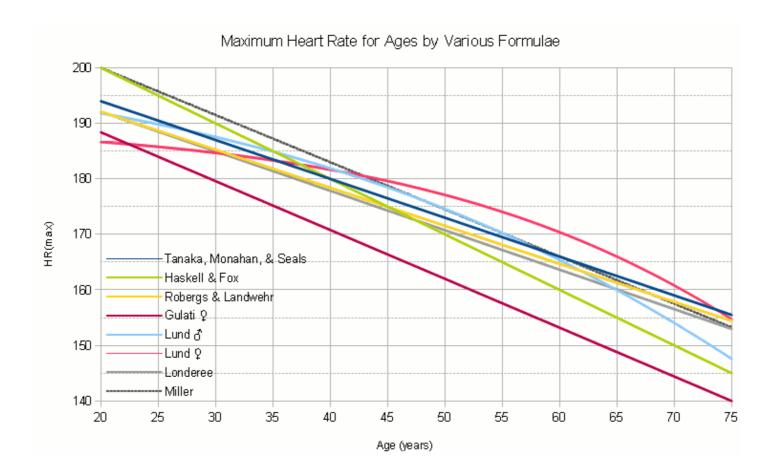
Many crucial decisions about a patient's care are made here!

Repeated vital signs (continuous values)
Measured every 30 s

My M

Can we predict infection

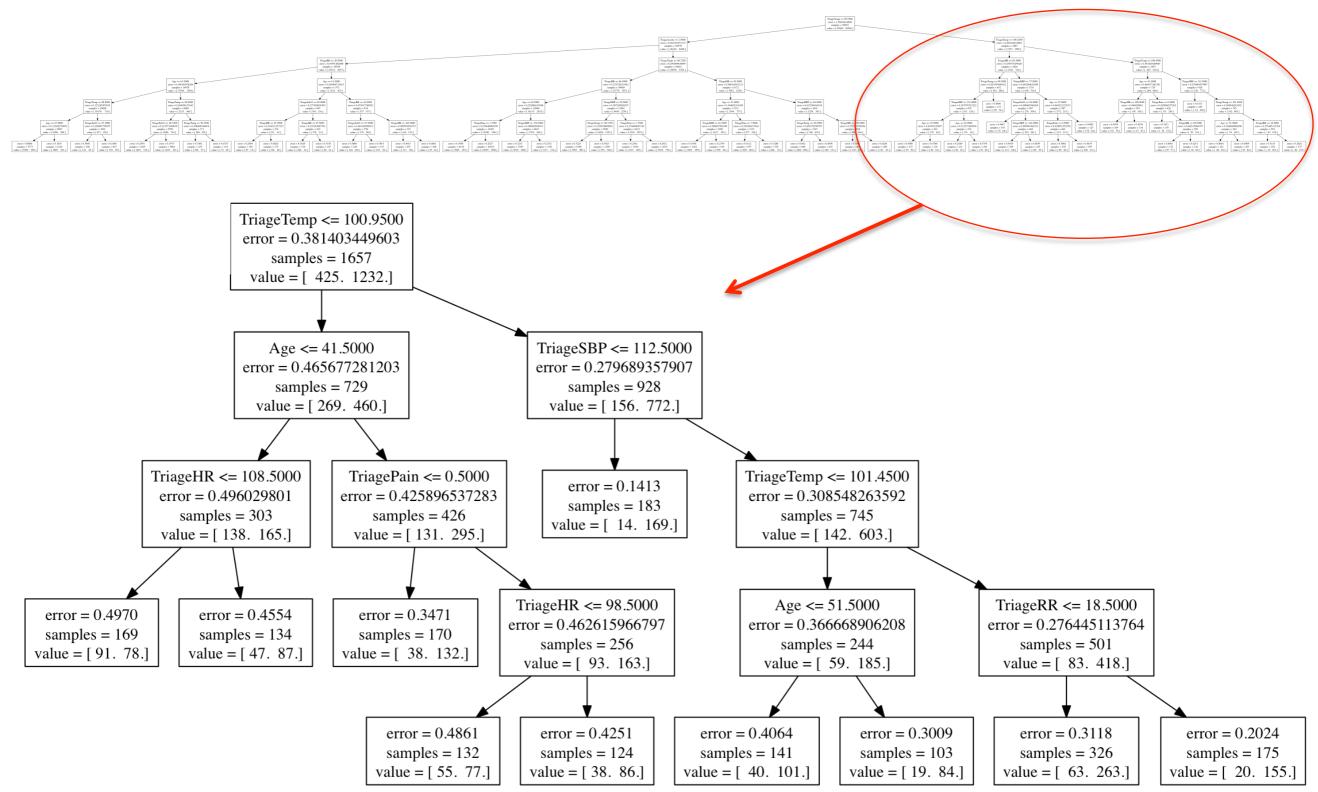
- Previous automatic approaches based on simple criteria:
 - Temperature < 96.8 °F or > 100.4 °F
 - Heart rate > 90 beats/min
 - Respiratory rate > 20 breaths/min
- · Too simplified... e.g., heart rate depends on age!



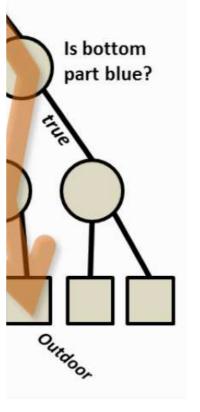
Can we predict infection?

- These are the attributes we have for each patient:
 - Temperature
 - Heart rate (HR)
 - Respiratory rate (RR)
 - Age
 - Acuity and pain level
 - Diastolic and systolic blood pressure (DBP, SBP)
 - Oxygen Saturation (SaO2)
- We have these attributes + label (infection) for 200,000 patients!
- Let's learn to classify infection

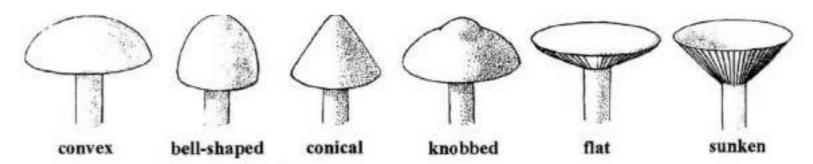
Predicting infection using decision trees



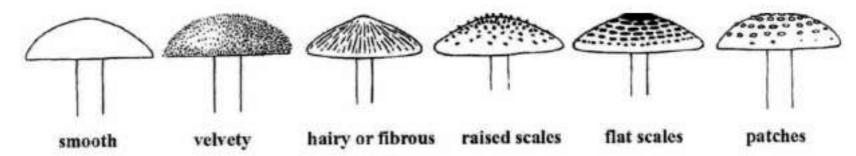
Example: Image Classification



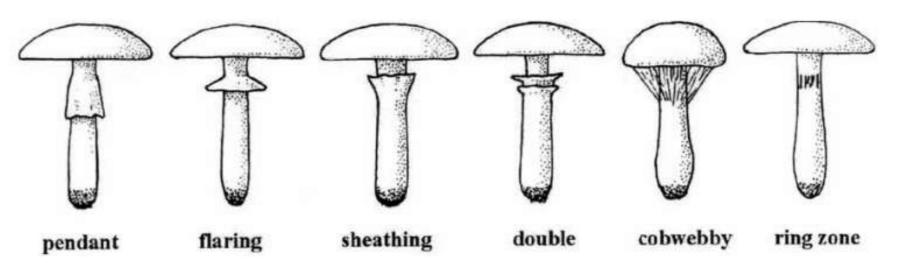
Example: Mushrooms



Mushroom cap surfaces



Annular rings



Mushroom features

- cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
- 2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
- 3. **cap-color:** brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p,purple=u, red=e, white=w, yellow=y
- 4. bruises?: bruises=t,no=f
- 5. **odor:** almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
- 6. **gill-attachment:** attached=a, descending=d, free=f, notched=n
- 7. ...

Two mushrooms

```
x_1=x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

y_1=p

x_2=x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

y_2=e
```

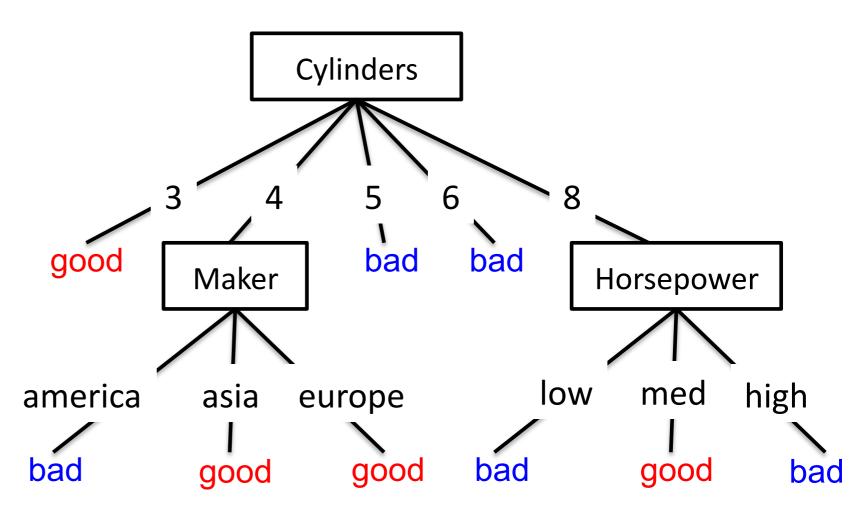
- cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
- 4. ...

Example: Automobile Miles-pergallon prediction

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:		:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_i
- Each branch
 assigns an
 attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y

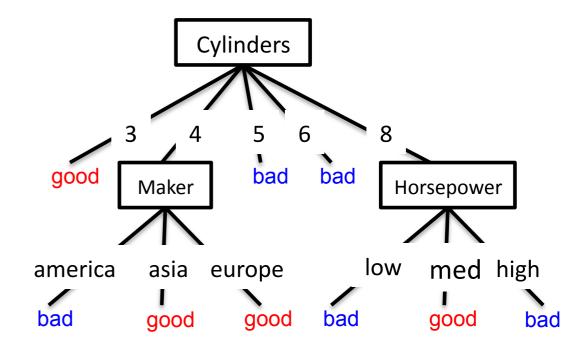


Human interpretable!

Hypothesis space

- How many possible hypotheses?
- What functions can be represented?

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe



What functions can distribute the part of the special attribute of the

– E.g., for Boolean functions, truth table row \rightarrow path to lea

 Decision trees can represent any function of the input attributes!

- For Boolean functions, Cpathous-input, continuous-output chiseure from Stuart Russell) to leaf gives truth table rowen approximate any function arbitrarily closely
- But, could require exponentially many nodes...

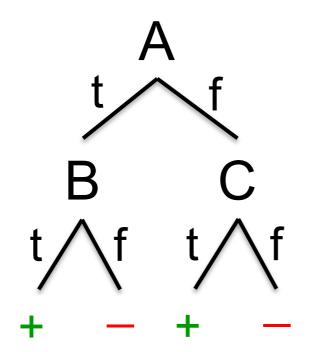
Trivially, there is a consistent desision tree for any training set w/ one path to leaf for each example (unless f nondeterminist but it probably won't generalize to new examples

Need some kind of regularization bed ensure more compact de america asia europe low med high cs194-1

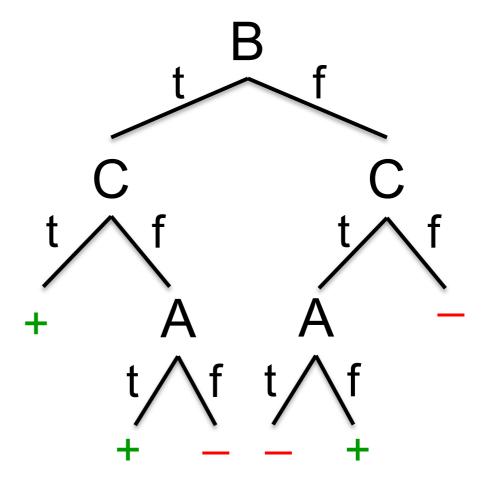
cyl=3 v (cyl=4 ^ (maker=asia v maker=europe)) v ...

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size
 - e.g., φ =(A \wedge B) \vee (\neg A \wedge C) ((A and B) or (not A and C))



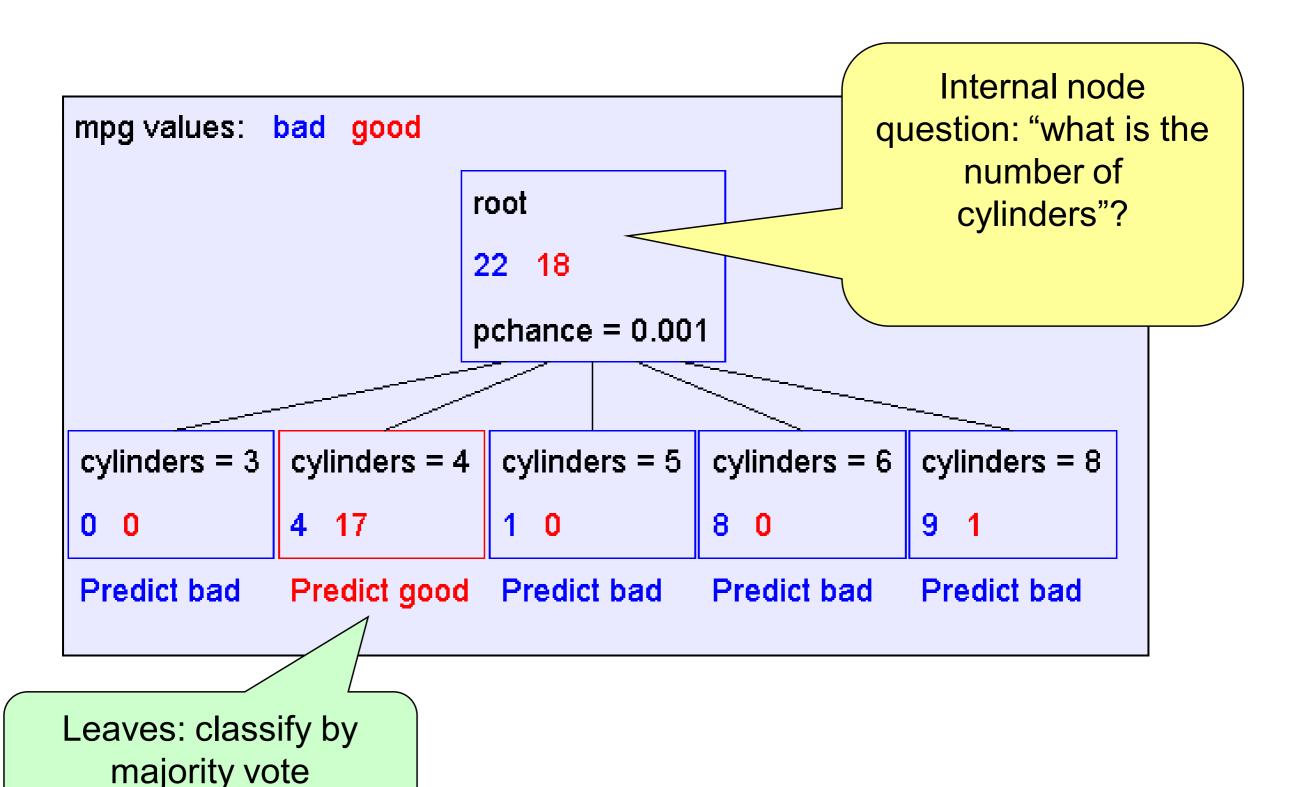
Which tree do we prefer?



Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

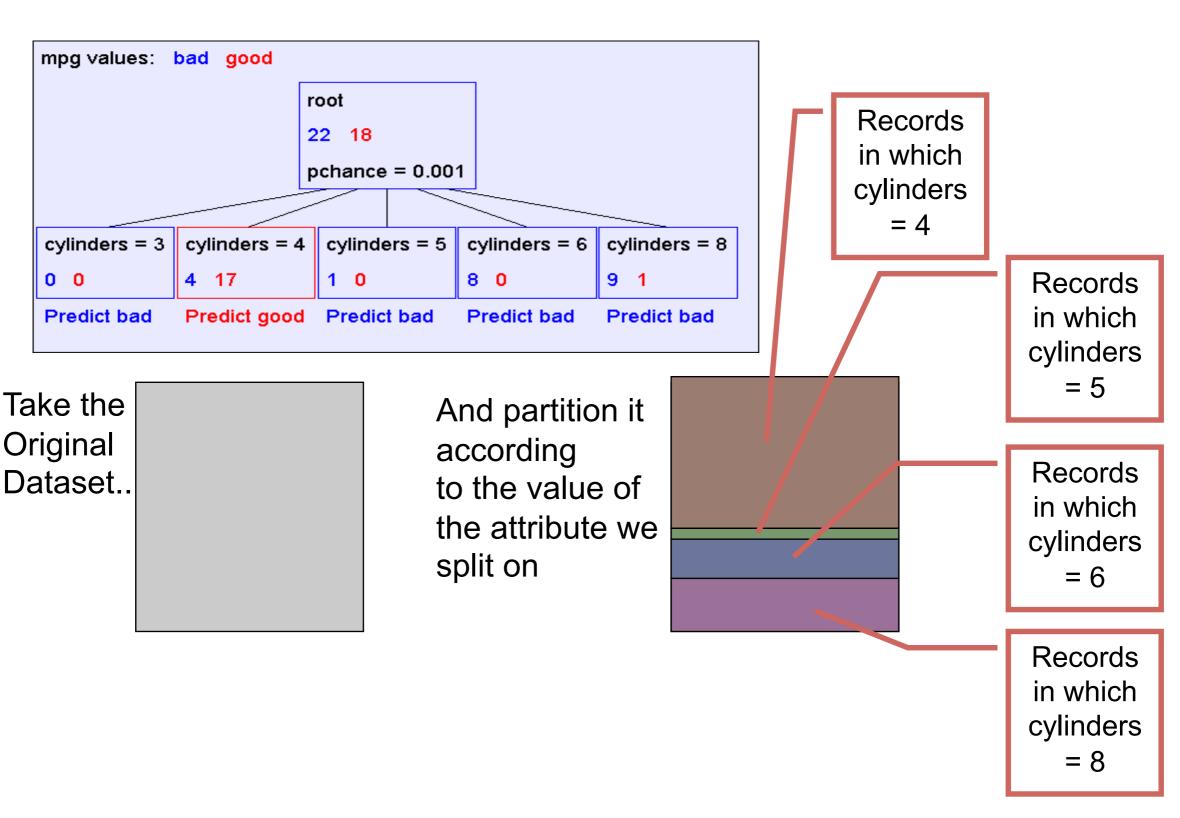
A Decision Stump



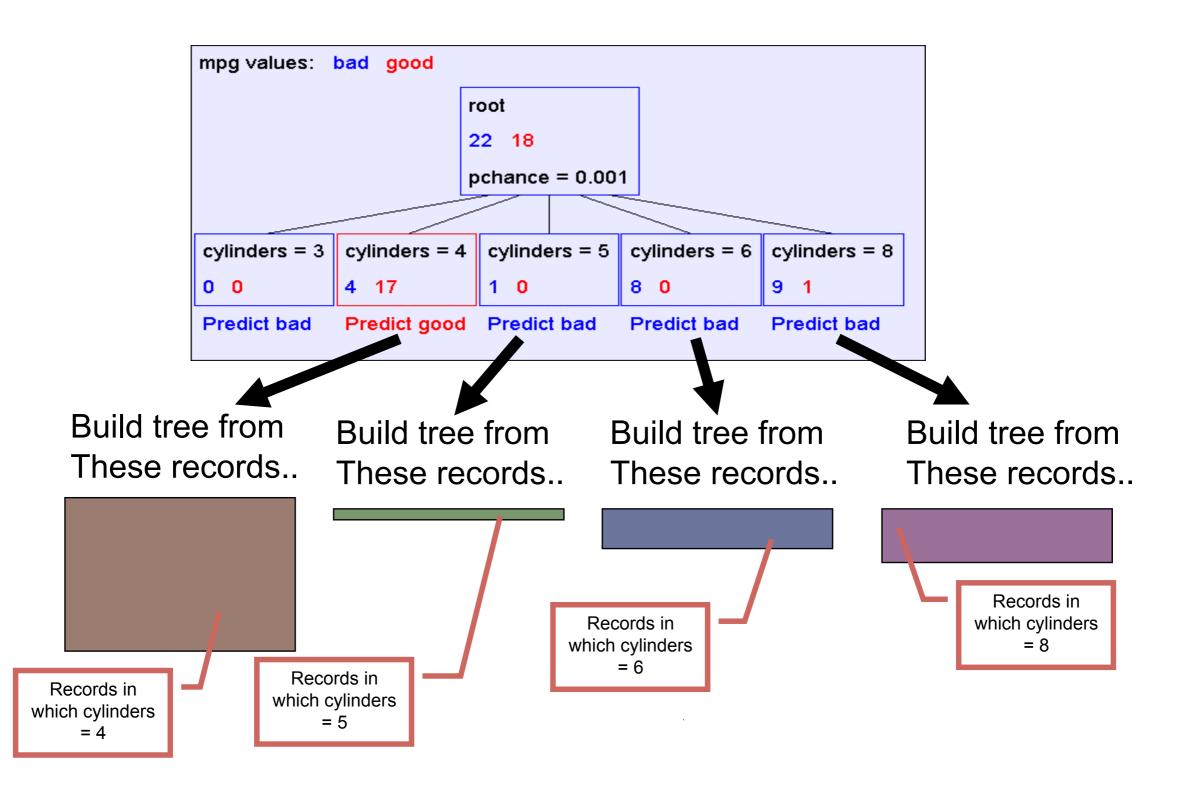
slide by Jerry Zhu

18

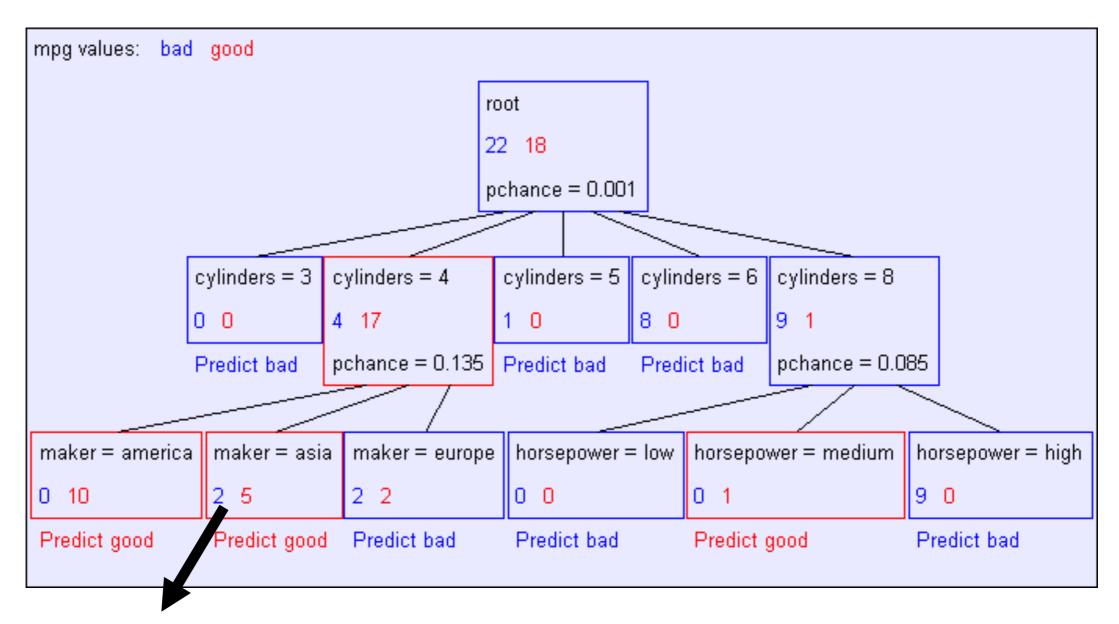
Key idea: Greedily learn trees using recursion



Recursive Step

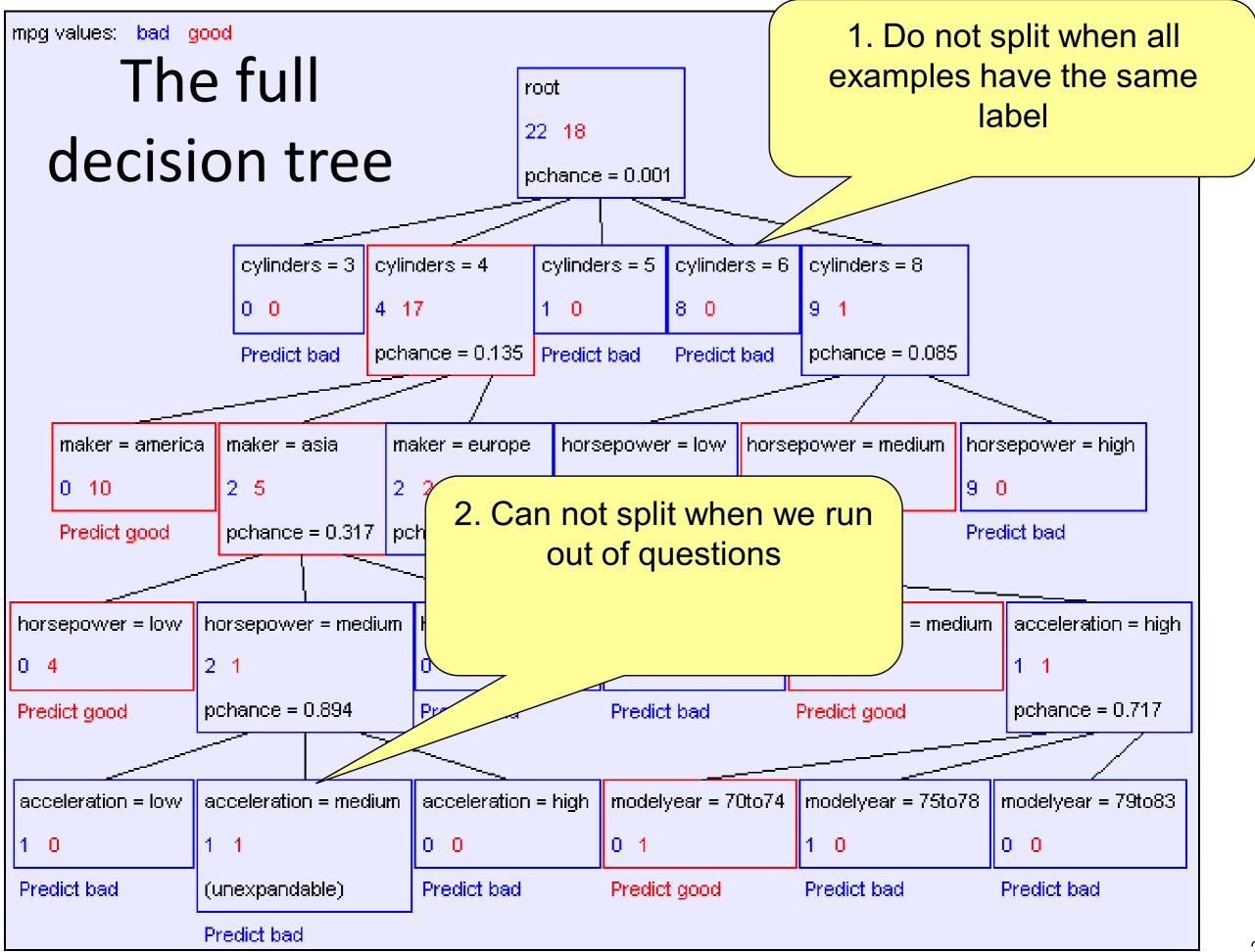


Second level of tree



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

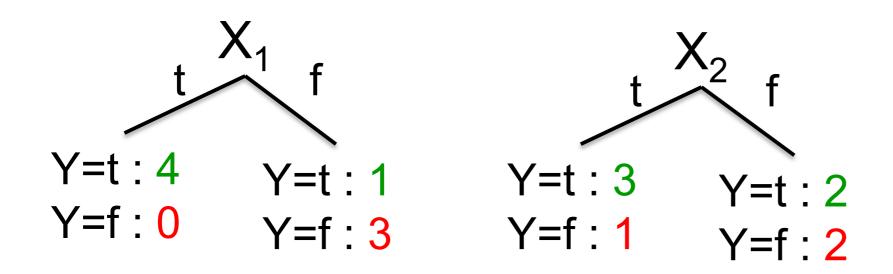
(Similar recursion in the other cases)



slide by Jerry Zhu

Splitting: Choosing a good attribute

Would we prefer to split on X₁ or X₂?



Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X_1	X_2	Y
Τ	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
--------------	--------------	--------------	--------------

P(Y=A) = 1/4	P(Y=B) = 1/4	P(Y=C) = 1/4	P(Y=D) = 1/4

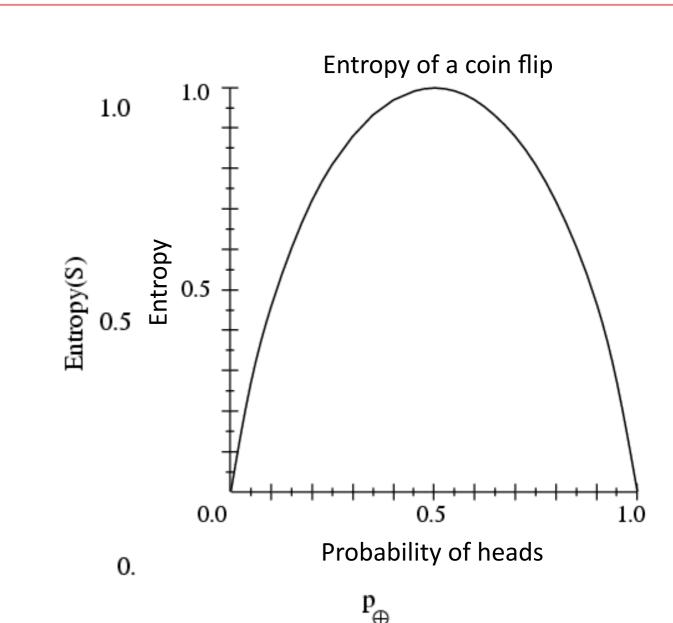
Entrony

• Entropy H(Y) of

$$H(Y) =$$

- More uncertai
- Information The H(Y) is the expension bits needed to drawn value of efficient code)

Entropy



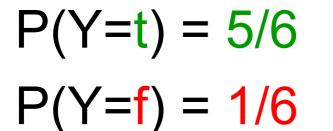
High, Low Entropy

- "High Entropy"
 - Y is from a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy"
 - Y is from a varied (peaks and valleys) distribution
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

Entropy Exar

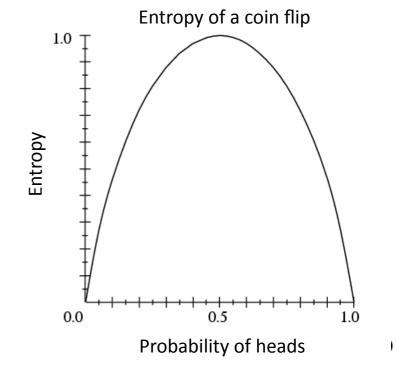
$$H(Y^{H}(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$i=1$$



$$H(Y) = -5/6 \log_2 5/6 - 1/6 I$$

= 0.65



- S is a sa
- ullet p_{\oplus} is the
- p_{\ominus} is the
- Entropy

File: ch3.ps

En

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ിറ

aple

mpl

slide by David Sontag

Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

Example:

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$H(Y|X_1) = -4/6 (1 log_2 1 + 0 log_2 0)$$

- 2/6 (1/2 log₂ 1/2 + 1/2 log₂ 1/2)
= 2/6

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Information gain

Decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

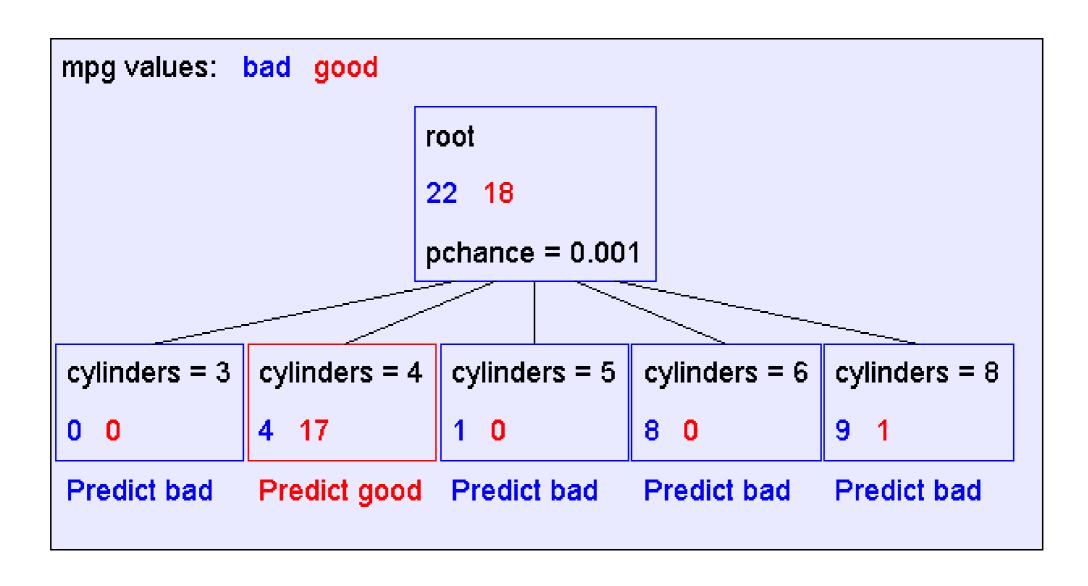
Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

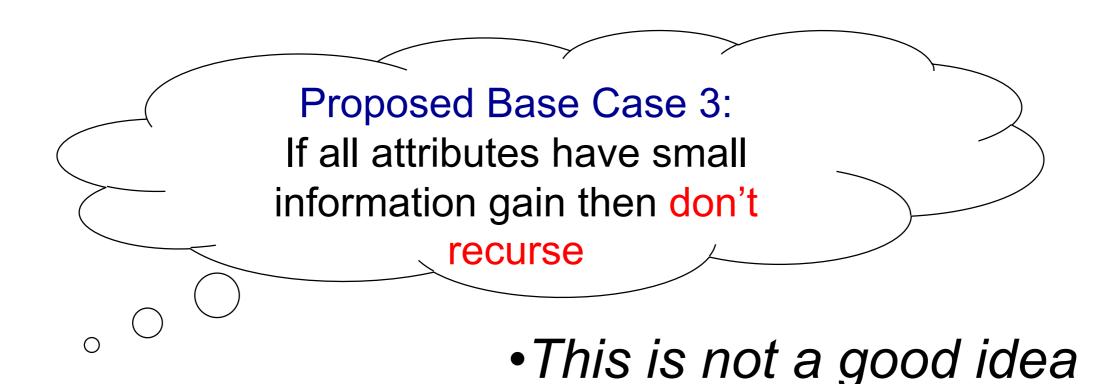
When to stop?



 First split looks good! But, when do we stop?

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

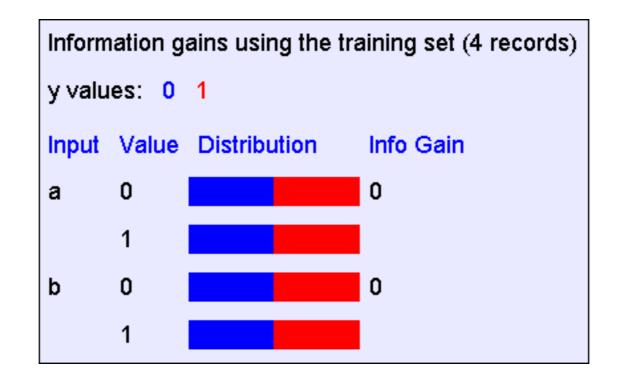


The problem with proposed case 3

$$y = a XOR b$$

а	b	у
0	0	0
0	1	1
1	0	1
1	1	0

The information gains:



If we omit proposed case 3:

а	b	y
0	0	0
0	1	1
1	0	1
1	1	0

Instead, perform **pruning** after building a tree

The resulting decision tree:

```
y values: 0 1
            root
            pchance = 1.000
   a = 0
                     a = 1
   pchance = 0.414
                     pchance = 0.414
b = 0
           b = 1
                     b = 0
                                b = 1
  -0
                                1 0
Predict 0 Predict 1
                     Predict 1
                                Predict 0
```

Decision trees will overfit

Decision trees will overfit

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - · (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Fixed number of leaves
- Random forests

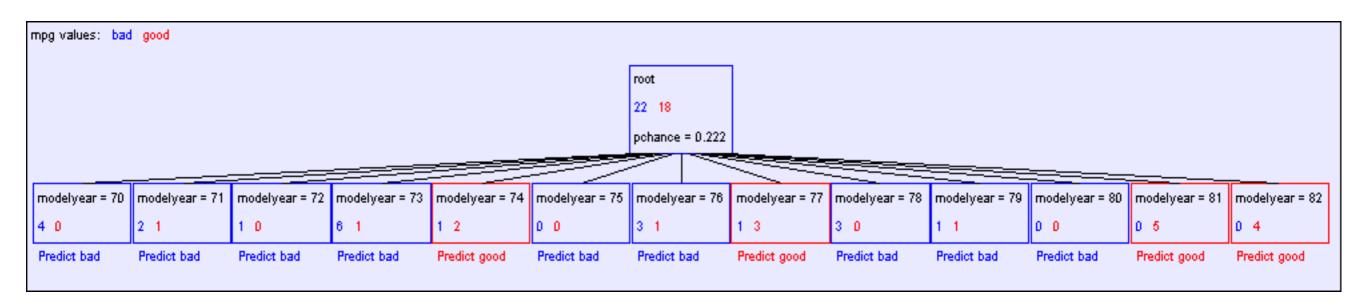
Real-valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

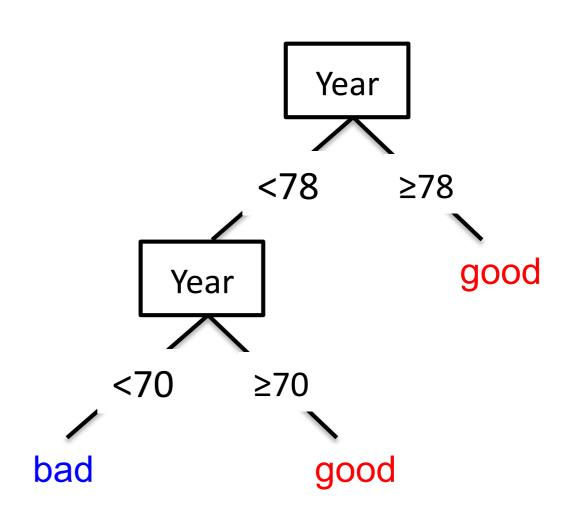
"One branch for each numeric value" idea:



Hopeless: hypothesis with such a high branching factor will shatter any dataset and overfit

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t
 - Other branch: X ≥ t
- Requires small change
 - Allow repeated splits on same variable along a path



The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t
 - Other parametrists for continuous attributes
- Search through possible values of t Infinitely many possible split points c to define node test $X_j > c$?

 Seems hard!!! Optimal optimal applies for continuous additional applies.
- No! Moving split point along the empty space between two observed values UI ONLY a finite number of the empty space between two observed values has no effect on information gain or empirical loss; so just use midpoint infinitely many possible split points c to define hode test $X_j > c$?

No! Moving split point along the empty space between two observed values has no effect on information gain of empirical loss; so just use midpoint

- · Sort data according to This is a second in grant of the second in
- Consider sphilipoints of the points of the first different chases.

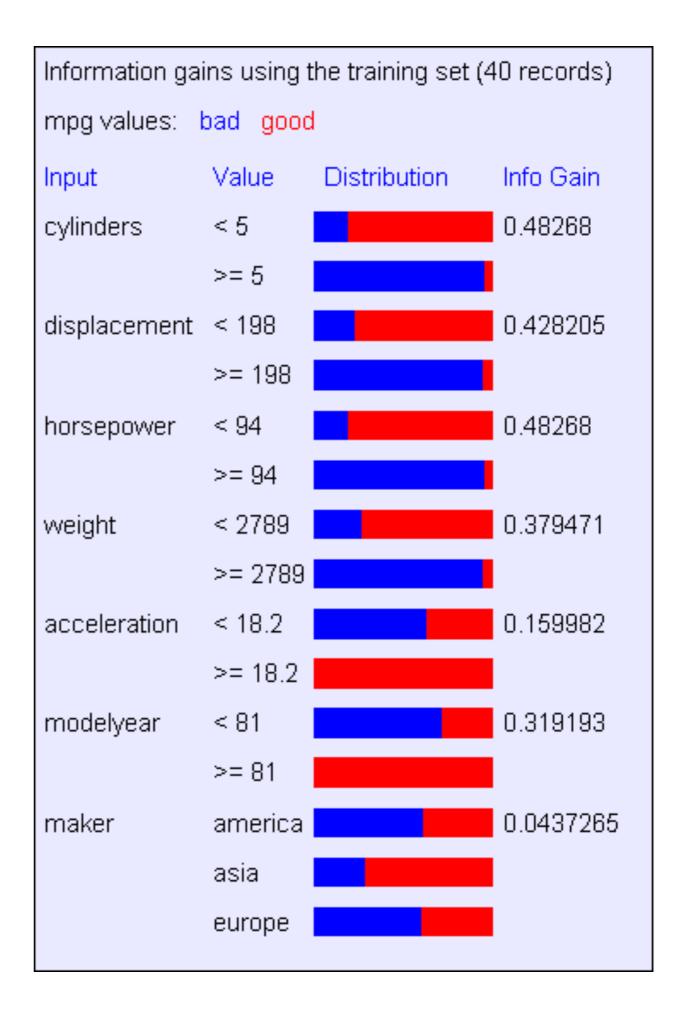
 Consider sphilipoints of the plant different chases.

 Consider sphilipoints of the plant
 - classes mætter optimal for information gain or empirical loss reduction

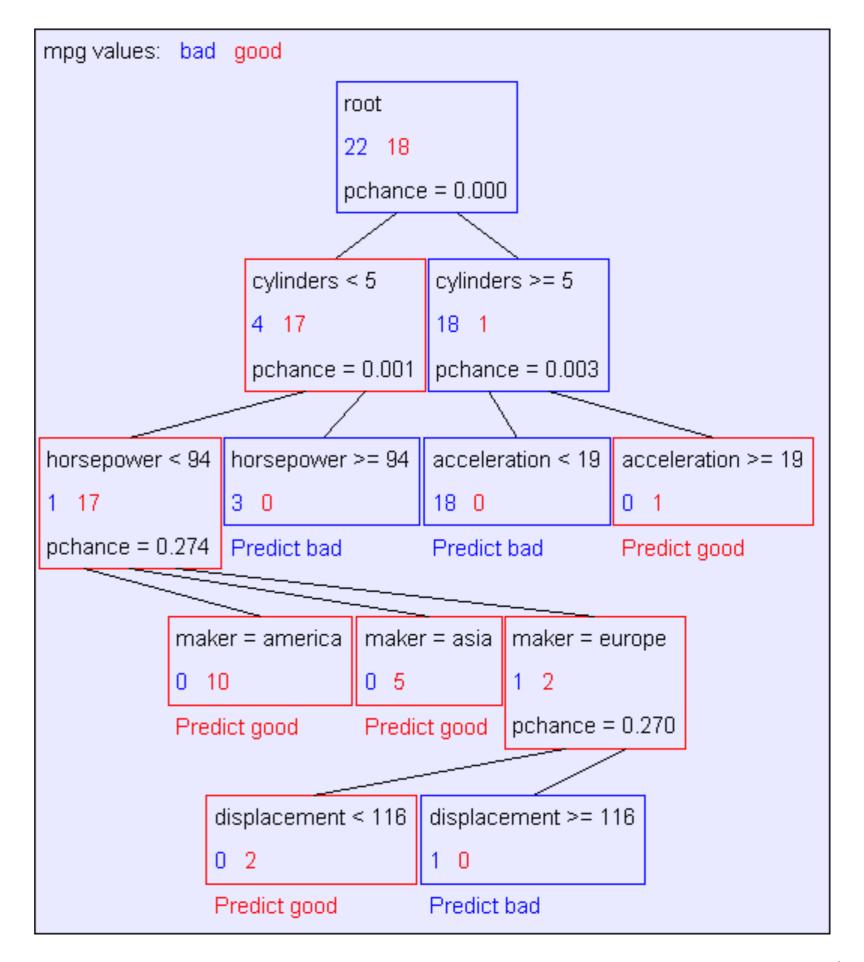
Picking the best threshold

- Suppose X is real valued with threshold t
- Want IG(Y | X:t), the information gain for Y when testing if X is greater than or less than t
- Define:
 - H(Y | X:t) = p(X<t)H(Y | X<t)+p(X>=t)H(Y | X>=t)
 - IG(Y | X:t) = H(Y) H(Y | X:t)
 - $IG^*(Y \mid X) = \max_t IG(Y \mid X:t)$
- Use: IG*(Y | X) for continuous variables

Example with MPG



Example tree for our continuous dataset



Demo time...

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Or, use ensembles of different trees (random forests)

slide by Vibhay Goga

Decision Trees vs SVM

Characteristic	SVM	Trees
Natural handling of data of "mixed" type	•	A
Handling of missing values	•	A
Robustness to outliers in input space	•	
Insensitive to monotone transformations of inputs	•	
Computational scalability (large N)	•	
Ability to deal with irrelevant inputs	_	A
Ability to extract linear combinations of features	<u> </u>	•
Interpretability	_	\(\)
Predictive power	_	•

Next Lecture: Ensemble Methods